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a b s t r a c t

This paper is about a class of distributionally robust model predictive controllers (MPC) for nonlinear
stochastic processes, which evaluate risk and control performance measures by propagating ambiguity
sets in the space of state probability measures. A framework for formulating such ambiguity tube
MPC controllers is presented using methods from the field of optimal transport theory. Moreover, an
analysis technique based on supermartingales is proposed, leading to stochastic stability results for
a large class of distributionally robust controllers. In this context, we also discuss how to construct
terminal cost functions for stochastic and distributionally robust MPC that ensure closed-loop stability
and asymptotic convergence to robust invariant sets. The corresponding theoretical developments are
illustrated by tutorial-style examples and a numerical case study.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional robust MPC formulations that systematically take
odel uncertainties and external disturbances into account can
e categorized into two classes. The first class of robust MPC
ontrollers are based on min–max (Houska & Villanueva, 2019;
awlings, Mayne, & Diehl, 2018) or tube-based MPC formula-
ions (Langson, Chryssochoos, Raković, & Mayne, 2004; Mayne,
eron, & Raković, 2005; Raković, Kouvaritakis, Findeisen, & Can-
on, 2012), which typically assume that worst-case bounds on
he uncertainty are available. This is in contrast to the second
lass of optimization based robust controllers, namely, stochastic
PC controllers (Kouvaritakis & Cannon, 2015; Mesbah, 2016),
hich assume that the probability distribution of the external dis-
urbance is known. The main practical difference between these
ormulations is that most stochastic MPC controllers attempt to
ither bound or penalize the probability of a constraint viola-
ion, but, in contrast to min–max MPC formulations, conservative
orst-case constraints are not enforced.
In terms of recent developments in the field of robust MPC,

everal attempts have been made to unify the above classes by
onsidering distributionally robust MPC controllers (Van Parys,
uhn, Goulart, & Morari, 2016). Here, one assumes that the un-
ertainty is stochastic, but the associated probability distribution
s only known to be in a given ambiguity set. Thus, in the most
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general setting, distributionally robust MPC formulations contain
both traditional stochastic MPC as well as min–max MPC as
special cases: in the context of stochastic MPC the ambiguity set
is a singleton whereas min–max MPC is based on ambiguity sets
that contain all uncertainty distributions with a given bounded
support. Notice that modern distributionally robust MPC formu-
lations are often formulated by using risk measures (Sopasakis,
Herceg, Bemporad, & Patrinos, 2019). This trend is motivated by
the availability of rather general classes of coherent – and, most
importantly, computationally tractable – risk measures, such as
the conditional value at risk (Rockafellar & Uryasev, 2013).

This paper focuses on distributionally robust MPC problems,
formulated as ambiguity controllers. Here, the main idea is to
propagate sets in the space of probability measures on the state
space. The primary motivation for analyzing such a class of con-
trollers is, however, not to develop yet another robust MPC for-
mulation, but to develop a coherent stability theory for a very
general class of distributionally robust MPC controllers, contain-
ing tube MPC as well as stochastic MPC as a special case.

Before we outline why such a general stability theory for
ambiguity controllers is of fundamental interest in control theory
– especially, in the emerging era of learning based MPC (Hew-
ing, Wabersich, Menner, & Zeilinger, 2020; Zanon & Gros, 2021),
where uncertain models are omni-present – one has to first men-
tion the existence of a plethora of stability results for MPC. First of
all, the stability of classical (certainty-equivalent) MPC has been
thoroughly analyzed—be it for tracking or economic MPC, with or
without terminal costs or regions (Chen & Allgöwer, 1998; Grüne,
2009; Rawlings et al., 2018). Similarly, the stability of variants of
min–max MPC schemes have been analyzed exhaustively (Mayne
et al., 2005; Villanueva, Quirynen, Diehl, Chachuat, & Houska,
utomatica (2022) 110648, https://doi.org/10.1016/j.automatica.2022.110648.
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017), although the development of a unified stability analy-
is for general set-based MPC controllers is a topic of ongoing
esearch (Villanueva, De Lazzari, Müller, & Houska, 2020).

These stability results for certainty-equivalent and tube MPC
ontrollers have in common that they rely on the construction of
yapunov functions that descend along the closed-loop trajecto-
ies of the robust controller. This is in contrast to existing results
n the stability of stochastic MPC, which are usually based on
he theory of non-negative supermartingales (Doob, 1953; Feller,
971). The mathematical foundation for such results has been
eveloped by Bucy (1965) and Kushner (1965) in the context of
eneral Markov processes—see also Kushner (2014) for a histori-
al review. At the current status of research on stochastic MPC,
artingale theory has been applied to special classes of linear
PC controllers with multiplicative uncertainty (Bernardini &
emporad, 2012). Moreover, an impressive collection of articles
y M. Cannon and B. Kouvaritakis has appeared during the last
wo decades, which has had significant impact on shaping the
tate-of-the-art of stochastic MPC. As we cannot possibly list
ll of their papers on this subject, we refer at this point to
heir textbook (Kouvaritakis & Cannon, 2015) for an overview
f formulations and stability results for stochastic linear MPC.
dditionally, the book chapter (Kouvaritakis & Cannon, 2016)
omes along with an excellent overview of recursive feasibility
esults for stochastic MPC as well as a proof of stochastic stability
ith respect to ellipsoidal regions that are derived by using
on-negative supermartingales, too.
Given the above list of articles it can certainly be stated that

he question how to establish stability results for both robust
ix-max and stochastic MPC has received significant attention.
evertheless, looking back at the MPC literature from the last
ecade, it must also be stated that this question has raised a
ritical discussion. For example, the general critique of robust
PC in Mayne (2015) points out the lack of a satisfying treat-
ent of stabilizing terminal conditions for stochastic MPC. Sim-

larly, Chatterjee and Lygeros (2015) discusses various discrep-
ncies between deterministic and stochastic MPC. From these
rticles it does get clear that one has to carefully distinguish
etween a rigorous stability analysis based on supermartigale
heory – in the sense of Kushner and Bucy – and weaker proper-
ies of stochastic MPC from which stability may not be inferred.
mong these are bounds on the asymptotic average performance
f stochastic MPC (Kouvaritakis & Cannon, 2015, 2016), which
o not necessarily imply stability. Moreover, in the past 5 years
everal articles have appeared exploiting input-to-state-stability
ssumptions for establishing convergence of stochastic MPC con-
rollers to robust invariant sets (Lorenzen, Dabbene, Tempo, &
llgöwer, 2016; Sehr & Bitmead, 2018). One of the strongest
esults in this context appeared only a few weeks ago in Munoz-
arpintero and Cannon (2020), where an input-to-state-stability
ssumption in combination with the Borel–Cantelli lemma is
sed to establish conditions under which the state of a poten-
ially nonlinear Markov process converges almost surely to a
inimal robust invariant set. These conditions are applicable for
stablishing convergence of a variety of stochastic MPC formu-
ations. Nevertheless, it has to be recalled here that, in general,
either stability implies convergence nor convergence implies
tability. As such, none of the these contributions proposes a
ompletely satisfying answer to the question how asymptotic
tability conditions can be established for general stochastic, let
lone distributionally robust, MPC.

ontribution. This paper is concerned with the mathematical for-
mulation and stochastic stability analysis of distributionally ro-
bust MPC controllers for general, potentially nonlinear, but Lips-
chitz continuous stochastic discrete-time systems. Here, the focus

is on ambiguity tube MPC controllers that are based on the
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propagation of sets in the space of state probability measures. The
corresponding contributions of the current article can be outlined
as follows.

(1) Section 2 develops a novel framework for formulating am-
biguity tube MPC problems by exploiting measure-
theoretic concepts from the field of modern optimal
transport theory (Villani, 2005). In detail, we propose a
Wasserstein metric based setting, which leads to a well-
formulated class of ambiguity tube MPC controllers admit-
ting a continuous value function; see Theorem 1.

(2) Section 3 presents a complete stability analysis for ambigu-
ity tube MPC for Lipschitz continuous stochastic discrete-
time systems under mild assumptions on the coherentness
of the optimized performance and risk measures, as well
as on the consistency of the terminal cost function of the
MPC controller. In detail, Theorem 2 establishes condi-
tions under which the cost function of the ambiguity tube
MPC controller is a non-negative supermartingale along
its closed-loop trajectories. This can be used to establish
robust stability or, under a slightly stronger regularity as-
sumption, robust asymptotic stability of the closed loop
system in a stochastic sense, as summarized in Theorems 3
and 4. These results are more general than the existing
stability and convergence statements about stochastic MPC
in Chatterjee and Lygeros (2015), Kouvaritakis and Can-
non (2016) and Munoz-Carpintero and Cannon (2020), as
they apply to nonlinear systems and formulations based on
ambiguity sets. Besides, Theorem 4 establishes conditions
under which the closed-loop trajectories of ambiguity tube
MPC controllers are asymptotically stable with respect to
a minimal robust invariant set. This is in contrast to the
results in Kouvaritakis and Cannon (2016), which only es-
tablish stability and convergence of linear stochastic MPC
with respect to an ellipsoidal enclosure of the actual (in
general, non-ellipsoidal) limit set of the stochastic ancillary
closed-loop system.

(3) Section 4 discusses the practical implementation of am-
biguity tube MPC. Here, our focus is on linear systems,
although remarks on how this can be implemented for
nonlinear systems are provided, too. The purpose of this
section is to illustrate how the technical assumptions from
Section 3 can be satisfied in practice. In this context, a
relevant technical contribution is summarized in Lemma 3,
which explains how to construct stabilizing terminal cost
functions for stochastic and ambiguity tube MPC.

Notice that as much this paper attempts to take a step for-
ward towards a more coherent stability analysis and treatment of
stabilizing terminal conditions for stochastic and distributionally
robust MPC, it must be stated clearly that we do not claim to be
anywhere close to addressing the long list of conceptual issues
of robust MPC that D. Mayne summarized in his critique (Mayne,
2015). Nevertheless, in order to assess the role of this paper in
the context of recent developments in robust MPC, Section 5
comments on the long list of open problems that research on
robust MPC is currently facing.

Notation. If (R, r) is a metric space with a given distance function
r : R × R → R+, we use the notation K(R) to denote the
set of compact subsets of R—assuming that it is clear from the
context what r is. Similarly, if (R1, r1) and (R2, r2) are two metric
paces, L(R1, R2) denotes the set of Lipschitz continuous functions
rom R1 to R2 with respect to the distance functions r1 and
r2. Moreover, L1(R1, R2) denotes the subset of L(R1, R2) of all

functions from R1 to R2 whose Lipschitz constant is smaller than
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r equal to 1. Finally, R1×R2 is again a metric space with distance
function

r((a, b), (c, d)) def
= r1(a, c)+ r2(b, d)

for all a, c ∈ R1 and all b, d ∈ R2. If nothing else is stated, we
ssume that the distance function in the new metric space R1×R2
s constructed as above—without always stating this explicitly.
oreover, we denote the distance of a point a ∈ Rn to a compact
et B ∈ K(Rn) by

istq(a, B)
def
= min

b∈B
∥a− b∥q ,

ith ∥ · ∥q being the Hölder q-norm. For R1 ∈ K(Rn) and R2 ∈

K(Rm) the map dL : L(R1, R2) × L(R1, R2) → R+ denotes the
Hilbert–Sobolev distance,

dL(µ, ν) def
=

√∫
∥µ− ν∥22 + ∥∇µ−∇ν∥22 dx ,

hich is defined for all µ, ν ∈ L(R1, R2). Here, ∥ · ∥2 denotes
he Euclidean norm and ∇ the weak gradient operator recall-
ng that Lipschitz continuous functions are differentiable almost
verywhere. Notice that (L(R1, R2), dL) is a metric space.
Let X ∈ K(Rn) denote a given compact set in Rn. We use

he symbol P(X) to denote the set of Borel probability measures
n X . With this definition P(X) is convex and p(X) = 1 for all
∈ P(X). Moreover, B(X) denotes the associated Borel σ -algebra
f X . Notice that P(X) turns out to be a metric space with respect
o the Wasserstein distance function,1 defined as follows.

efinition 1. The function dW : P(X)×P(X)→ R+ denotes the
asserstein distance,

p, q ∈ P(X), dW(p, q) def
= sup

ϕ∈L1(X,R)

⏐⏐⏐⏐∫ ϕ d(p− q)
⏐⏐⏐⏐ .

Notice that dW is well-defined in our context, as all Lipschitz
ontinuous functions are B(X)-measurable. Thus, the integrals
n Definition 1 exist and are finite, since we assume that X is
ompact.
Throughout this paper, we use the notation δy ∈ P(X) to

enote the Dirac measure at a point y ∈ X , given by

Y ∈ B(X), δy(Y )
def
=

{
1 if y ∈ Y
0 otherwise .

ince this paper uses the concept of ambiguity sets intensely, we
dditionally introduce the shorthand

(X) def
= K(P(X))

o denote the set of compact subsets of P(X)—in the Wasserstein
pace (P(X), dW). By construction, K(X) is a metric space with
espect to the Hausdorff–Wasserstein distance,

H(P,Q ) def
= max

{
max
p∈P

min
q∈Q

dW(p, q), max
q∈Q

min
p∈P

dW(p, q)
}

,

efined for all P,Q ∈ K(X).

emark 1. Let w be a random variable with given Lebesgue
ntegrable probability distribution ρ : Rn

→ R+. The probability
f the event w ∈ W for a Borel set W ⊆ Rn is denoted by

r(w ∈ W ) def
=

∫
W

1 dp def
= p(W ) def

=

∫
W

ρ(w) dw .

1 A detailed review of the history and mathematical properties of Wasserstein
istances can be found in Villani (2005, Chapter 6).
 o
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Here, p ∈ P(Rn) is called the probability measure of w. Notice that
all four notations are, by definition, equivalent. Many articles on
stochastic control, for instance, Bucy (1965) and Kushner (1965,
2014) work with measures rather than probability distributions,
due to their technical advantages (Villani, 2005). This means that
we specify the probability measure p rather than the probability
distribution ρ. The relation

ρ =
dp
dw

holds, where the right-hand expression denotes the Radon-
Nikodyn derivative of the measure p with respect to the tradi-
tional Lebesgue measure (Taylor, 1996).

2. Control of ambiguity tubes

This section introduces a class of uncertain control systems
and their Markovian kernels, which can be used to propagate
state probability measures. Section 2.3 exploits the properties of
these kernels to introduce a topologically coherent framework for
defining ambiguity tubes with compact cross-sections in K(X).
Section 2.4 focuses on an axiomatic characterization of proper
risk and performance measures. These are used in Section 2.5
to introduce a general class of ambiguity tube MPC controllers,
completing the problem formulation.

2.1. Uncertain control systems

This paper concerns uncertain nonlinear discrete-time control
systems of the form

∀k ∈ N0, xk+1 = f (xk, uk, wk). (1)

Here, xk denotes the state at time k ∈ N0, evolving in the domain
X ∈ K(Rnx ), uk ∈ U the control input at time k with domain
U ∈ K(Rnu ), and wk an uncertain disturbance with support
W ∈ K(Rnw ).

Assumption 1. The potentially nonlinear right-hand side func-
tion f satisfies

f ∈ L ( X × U ×W , X ) . (2)

Assumption 1 requires f to be Lipschitz continuous and it
requires its image set to be contained in X . Thus, it should be
mentioned that X is here interpreted as a sufficiently large region
of interest in which we analyze the system. If f is Lipschitz
continuous on Rnx but unbounded, we redefine f ← projX ◦ f
with projX denoting a Lipschitz continuous projection onto X ,
such that (2) holds by construction. Notice that X should not be
mixed up with the set X ⊆ X that could, for example, model
state-constraints; that is, a region in which we would like to keep
the state with high probability.

We additionally introduce a compact set U ∈ K(L(X,U)) in
order to denote a class of ancillary feedback laws in (L(X,U), dL).
In the context of this paper, U models a suitable class of computer
representable feedback laws.

Example 1. An example for a class of computer representable
feedback laws is given by the set

U =
{
x ↦→ Kx+ k

⏐⏐⏐⏐∃k ∈ Rnu , ∃K ∈ Rnu×nx :

∥K∥ ≤ K

}
of affine control laws with bounded feedback gain, where K <∞
is a given bound on the norm of K , such that all functions in U
re Lipschitz continuous. Specific feedback laws can in this case
e represented by storing the finite dimensional matrix K and the
ffset vector k.
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.2. Models of stochastic uncertainties

In order to refine (1), we introduce the probability spaces
W ,B(W ), ωk). Here, ωk ∈ P(W ) is the probability measure of
he random variable wk : W → R such that

∀W ′ ∈ B(W ), Pr(wk ∈ W ′) = ωk(W ′) .

In the most general setting, we might not know ωk up to a
high precision. Instead, we work with the assumption that an
ambiguity set Ω ∈ K(W ) is given. This means that, for any given
k ∈ N0, the probability measure ωk is merely known to satisfy
ωk ∈ Ω .

In order to proceed with this modeling assumption, we ana-
lyze the closed-loop system

∀k ∈ N0, xk+1 = f (xk, µ(xk), wk) , (3)

for a given feedback law µ ∈ U . Since the sequence w0, w1, . . .
consists of independent random variables, the states xk are ran-
dom variables, too. Now, if pk ∈ P(X) denotes a probability mea-
sure associated with xk, then the probability measure pk+1 ∈ P(X)
of xk+1 in (3) is a function of pk, µ, and ωk. Formally, this propa-
gation of measures can be defined using a parametric Markovian
kernel, N [x, µ, ω] : B(X)→ R, given by

N [x, µ, ω](X+) def
= ω

( {
w ∈ W

⏐⏐⏐⏐ f (x, µ(x), w) ∈ X+
} )

for all Borel sets X+ ∈ B(X). The transition map

Φ(p, µ, ω) def
=

∫
X
N [x, µ, ω] p(dx) (4)

is then well-defined for all p ∈ P(X), all µ ∈ U , and all probability
measures ω ∈ P(W ), where dx denotes the traditional Lebesgue
measure (Feller, 1971). This follows from the Lipschitz continuity
of f , such that the Markovian kernel N [·, µ, ω](X+) is for any
given Borel set X+ a B(X)-measurable function in x. In summary,
the recursion for the sequence of measures p0, p1, . . . can be
written as

∀k ∈ N0, pk+1 = Φ(pk, µ, ωk). (5)

The next lemma establishes an important property of Φ .

Lemma 1. If Assumption 1 holds, then we have

Φ ∈ L( P(X)× U × P(W ), P(X) ) .

Here, we recall that P(X) and P(W ) are metric spaces with respect
to their Wasserstein distances dW, while U is equipped with the
Hilbert–Sobolev distance dL.

Proof. First, Φ is well defined by (4): Assumption 1 guarantees
the Lipschitz continuity of f and that its image set is contained in
X . Hence, the image set of Φ is contained in P(X). Let p, q ∈ P(X)
and ω, ξ ∈ P(W ) be given measures and µ, ν ∈ U given feedback
laws. We set p+ = Φ(p, µ, ω) and q+ = Φ(q, ν, ξ ). The definition
of the Wasserstein metric implies that

dW(p+, q+) = sup
ϕ∈L1(X,R)

⏐⏐⏐⏐∫ ϕ dp+ −
∫

ϕ dq+
⏐⏐⏐⏐

= sup
ϕ∈L1(X,R)

⏐⏐⏐⏐∫∫ ϕ ◦ fµ dp dω −
∫∫

ϕ ◦ fν dq dξ
⏐⏐⏐⏐ .

Here, ◦ denotes the composition operator. Additionally, we have
introduced the shorthand notation

∀µ ∈ U, fµ(x, w) def
= f (x, µ(x), w) .

Since we assume U ∈ K(L(X,U)), and because the particular

definition of dL implies that all functions in U are uniformly

4

Lipschitz continuous, each fµ is – by construction – uniformly
Lipschitz continuous on U . Let γ1 < ∞ denote its the uniform
Lipschitz constant. Since ϕ is 1-Lipschitz continuous, ϕ ◦ fµ is also
Lipschitz continuous with uniform Lipschitz constant 1∗γ1 = γ1.
Thus, the triangle inequality yields the estimate⏐⏐⏐⏐∫∫ ϕ ◦ fµ dp dω −

∫∫
ϕ ◦ fν dq dξ

⏐⏐⏐⏐
≤

⏐⏐⏐⏐∫∫ ϕ ◦ fµ dp dω −
∫∫

ϕ ◦ fµ dq dω
⏐⏐⏐⏐

+

⏐⏐⏐⏐∫∫ ϕ ◦ fµ dq dω −
∫∫

ϕ ◦ fµ dq dξ
⏐⏐⏐⏐

+

⏐⏐⏐⏐∫∫ [
ϕ ◦ fµ − ϕ ◦ fν

]
dq dξ

⏐⏐⏐⏐
≤ γ1 · dW(p, q)+ γ1 · dW(ω, ξ )

+

⏐⏐⏐⏐∫∫ [
ϕ ◦ fµ − ϕ ◦ fν

]
dq dξ

⏐⏐⏐⏐ ,

(6)

which holds uniformly for all ϕ ∈ L1(X,R) and all functions
µ, ν ∈ U . Additionally, since q and ξ are probability measures,
the last integral term can be bounded as⏐⏐⏐⏐∫∫ [

ϕ ◦ fµ − ϕ ◦ fν
]
dq dξ

⏐⏐⏐⏐ ≤ γ2 · |X | · |W | · dL(µ, ν) ,

where γ2 denotes the Lipschitz constant of f with respect to its
second argument, |X | the diameter of the compact set X and |W |
the diameter of the set W . Finally, by substituting all the above
inequalities we find that

dW(p+, q+) ≤ γ (dW(p, q)+ dW(ω, ξ )+ dL(µ, ν))

with γ = max{γ1, γ2 · |X | · |W |}. But this inequality implies that
Φ is indeed Lipschitz continuous. □

Remark 2. The proof of Lemma 1 relies on the properties
of Wasserstein (Kantorovich–Rubinstein) distances, which have
originally been introduced independently by several authors in-
cluding Kantorovich (2006) and Vasershtein (1969), see also Vil-
lani (2005). To explain why this metric is remarkably powerful in
the context of control system analysis, let us briefly discuss what
would have happened if we had defined the metric space P(X),
with respect to another metric, for example, a total variation
distance,

dTV(p, q)
def
= sup

A∈B(X)
|p(A)− q(A)| .

Let us consider a scalar system with f (x, u, w) = u and parametric
feedback laws µκ (x) = κ with compact domain U = {µκ | κ ∈

[−1, 1]}. In this example, we have

dTV(Φ(p, µκ , ω), Φ(p, µκ ′ , ω)) = dTV(δκ , δκ ′ )

=

{
0 if κ = κ ′

1 otherwise

implying that Φ is not Lipschitz continuous with respect µκ on U .
In other words, the statement of Lemma 1 is wrong in general, if
we replace the Wasserstein distance with other distances—such
as the total variation.

2.3. Ambiguity tubes

In this section, we generalize the considerations from the pre-
vious section by introducing ambiguity tubes. The motivation for
considering such a general setting is twofold: firstly, in practice,
one might not know the exact probability measure ωk of the
process noise wk, but only have a set Ω ∈ K(W ) of possible

probability measures. For instance, one might know a couple of
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ower order moments of wk, such as the expected value and vari-
nce, while higher order moments are unknown. And secondly,
n the contexts of nonlinear systems and high dimensional state
paces, propagating the exact state distribution can be difficult
r impossible. In such cases, it may be easier to bound the true
robability measure of the state by a so-called enclosure; that is,
set of probability measures that – in a suitable, yet to be defined
ense – overestimates the actual probability measure of the state.
Let F : K(X)× U → K(X) denote the ambiguity transition map

hat is defined as

(P, µ) def
=

{
Φ(p, µ, ω)

⏐⏐⏐⏐ p ∈ P, ω ∈ Ω

}
(7)

for all P ∈ K(X) and all µ ∈ U . The ambiguity set Ω ∈ K(W ) of
ossible disturbance probability measures is assumed to be given
nd constant.

orollary 1. Let Assumption 1 hold. The function F is Lipschitz
continuous,

F ∈ L( K(X)× U, K(X) ) ,

ecalling that K(X) is equipped with the Hausdorff–Wasserstein
metric dH.

Proof. Compactness of the image sets of F follows from (7) and
he Lipschitz continuity of Φ . Moreover, F directly inherits the
ipschitz continuity of Φ (see Lemma 1), since dH is the Hausdorff
etric of dW. □

In order to formalize the concept of ambiguity enclosures, the
ollowing definition is introduced.

efinition 2. Let P,Q ∈ K(X) be ambiguity sets. The set Q is
called an enclosure of P , denoted by P ⪯ Q , if

sup
∈L1(X,R)

[
max
p∈P

min
q∈Q

∫
ϕ d(p− q)

]
≤ 0 .

he ambiguity sets P and Q are equivalent, denoted by P ≃ Q , if
oth P ⪯ Q and Q ⪯ P .

The above definition of the relation ‘‘⪯’’ should not be mixed
p with the set inclusion relation ‘‘⊆’’, as used for the definition
f set enclosures in the field of set-theoretic tube MPC and
lobal optimization. The conceptual difference is illustrated by
he following example.

xample 2. Let us consider the ambiguity sets

= {δ0, δ1} and Q = {δ0, δ1, 0.5δ0 + 0.5δ1}

f the compact set X = [0, 1] ⊆ R recalling that δ0 and δ1
enote the Dirac measures at 0 and 1, respectively. Here, the
pper bounds of the integrals,

max
p∈P

∫
ϕ dp = max{ ϕ(0), ϕ(1) }

nd max
q∈Q

∫
ϕ dq = max{ ϕ(0), ϕ(1) } ,

oincide for any Lipschitz continuous function ϕ. Similarly, the
ssociated lower bounds

min
p∈P

∫
ϕ dp = min{ ϕ(0), ϕ(1) }

nd min
q∈Q

∫
ϕ dq = min{ ϕ(0), ϕ(1) } ,

oincide, too. Consequently, in the sense of Definition 2, the
mbiguity sets P and Q are equivalent, Q ≃ P . In particular, we
ave Q ⪯ P but we do not have Q ⊆ P . Thus, the relations ⪯ and
are not the same.
5

The following proposition establishes that ⪯ defines a partial
rder on K(X) with respect to ≃. Moreover, topological compat-
bility with respect to our Hausdorff–Wasserstein metric setting
s established.

roposition 1. Let the enclosure relation ⪯ be defined as in
efinition 2. Then, the following properties are satisfied for any
,Q , T ∈ K(X).

(1) Reflexivity: we have P ⪯ P.
(2) Anti-Symmetry: if P ⪯ Q and Q ⪯ P, then P ≃ Q .
(3) Transitivity: if P ⪯ Q and Q ⪯ T , then P ⪯ T .
(4) Compactness: The set

S = {(P,Q ) ∈ K(X)× K(X) | P ⪯ Q }

is compact; that is, S ∈ K(K(X)× K(X)).

roof. Reflexivity, anti-symmetry with respect to the equiva-
ence relation≃, and transitivity follow directly from Definition 2.
ur focus is on the last statement, which claims to establish com-
atibility of Definition 2 and the proposed Wasserstein–Hausdorff
etric setting. Let P0, P1, P2, . . . ∈ K(X) and Q0,Q1,Q2, . . . ∈ K(X)

be two convergent sequences with

P⋆ def
= lim

k→∞
Pk and Q ⋆ def

= lim
k→∞

Qk

and such that Pk ⪯ Qk for all k ∈ N. Because all sets are compact,
the maximizers

p⋆
k,ϕ

def
= argmax

p∈Pk

∫
ϕ dp and q⋆

k,ϕ
def
= argmax

q∈Qk

∫
ϕ dq

exist for all ϕ ∈ L1(X,R). Next, since K(X) is a compact set of
compact sets, we have not only P⋆,Q ⋆

∈ K(X), but the triangle in-
equality for the Hausdorff–Wasserstein metric additionally yields
that

p̃ϕ
def
= lim

k→∞
p⋆
k,ϕ = argmax

p∈P⋆

∫
ϕ dp

and q̃ϕ
def
= lim

k→∞
q⋆
k,ϕ = argmax

q∈Q ⋆

∫
ϕ dq .

A direct consequence of these equations is that we have

sup
ϕ∈L1(X,R)

[
max
p∈P⋆

min
q∈Q ⋆

∫
ϕ d(p− q)

]
= sup

ϕ∈L1(X,R)
{̃pϕ − q̃ϕ}

= sup
ϕ∈L1(X,R)

lim
k→∞
{p⋆

ϕ,k − q⋆
ϕ,k  

≤0

} ≤ 0 ,

which shows that P⋆
⪯ Q ⋆. Notice that this means that if

(Pk,Qk) ∈ S is a Cauchy sequence, then the limit point satisfies
(P⋆,Q ⋆) ∈ S; that is, S is closed. Because S is bounded by
construction, this also implies that S is compact, S ∈ K(K(X)×K
(X)). □

After this technical preparation, the following definition of
ambiguity tubes is possible.

Definition 3. The sequence (P0, P1, . . . , PN ) ∈ K(X)N+1 is
called an ambiguity tube of (1) on the discrete-time horizon
{0, 1, . . . ,N}, if there exists a sequence of ancillary feedback
controllers µ0, µ1, . . . , µN−1 ∈ U such that

∀k ∈ {0, 1, . . . ,N − 1}, F (Pk, µk) ⪯ Pk+1 .

Definition 3 is inspired by similar definitions from the field
of set-theoretic methods in control (Houska & Villanueva, 2019;



AUT: 110648

F. Wu, M.E. Villanueva and B. Houska Automatica xxx (xxxx) xxx

L
s
h
‘
t
c
o
i
s
t
m
t

R
D
o
a
&

a
(
t
H
i
i

v
d

L

angson et al., 2004; Mayne et al., 2005). In detail, the step from
et-valued robust forward invariant tubes to ambiguity tubes is,
owever, not straightforward. For instance, the inclusion relation
‘⊆’’ would be too strong for a practical definition of ambiguity
ubes and is therefore replaced by the relation ⪯. This adaption of
oncepts to our measure based setting is needed, as the purpose
f constructing tubes for standard set propagation and ambigu-
ty set propagation is different. As discussed in the following
ections, ambiguity tubes can be used to assess, analyze, and
rade-off the risk of constraint violations with other performance
easures rather than enforcing worst-case constraints used in

raditional tube MPC.

emark 3. An equivalent characterization of the relations in
efinition 2 can be obtained by borrowing notation from the field
f convex optimization that is related to the concept of duality
nd support functions (Boyd & Vandenberghe, 2004; Rockafellar
Wets, 2005). In order to explain this, we denote with dP :

L1(X,R)→ R the support function of the ambiguity set P ,

∀ϕ ∈ L1(X,R), dP (ϕ)
def
= max

p∈P

∫
ϕ dp .

This notation is such that we have dP = dQ if and only if P ≃ Q .
Similarly, we have dP ≤ dQ if and only if P ⪯ Q .

2.4. Proper ambiguity measures

The goal of this section is to formalize certain concepts of
modeling performance and risk in the space of ambiguity sets.
For this aim, we introduce maps of the form

ℓ : K(X)→ R ,

which assign real values to ambiguity sets. The following defini-
tion proposes a regularity condition under which an ambiguity
measure is considered ‘‘proper’’.2

Definition 4. The ambiguity measure ℓ : K(X)→ R is proper, if
it is Lipschitz continuous, ℓ ∈ L(K(X),R), linear with respect to
weighted Minkowski sums,

∀θ ∈ [0, 1], ℓ(θP ⊕ (1− θ )Q ) = θℓ(P)+ (1− θ )ℓ(Q ) ,

and monotonous; that is, P ⪯ Q implies ℓ(P) ≤ ℓ(Q ) for P,Q ∈
K(X).

Notice that the above definition ensures that any proper am-
biguity measure ℓ satisfies ℓ(P) = ℓ(Q ) for any P,Q ∈ K(X) with
P ≃ Q . Together with the monotonicity, it implies that proper
ambiguity measures are compatible with our definition of the
relations ‘‘⪯’’ and ‘‘≃’’ from Definition 2. In order to understand
why practical performance and risk measures can be assumed to
be proper without adding much of a restriction, it is helpful to
have the following examples in mind.

Example 3. If l ∈ L(Rn,R) denotes a cost function, for exam-
ple, the stage cost of a nominal MPC controller, the associated
worst-case average performance

ℓ(P) def
= max

p∈P

∫
l dp

2 The conditions in Definition 4 are of an axiomatic nature, inspired by similar
xioms for coherent risk measures, as introduced in Rockafellar and Uryasev
2013). One difference is, however, that we work with ambiguity sets rather
han probability measures. Moreover, Definition 4 is tailored to our Wasserstein–
ausdorff metric setting in which Lipschitz continuity (not only closedness of
mage sets as required for regular risk measures Rockafellar & Uryasev, 2013)
s needed for ensuring topological compatibility.
6

is well defined, where the maximizer exists for compact ambigu-
ity sets P ∈ K(X). It is easy to check that ℓ is a proper ambiguity
measure in the sense of Definition 4.

Example 4. If X ∈ K(X) denotes a state constraint, its maximum
expected constraint violation at risk is given by

R(P) def
= max

p∈P

∫
dist1(x,X) p(dx)

recalling that dist(x,X) = minz∈X ∥x − z∥1 denotes the distance
function with respect to the 1-norm. Similar to the previous
example, R is a proper ambiguity measure in the sense of Defi-
nition 4, which can here be interpreted as a risk measure. In fact,
it is closely related to the so-called worst-case conditional value
at risk, as introduced by Rockafellar and Uryasev (2013), which
is accepted as one of the most practical and computationally
tractable risk measures in engineering and management sciences.

2.5. Ambiguity tube MPC

This section focuses on the formulation of ambiguity tube MPC
problems of the form

V(y) def
= min

P,µ

N−1∑
k=0

L(Pk, µk)+M(PN )

s.t.

⎧⎪⎪⎨⎪⎪⎩
∀k ∈ {0, 1, . . . ,N − 1},
F (Pk, µk) ⪯ Pk+1
Pk ∈ K(X), µk ∈ U
δy ∈ P0 .

(8)

Here, the sequence of ambiguity sets P = (P0, P1, . . . , PN ) and
ancillary feedback laws µ = (µ0, µ1, . . . , µN ) are optimization
ariables. The current state measurement is y – recalling that δy
enotes its Dirac measure – while

: K(X)× U → R and M : K(X)→ R

denote the stage and end costs. If µ⋆
0[y] ∈ U denotes the para-

metric minimizer of (8), the MPC feedback law is

µMPC(y)
def
= µ⋆

0[y](y). (9)

Notice that in this notation, the current time of the MPC con-
troller is reset to 0 after every iteration. The next theorem in-
troduces a minimum requirement under which one could call (8)
well-formulated.

Theorem 1. Let Assumption 1 hold and let L and M be continuous
functions on the compact domains K(X)×U and K(X), respectively,
then (8) admits a minimizer for any y ∈ X. Moreover, the function
V is continuous on X.

Proof. Since Assumption 1 holds, Corollary 1 can be combined
with the fourth statement of Proposition 1 to conclude that the
feasible set of (8) is non-empty and compact. Thus, if L and M
are continuous, Weierstrass’ theorem yields the first statement
of this theorem. The second statement follows from a variant
of Berge’s theorem (Berge, 1963); see, also Rockafellar and Wets
(2005, Thm. 1.17). □

The above theorem has been formulated under a rather weak
requirement on the continuity of the functions L and M; that
is, without necessarily requiring that these functions are proper
ambiguity measures. However, as discussed in the following sec-
tions, stronger assumptions on L and M are needed, if one is
interested in analyzing the stability properties of the MPC con-
troller (8).
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emark 4. The ambiguity tube MPC formulation (8) includes
raditional tube MPC as well as stochastic MPC formulations as
pecial cases. In the first case, Ω denotes the set of all probability
istributions with support set W while, in the second case, Ω =
ω} is a singleton. Here, (8) is formulated under the convention
hat state-constraints are taken into account by adding suitable
isk measures to the objective, as explained by Example 4. This
s, from the perspective of stochastic MPC, rather natural. In such
setting one would usually be interested in an objective that
llows one to tradeoff between the risk of violating a constraint
nd control performance. Nevertheless, for the sake of generality
f the following analysis, it should be mentioned that if one
s interested in enforcing explicit chance constraints, the corre-
ponding MPC controllers can only be reformulated as a problem
f the form (8), if additional assumptions on the regularity3
nd recursive feasibility of these constraints are made—such that
hey can be added to the stage cost in the form of L1-penalties
ithout altering the problem formulation. Such conditions have
een discussed in all detail in Rawlings et al. (2018) for min–max
PC and in Kouvaritakis and Cannon (2016) for stochastic MPC.

. Stability analysis

As mentioned before, the basic concepts for analyzing stabil-
ty of Markovian systems using martingale theory can be found
n Bucy (1965) and Kushner (1965). The goal of this section is
o lay the foundation for applying these concepts to analyze the
tochastic closed-loop stability properties of the ambiguity tube
PC controller (8) in the presence of uncertainties. For this aim,

his section is divided into three parts: Section 3.1 concisely
resents all assumptions that will be needed for this stability
nalysis, Section 3.2 establishes an important technical result
egarding the concavity of MPC cost functions with respect to
inkowski addition of ambiguity sets, and Section 3.3 uses this
oncavity property to construct a non-negative supermartingale,
hich finally leads to the stability results for ambiguity tube MPC
hat are summarized in Theorems 3 and 4.

.1. Conditions on the stage and terminal cost function

Throughout the following stability analysis, two main assump-
ions on the stage and end cost function of the MPC controller (8)
re needed, as introduced below.

ssumption 2. The functions L(·, µ) and M are for any given
∈ U proper ambiguity measures. Moreover, we assume that L

is continuous on K(X)× U .

Notice that Examples 3 and 4 discuss the formulation of prac-
tical risk and performance measures in such a way that Assump-
tion 2 holds. A separate assumption on the continuity of M (as in
heorem 1) is not needed anymore, since proper ambiguity mea-
ures are Lipschitz continuous functions and, as such, continuous.
ssumption 2 does, however, add a continuity requirement for L,
s this function depends in general on the feedback law µ. In this
ay, we guarantee that the conditions of Theorem 1 are satisfied
henever Assumptions 1 and 2 are satisfied. The next assumption

ntroduces an additional condition on the terminal cost function
.

ssumption 3. The functions L and M are non-negative and
atisfy the terminal descent condition

P ∈ K(X), ∃µ ∈ U : L(P, µ)+M(F (P, µ)) ≤ M(P) .

3 Using proper ambiguity measures in order to formulate constraints, is
learly sufficient to ensure regularity.
7

Assumption 3 can be interpreted as a Lyapunov decent con-
dition. It is similar to the terminal descent conditions that are
typically introduced in the context of certainty-equivalent and
min–max MPC (Chen & Allgöwer, 1998; Grüne, 2009; Rawlings
et al., 2018; Villanueva et al., 2020). The construction of functions
L and M that satisfy Assumptions 2 and 3 simultaneously will be
discussed in Section 4.2.

Remark 5. Assumptions 2 and 3 together imply that M must be
a Lipschitz continuous Control Lyapunov Function (CLF). In the
general context of nonlinear system analysis, conditions under
which such Lipschitz continuous CLFs exist have been analyzed
by various authors (Clarke, Ledyaev, & Stern, 1998; Ledyaev &
Sontag, 1999). However, if one considers nonlinear MPC problems
with explicit state constraints (see also Remark 4), it is possible
to construct systems – for example, based on Artstein’s circles –
that are asymptotically stabilizable yet fail to admit a continuous
CLF (Grimm, Messina, Tuna, & Teel, 2004). It is, however, also
pointed out in Grimm et al. (2004) that systems admitting only
discontinuous CLFs often lead to non-robust MPC controllers.
Therefore, in the context of robust MPC design, the motivation
behind Assumptions 2 and 3 is to exclude such pathological non-
robustly stabilizable systems. Notice that more general regularity
assumptions, under which a robust control design is possible, are
beyond the scope of this paper.

3.2. On concave cost functions

After summarizing all main assumptions, we can now fo-
cus on the properties of certain cost functions that will later
be used to construct a supermartingale for the ambiguity tube
MPC controller (8). For this aim, we first introduce the auxiliary
function

Jµ(Q ) def
= min

P

N−1∑
k=0

L(Pk, µk)+M(PN )

s.t.

⎧⎪⎪⎨⎪⎪⎩
∀k ∈ {0, 1, . . . ,N − 1},
F (Pk, µk) ⪯ Pk+1
Pk ∈ K(X)
Q ⪯ P0, PN = P⋆ ,

(10)

efined for all Q ∈ K(X) and all feedback laws µ ∈ UN .

emma 2. If Assumptions 1 and 2 are satisfied, then Jµ is for any
iven µ ∈ UN a proper ambiguity measure.

roof. In the following, we may assume that µ ∈ UN is constant
and given. Our proof is divided into two parts. The first part
focuses on establishing a linearity property of F . The second part
of the proof builds upon the first part in to further analyze the
properties of Jµ.

PART I: Recall that Φ , as defined in (4), is, by construction, linear
in its first argument. Consequently, we have

θΦ(p, ν, ω)+ (1− θ )Φ(q, ν, ω) = Φ(θp+ (1− θ )q, ν, ω)

for all p, q ∈ P(X) and all θ ∈ [0, 1], for any given ω ∈ P(W ) and
ν ∈ U . This implies that F satisfies

θF (P, ν)⊕ (1− θ )F (Q , ν) = F (θP ⊕ (1− θ )Q , ν) ,

for all P,Q ∈ K(X), all ν ∈ U , and all θ ∈ [0, 1], which follows
from the definition of F in (7).

PART II: Let P0[Q ], . . . ,PN [Q ] ∈ K(X) be the solution of the
recursion

P [Q ] = Q ,
0
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k+1[Q ] = F (Pk[Q ], µk)

or k ∈ {0, 1, . . . ,N − 1} recalling that µ is given. Corollary 1 en-
ures that the transition map F is Lipschitz continuous such that
he above recursion generates compact ambiguity sets for any
ompact input set Q ∈ K(X), such that the sequence P0, . . . ,PN
s well-defined. Due to the linearity of F with respect to its first
rgument (see Part I), it follows by induction over k that

k[θQ ⊕ (1− θ )Q ′] = θPk[Q ] ⊕ (1− θ )Pk[Q ′] (11)

or all Q ,Q ′ ∈ K(X) and all θ ∈ [0, 1]. Next, since both
mbiguity measures L and M are, by Assumption 2, monotonous
nd Lipschitz continuous, we have

µ(Q ) =
N−1∑
k=0

L(Pk[Q ], µk)+M(PN [Q ]) (12)

or any Q ∈ K(X).
Finally, combining (11) and (12) with the assumption that L

nd M are proper ambiguity measures, imply that Jµ is a proper
mbiguity measure, too. □

Notice that Jµ depends on the feedback law µ, which is
ptimized in the context of MPC. Consequently, we are in the
ollowing not directly interested in this auxiliary function, but
ather in the actual cost-to-go function

(Q ) def
= min

µ∈UN
Jµ(Q ) , (13)

hich is defined for all Q ∈ K(X), too. Clearly, the function J is
losely related to the value function V of the ambiguity tube MPC
ontroller (8), as we have

y ∈ X, V(y) = J({δy}). (14)

his follows directly by comparing the definition of V in (8)
ith (10) and (13). The following corollary summarizes an im-
ortant consequence of Lemma 2.

orollary 2. Let Assumptions 1 and 2 be satisfied. The cost-to-go
unction J is concave with respect to weighted Minkowski addition;
hat is, we have

(θQ ⊕ (1− θ )Q ′) ≥ θ J(Q )+ (1− θ )J(Q ′) (15)

or all Q ,Q ′ ∈ K(X) and all θ ∈ [0, 1]. Moreover, J is monotonous;
hat is, Q ⪯ Q ′ implies J(Q ) ≤ J(Q ′).

roof. The key idea for establishing the first statement is to use
he linearity of Jµ (Lemma 2). This yields

(θQ ⊕ (1− θ )Q ′)
min
µ∈UN

Jµ(θQ ⊕ (1− θ )Q ′)

min
µ∈UN

{
θJµ(Q )+ (1− θ )Jµ(Q ′)

}
≥ θ

(
min
µ∈UN

Jµ(Q )
)
+ (1− θ )

(
min

µ′∈UN
Jµ′ (Q ′)

)
θ J(Q )+ (1− θ )J(Q ′)

or all Q ,Q ′ ∈ K(X) and all θ ∈ [0, 1]. This corresponds to the
irst statement of the lemma.

The second statement follows from the fact that any minimizer
f

(Q ′) = min
P,µ

N−1∑
k=0

L(Pk, µk)+M(PN )

s.t.

⎧⎪⎪⎨⎪⎪⎩
∀k ∈ {0, 1, . . . ,N − 1},
F (Pk, µk) ⪯ Pk+1
Pk ∈ K(X) , µk ∈ U
′

(16)
Q ⪯ P0 , i

8

is a feasible point of the optimization problem obtained when we
replace the ambiguity set Q ′ ∈ K(X) with an ambiguity set Q
that satisfies Q ⪯ Q ′, which then implies monotonicity; that is,
J(Q ) ≤ J(Q ′). □

Corollary 2 is central to establishing stability properties of
ambiguity tube MPC schemes. The following example helps to
understand the role of this concavity statement in the ongoing
developments.

Example 5. Let us consider the example that Q = {δa} and
Q ′ = {δb} for two given points a, b ∈ X . In this case, J(Q ) is
the cost that is associated with knowing that we are currently
at the point a. Similarly, J(Q ′) can be interpreted as the cost that
is associated with knowing that we are currently at the point b.
Now, if we set θ = 1

2 , the corresponding ambiguity set

θQ ⊕ (1− θ )Q ′ =
{
1
2
δa +

1
2
δb

}
can be associated with the situation that we do not know whether
we are at a or b, as both events could happen with probability 1

2 .
hus, in this example, the first statement of Corollary 2 is saying
hat the cost that is associated with not knowing our state is
arger or equal than the expected cost obtained when planning
o first measure whether we are at a or b and then evaluating the
ost function.

The following section exploits the conceptual idea from the
bove example and Corollary 2 for constructing a non-negative
upermartingale for ambiguity tube MPC.

.3. Supermartingales for ambiguity tube MPC

The goal of this section is to establish conditions under which
he value function V is a supermartingale along the trajectories of
he closed system associated with the ambiguity tube MPC feed-
ack µMPC, as defined in (9). Here, we recall that the closed-loop
tochastic process associated with (8) is denoted by

k ∈ N, yk+1 = f (yk, µMPC(yk), wk) , (17)

ith w0, w1, . . . : W → W , denoting independent B(W )-
easurable random variables in the probability spaces (W ,B(W ),
k) that depend on the sequence of measures ω0, ω1, . . . ∈ Ω .
his implies that y0, y1, . . . are random variables, too. In the
ollowing, we use the notation Sk = σ (y0, y1, . . . , yk) to denote
he minimal σ -field of the sequence y0, y1, . . . , yk, such that

k ∈ N, Sk ⊆ Sk+1

s a filtration of σ -algebras. Moreover, the conditional expectation
f V(yk+1) given Sk (Taylor, 1996) is denoted by

{V(yk+1) | Sk}
def
=

∫
V(f (yk, µMPC(yk), ·)) dωk .

his definition depends on the sequence ω0, ω1, . . . ∈ Ω . If As-
umptions 1 and 2 hold, Theorem 1 ensures that V is continuous.
ince Assumption 1 also ensures that f is Lipschitz continuous,
he integrand in the above expression is B(W )-measurable and,
onsequently, the conditional expectation of V(yk+1) given Sk is
ell-defined.

heorem 2. Let Assumptions 1, 2, and 3 be satisfied. Then the func-
ion V is a supermartingale along the trajectories of the closed-loop
ystem (17); that is, we have

k ∈ N, E{V(yk+1) | Sk} ≤ V(yk)
ndependent of the choice of ω0, ω1 . . . ∈ Ω .
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roof. Let P⋆
0 (y), P

⋆
1 (y), . . . ∈ K(X) denote the parametric mini-

mizers of (8) such that

E{V(yk+1) | Sk} ≤ max
p∈P⋆

1 (yn)

∫
V dp (18)

holds – by definition of P⋆
1 (yn) – for any choice of the sequence

ω0, ω1 . . . ∈ Ω . Since Assumptions 1 and 2 are satisfied, the first
statement of Corollary 2 implies that∫

V dp
(14)
=

∫
J
(
{δy}

)
p(dy)

(15)
≤ J

({∫
δy p(dy)

})
= J({p}) (19)

holds for all probability measure p ∈ P(X). Moreover, we know
from the second statement of Corollary 2 that J is monotonous
implying that

p ∈ P H⇒ {p} ⪯ P H⇒ J({p}) ≤ J(P) (20)

for all P ∈ K(X). In order to briefly summarize our intermediate
results so far, we combine (18), (19), and (20), which yields the
inequality

E{V(yk+1) | Sk} ≤ J(P⋆
1 (yk)). (21)

Next, in analogy to the construction of Lyapunov functions for
traditional MPC controllers (Rawlings et al., 2018), we use that
Assumption 3 implies that the cost-to-go function J descends
along the iterates P⋆

i (yk), which means that

J(P⋆
1 (yk)) ≤ J(P⋆

0 (yk)) = V(yk). (22)

But then (21) and (22) imply that we also have

E{V(yk+1) | Sk} ≤ V(yk) .

The latter inequality does not depend on the choice of the se-
quence ω0, ω1, . . . ∈ Ω and, consequently, corresponds to the
statement of the theorem. □

3.4. Stability of ambiguity tube MPC

As established in Theorem 1, Assumptions 1 and 2 are suffi-
cient to ensure that V is a continuous function. Thus,

V⋆ def
= min

y∈X
V(y) and Y ⋆ def

= argmin
y∈X

V(y) (23)

are well-defined and the set Y ⋆ is compact, Y ⋆
∈ K(X), and

non-empty (see Theorem 1). We may assume, without loss of
generality, that V⋆

= 0, as adding constant offsets to V does not
affect the result of Theorem 2. Let

Nε(Y ⋆) def
=

{
x ∈ X

⏐⏐⏐⏐ dist2(x, Y ⋆) < ε

}
denote an ε-neighborhood of Y ⋆. The definition below introduces
a (standard) notion of stability of the closed-loop system (17). It is
helpful to recall that the probability measures pk of the sequence
yk are given by the recursion

pk+1 = Φ(pk, µMPC, ωk) ,

which depends on the sequence ω0, ω1, . . . ∈ Ω and on the given
initial state measurement y0, as we set p0 = δy0 .

Definition 5. The closed-loop system (17) is called robustly
stable with respect to the set Y ⋆, if there exists for every ε > 0 a
δ > 0 such that for any y0 ∈ Nδ(Y ⋆) we have

∀k ∈ N, p
(
N (Y ⋆)

)
> 1− ε ,
k ε

9

independent of the choice of the probability measures ω0, ω1, . . .
Ω . If we additionally have that

lim
→∞

pk(Y ⋆) = 1 ,

ndependent of the choice of ω0, ω1, . . . ∈ Ω , we say that the
losed-loop system is robustly asymptotically stable with respect
o Y ⋆.

The main result of this section is summarized as follows.

Theorem 3. If Assumptions 1, 2, and 3 hold, then (17) is robustly
stable with respect to Y ⋆.

Proof. The assumptions of this theorem ensure that V is contin-
uous (Theorem 1) and a supermartingale along the trajectories
of (17), independent of the choice of the probability measures
ω0, ω1, . . . ∈ Ω (Theorem 2). Also, since we work with a compact
support, all random variables are essentially bounded. Thus, we
can apply Bucy’s supermartingale stability theorem (Bucy, 1965,
Thm. 1) to conclude that (17) is robustly stable with respect to
Y ⋆. □

Remark 6. The proof of Theorem 3 is based on the result of
Bucy’s original article on positive supermartingales, who formally
only established stability of Markov processes with respect to
an isolated equilibrium; that is, for the case that the set Y ⋆ is
a singleton. However, the proof of Theorem 1 in Bucy (1965)
generalizes trivially to the version needed in our proof after
replacing the distance between the states of the Markov system
and the equilibrium point by the corresponding distance of these
iterates to the set Y ⋆. By now, this and other generalizations of the
supermartingale based stability theorems by Bucy and Kushner
for Markov processes are, of course, well-known and can in very
similar versions be found in Feller (1971), Kushner (1965, 2014)
and Taylor (1996).

For the case that we are not only interested in robust sta-
bility but also robust asymptotic stability, the above theorem
can be extended after introducing a slightly stronger regularity
requirement on the function L.

Definition 6. The function L is positive definite with respect to
Y ⋆ if L(P, µ) > 0 for all µ ∈ U and all P ∈ K(X) with

in
p∈P

p(Y ⋆) < 1 .

A stronger version of Theorem 3 is formulated as follows.

heorem 4. Let Assumptions 1, 2, and 3 hold. If L is positive definite
with respect to Y ⋆, then (17) is robustly asymptotically stable with
respect to Y ⋆.

Proof. The statement of this theorem is similar to the statement
of Theorem 3, but we need to work with a slightly tighter version
of the supermartingale inequality from Theorem 2. For this aim,
we use that Assumption 3 implies that

L(P⋆
0 (yk), µ

⋆
[yk])+ J(P⋆

1 (yk)) ≤ J(P⋆
0 (yk)). (24)

Consequently, the inequality (22) can be replaced by its tighter
version,

min
p∈P⋆

0 (yk)
p(Y ⋆) < 1 H⇒ J(P⋆

1 (yk)) < V(yk) .

Thus, the argument in the proof of Theorem 2 can be modified
finding that we also have

min
⋆

p(Y ⋆) < 1 H⇒ E{V(yk+1) | Sk} < V(yk)

p∈P0 (yk)
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or all k ∈ N, independent of the choice of the sequence ω0, ω1 . . .
∈ Ω . But this means that V is a strict non-negative supermartin-
gale and we can apply the standard result from Bucy (1965,
Thm. 2) (of course, again after replacing Bucy’s outdated defini-
tion of equilibrium points with our definition of the set Y ⋆—see
Remark 6) to establish the statement of this theorem. □

4. Practical implementation of ambiguity tube MPC for linear
systems

In order to illustrate and discuss the above theoretical results,
this section develops a practical framework for reformulating
a class of ambiguity tube MPC controllers for linear systems
as convex optimization problems that can then be solved with
existing MPC software. In particular, Section 4.2 focuses on the
question how to construct stabilizing terminal costs for stochastic
and ambiguity tube MPC.

4.1. Linear stochastic systems

Let us consider linear stochastic discrete-time systems with
(projected) linear right-hand function

f = projX ◦ f̂ with f̂ (x, u, w) = Ax+ Bu+ w ,

with given A ∈ Rnx×nx and B ∈ Rnx×nu . We assume that an
asymptotically stabilizing linear feedback gain K ∈ Rnu×nx for
A, B) exists; that is, such that all eigenvalues of A + BK are in
he open unit disc. For simplicity of presentation, we focus on
arametric ancillary feedback controllers of the form

[uc](x) = uc + Kx , where U = { µ[uc] | uc ∈ Uc }

enotes the compact set of representable ancillary control laws
or the pre-computed control gain K . In this context, Uc ∈ K(Rnu )
enotes a control constraint that is associated with the central
ontrol offset uc. Similarly, we introduce the notation

[wc](X ′) = ω({wc} ⊕ X ′) and Ω = {ω[wc] | wc ∈ Wc}

or all X ′ ∈ B(X), assuming that ω ∈ P(W ), the central set
c ∈ K(Rnx ), and the domain W ∈ K(Rnx ) are given. Finally, the

orresponding domain of the uncertainty sequence is denoted by
def
= Wc ⊕W .

t this point, there are two remarks in order.

emark 7. Because K is a pre-stabilizing feedback, one can
construct the compact domain X ∈ K(Rnx ) such that

X ⊇ (A+ BK )X ⊕ [BUc ⊕W ] .

This construction is such that the closed-loop uncertainty mea-
sure propagation operator Φ is unaffected by the projection
onto X—it would have been the same, if we would have set
f = f̂ . This illustrates how Assumption 1 can – at least for
asymptotically stabilizable linear systems – formally be satisfied
by a simple projection onto an invariant set, without altering the
original physical problem formulation.

Remark 8. Notice that the ambiguity set Ω in the above system
model can be used to overestimate nonlinear terms. For example,
if we have a system of the form

x+ = Ax+ Bu+ g(x)+ w ,

here g(x) is bounded on X , such that g(x) ∈ Wc while w is a
random variable with probability measure ω, then the ambiguity
set Ω is such that the probability measure ωg of the random
variable w = g(x) + w satisfies {ω } ⪯ Ω . This example can
g

10
be used as a starting point to develop computationally tractable
ambiguity tube MPC formulations for nonlinear systems, although
a discussion of less conservative nonlinearity bounders, as devel-
oped for set propagation in Villanueva et al. (2017), are beyond
the scope of this paper.

4.2. Construction of stage and terminal costs

In order to discuss how to design stage and terminal costs, L
nd M , which satisfy the requirements from Assumptions 2 and
, this section focuses on the case that the stage cost has the form

(P, µ) = max
p∈P

∫
Θ(x, uc) p(dx) , (25)

here Θ ∈ L(X × Uc,R+) is a non-negative and Lipschitz
ontinuous control performance function. In the following, we
ssume that we have 0 ∈ Uc as well Θ(y⋆, 0) = 0 for all y⋆

∈ Y ⋆,
here Y ⋆ denotes the limit set of the considered linear stochastic
ystem that is obtained for the offset-free ancillary control law;
hat is,

⋆
=

∞⨁
k=0

(A+ BK )k W .

otice that this set can be computed by using standard methods
rom the field of set based computing (Blanchini & Miani, 2015;
ouska & Villanueva, 2019).

xample 6. Let us assume that X ∈ K(Rnx ) is a given state
onstraint with Y ⋆

⊆ X. In this case, the risk and performance
measure

Θ(x, u) = ∥u∥22 + dist2(x, Y ⋆)2 + τ · dist1(x,X)

is Lipschitz continuous. It can be used to model a trade-off be-
tween the least-squares control performance term

∥u∥22 + dist2(x, Y ⋆)2

hat penalizes control inputs and the distance of the state to the
arget region Y ⋆, and the constraint violation penalty τ ·dist1(x,X).
Here, τ > 0 is a tuning parameter that can be used to adjust how
risk-averse the controller is; see also Examples 3 and 4.

The key idea for constructing the terminal cost M is to first
construct a non-negative function Π ∈ L(X,R+) that satisfies the
ancillary Lyapunov descent condition

∀x ∈ X, Θ(x, 0)+max
w∈W

Π (f (x, Kx, w)) ≤ Π (x). (26)

otice that such a function Π exists, as we assume that the
closed-loop system matrix (A+BK ) is asymptotically stabilizing. It
an be constructed as follows. Let Σ denote the positive definite
solution of the algebraic Lyapunov equation

(A+ BK )⊺Σ(A+ BK )+ I = Σ,

let |λmax(A+ BK )| ≤ λ < 1 be an upper bound on the spectral
radius of the matrix A + BK , and let Λ > 0 be the Lipschitz
constant of Θ with respect to the weighted Euclidean norm,
∥x∥Σ

def
=
√
x⊺Σx, such that

∀x ∈ X, Θ(x, 0) ≤ Λ min
x′∈Y ⋆
∥x− x′∥Σ .

Next, we claim that the function

∀x ∈ X, Π (x) def
=

Λ

1− λ

[
min
x′∈Y ⋆
∥x− x′∥Σ

]
satisfies (26). In order to prove this, notice that the inequality

∀x ∈ X, max Π (f (x, Kx, w)) ≤ λ ·Π (x)

w∈W
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olds by construction of Σ , Π and Y ⋆. Thus, we have

(x, 0)+max
w∈W

Π (f (x, Kx, w))

≤ Λ min
x′∈Y ⋆
∥x− x′∥Σ + λ ·Π (x)

=

[
Λ+

Λλ

1− λ

]
min
x′∈Y ⋆
∥x− x′∥Σ = Π (x) (27)

for all x ∈ X; that is, Π satisfies (26). Next, the associated
mbiguity measure

(P) = max
p∈P

∫
Π dp (28)

an be used as an associated terminal cost that satisfies Assump-
ion 3. As this result is of high practical relevance, we summarize
t in the form of the following lemma.

emma 3. Let L and M be defined as in (25) and (28). If the
unctions Θ and Π are non-negative and Lipschitz continuous such
hat (26) is satisfies and if 0 ∈ Uc, then L and M satisfy all
equirements from Assumptions 2 and 3.

roof. Because Θ and Π are Lipschitz continuous and non-
egative, L and M are, by construction, proper ambiguity mea-
ures and non-negative, too. Thus, Assumption 2 is satisfied.
oreover, (28) implies that

(F (P, µ))
(28)
= max

p∈F (P,µ)

∫
Π dp

= max
p∈P,ω∈Ω

∫ ∫
Π (f (x, Kx, w)) p(dx)ω(dw)

≤ max
p∈P

∫
max
w∈W

Π (f (x, Kx, w)) p(dx) , (29)

here the second equation holds for the offset-free ancillary
eedback law µ(x) = Kx. Furthermore, according to (26), we have

max
w∈W

Π (f (x, Kx, w)) ≤ Π (x)−Θ(x, 0) (30)

or all x ∈ X . Consequently, we can substitute this inequality
n (29) finding that

(F (P, µ))
(29),(30)
≤ max

p∈P

∫
[Π −Θ(·, 0)] dp

(28),(25)
= M(x)− L(P, µ) .

In other words, because we assume that 0 ∈ Uc, there exists for
every P ∈ K(X) a µ ∈ U for which

L(P, µ)+M(F (P, µ)) ≤ M(P)

and the conditions from Assumption 3 are satisfied. This corre-
sponds to the statement of the lemma. □

Remark 9. Notice that many articles on stochastic MPC, for
example Chatterjee and Lygeros (2015), Kouvaritakis and Cannon
(2016) and Mayne (2015), start their construction of the stage
cost by assuming that a nominal (non-negative) cost function
l : X × U → R+ is given. For example, in the easiest case, one
could consider the least-squares cost

l(x, u) = x2 + u2 .

In the above context, however, we cannot simply set Θ = l, as
Condition (26) can only be satisfied if we have Θ(y⋆, 0) = 0 for all
y⋆
∈ Y ⋆—but Y ⋆ is usually not a singleton. However, one can find

a Lipschitz continuous function Θ that approximates the function

Θ(x, u) ≈
{
l(x, u) if x /∈ Y ⋆

⋆
0 if x ∈ Y a
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up to any approximation accuracy such that Θ coincides with l on
the domain X \Y ⋆ with high precision. In fact, the approximation
is in this context only needed for technical reasons, such that Θ

is Lipschitz continuous. Notice that this construction satisfies the
requirements of Lemma 3 and is, as such, fully compatible with
our stability analysis framework. Next, we construct the hybrid
feedback law

µ(y) def
=

{
µMPC(y) if y /∈ Y ⋆

Ky if y ∈ Y ⋆ ,

which simply switches to the ancillary control law x→ Kx when-
ever the current state is already inside the target region Y ⋆. This
construction is compatible with the stability statements from
Theorems 3 and 4, as we modify the closed-loop system only
inside the robust control invariant target region. Of course, this
is in the understanding that the control gain K is optimized be-
forehand and that this linear controller leads to a close-to-optimal
control performance (with respect to worst-case expected value
of the given cost function l) inside the region Y ⋆—if not, one
needs to work with more sophisticated ancillary controllers and
redefine U . The robust MPC controller is in this case only tak-
ing care of the case that the current state is in X \ Y ⋆—but
in this region Θ coincides with the given cost function l as
desired.

4.3. Implementation details

Ambiguity tube MPC can be implemented by pre-computing
the stage and terminal cost offline. This has the advantage that, in
the online phase, a simple convex optimization problem is solved.
For this aim, we pre-compute the central sets

Zk+1
def
=

k⨁
i=0

(A+ BK )iWc (31)

for all k ∈ {0, 1, . . . ,N − 1} by using standard set computation
techniques (Blanchini & Miani, 2015). Similarly, by introducing
the Markovian kernel

∀X ′ ∈ B(X), ∆[x](X ′) def
= ω(X ′ ⊕ {−(A+ BK )x}) ,

we can pre-compute offset-free measures qk via the Markovian
recursion

∀k ∈ N, qk+1 =
∫

∆[x] qk(dx) (32)

q0 = δ0 .

For example, if ω denotes a uniform probability measure with
compact zonotopic support, the measures qk can be computed
with high precision by using a generalized Lyapunov recursion
in combination with a Gram–Charlier expansion (Villanueva &
Houska, 2020). After this preparation, we can pre-compute
Chebyshev representations of the functions

Sk(z, u) = max
zc∈Zk

∫
Θ(z + zc + z, u) qk(dz)

and SN (z) = max
zc∈ZN

∫
Π (z + zc + z) qN (dz)

with high accuracy, as discussed in Villanueva and Houska (2020),
too. Here, the function Θ and Π are constructed as in the pre-
vious section. In particular, if Θ is convex, as in Example 6, Sk
is convex. Similarly, if Π is convex, SN is convex. Finally, the
ssociated online optimization problem,
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Fig. 1. Randomly generated closed-loop scenarios of the ambiguity tube MPC controller (33) with (LEFT) τ = 10−1 and (RIGHT) τ = 10. The state constraint, x1 ≤ 5, is
isualized in the form of the dark gray-shaded infeasible region x1 > 5. For the very small penalty parameter τ = 1

10 the controller risks marginal constraint violation
or the sake of better nominal control performance. All trajectories converge to the light gray-shaded target region Y ⋆ . Notice that the initial state, y0 = [−60, 5]⊺ ,
would be far off to the left of the figure and it is therefore not visualized—the colored dots correspond to the discrete-time states after the first MPC iteration. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
s
c

V(y) = min
v,z

N−1∑
k=0

Sk(zk, vk)+ SN (zN )

s.t.

{
∀k ∈ {0, 1, . . . ,N − 1},
zk+1 = Azk + Bvk
z0 = y ,

(33)

can be solved with existing MPC software. The associated am-
biguity tube MPC feedback law has then, by construction, the
form

µMPC(y) = v⋆
0(y) ,

where v⋆
0(y) denotes the first element of an optimal control input

sequence of (33) as a function of y. This construction can be
further refined by implementing the hybrid control law from
Remark 9.

4.4. Numerical illustration

This section illustrates the performance of the above ambigu-
ity tube MPC controller for the nonlinear system

x+1 = −
x1
8
+ x2 + u1 + w1,

+

2 = −
x1
2
+

x2
4
+ u2 + cos(x1) sin(5x2)3 + w2 .

In order to write this system in the above form, we introduce the
notation

A def
=

(
−

1
8 1

−
1
2

1
4

)
, B def

= I and K def
=

(
1
8 −

1
2

1
4 −

1
4

)
o denote the system matrices and a suitable ancillary control
ain. Notice that the influence of the nonlinear term, cos(x1) sin

(5x2)3, can be over-estimated by introducing the central set
Wc

def
= {0} × [−1, 1] (see Remark 8). Additionally, we set Uc

def
=

[−10, 10]2. Moreover, the uncertain input is modeled by the
distribution measure

ω(A) def
=

∫
A
ρ(w)dw

with Radon–Nikodyn derivative (density function)

ρ(w) def
=

{
d(w1) if w2 ∈ [−1, 1]

}
,
0 otherwise

12
where d
def
= ∂δ/∂w denotes the standard Dirac distribution. The

objective is constructed as in Example 6,

Θ(x, u) def
= ∥u∥22 + dist2(x, Y ⋆)2 + τ · dist1(x,X) ,

where τ > 0 is a risk-parameter that is associated with the given
state constraint set

X def
=

{
x ∈ R2

⏐⏐⏐⏐ x1 ≤ 5
}

.

Here, it is not difficult to check that the function

Π (x) def
=

[
2+

7
27
· τ

]
dist2(x, Y ⋆)2

atisfies the requirements from Lemma 3. Consequently, the asso-
iated ambiguity measures L and M satisfy all technical require-
ments of Theorem 4. Notice that the functions Sk in (33) are in
our implementation pre-computed with high precision such that
the convex optimization problem (33) can be solved in much
less than 1ms by using ACADO Toolkit (Houska, Ferreau, & Diehl,
2011). The prediction horizon of the MPC controller is set to
N = 5.

Fig. 1 shows two ambiguity tube MPC closed-loop simulations
that are both started at the initial point y0 = [−60, 5]⊺. In the
left figure, we have set τ = 1

10 , which means that the con-
straint violation penalty is small compared to the nominal control
performance objective. Consequently, during the randomly gen-
erated closed-loop scenarios marginal constraint violation can be
observed. This is in contrast to the right part of Fig. 1, which
shows randomly generated closed-loop scenarios for the case τ =
10, leading to much smaller expected constraint violations at risk.
In all cases, that is, independent of how the penalty parameter
τ > 0 is chosen and independent of the particular uncertainty
scenario, the closed-loop trajectories converge to the terminal re-
gion Y ⋆ after a short transition period. In this particular example,
we observe that this happens typically after 3 to 8 discrete-
time steps, which confirms the robust asymptotic convergence
statement of Theorem 4.

5. Conclusion

This paper has presented a coherent measure-theoretic frame-
work for analyzing the stability of a rather general class of
ambiguity tube MPC controllers. In detail, we have proposed a
Wasserstein–Hausdorff metric leading to our first main result in
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heorem 1, where conditions for the existence of a continuous
alue function of ambiguity tube MPC controllers have been
stablished. Moreover, Theorem 2 has built upon this topological
ramework to establish conditions under which the stage and
erminal cost are proper ambiguity measures, such that the cost
unction of the MPC controller can be turned into a non-negative
upermartingale along the trajectories of the stochastic closed-
oop system. Related stochastic stability and convergence results
or ambiguity tube MPC have been summarized in Theorems 3
nd 4.
In the sense that Lemma 3 proposes a practical strategy for

onstructing stabilizing terminal costs for stochastic and ambi-
uity tube MPC, the current article has outlined a path towards
more consistent stability theory that goes much beyond the
xisting convergence results from Chatterjee and Lygeros (2015),
ouvaritakis and Cannon (2016) and Munoz-Carpintero and Can-
on (2020). At the same time, however, it should also be pointed
ut that these results are based on a slightly different strategy
f modeling the stage cost of the MPC controller, as discussed in
emark 9, where it is also explained why it may be advisable
o use a hybrid feedback control law that switches to a pre-
ptimized ancillary controller whenever the state is inside its
ssociated target region Y ⋆.
Last but not least, as much as this article has been attempting

o make a step forward, towards a more consistent stability
heory and practical formulation of robust MPC, it should also
e stated that many open problems and conceptual challenges
emain. In the line of this paper, for instance, a discussion of
ore advanced representations of ambiguity set representations
nd handling of nonlinearities, a more in-depth analysis of the
nterplay of the choice of U , the performance of the ambiguity
ube controller, and its computational tractability, bounds on the
oncentrations of the state distributions, economic objectives for
mbiguity tube MPC, as well as a deeper analysis of risk measures
nd related problems regarding recursive feasibility are only a
mall and incomplete selection of open problems in the field of
istributionally robust MPC.

eferences

erge, C. (1963). Topological spaces. Oliver and Boyd.
ernardini, D., & Bemporad, A. (2012). Stabilizing model predictive control of

stochastic constrained linear systems. IEEE Transactions on Automatic Control,
57(6), 1468–1480.

lanchini, F., & Miani, S. (2015). Set-theoretic methods in control. Birkhäuser.
oyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University

Press.
ucy, R. S. (1965). Stability and positive supermartingales. Journal of Differential

Equations, 1, 151–155.
hatterjee, D., & Lygeros, J. (2015). On stability and performance of stochastic

predictive control techniques. IEEE Transactions on Automatic Control, 60,
509–514.

hen, H., & Allgöwer, F. (1998). A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability. Automatica, 34(10),
1205–1217.

larke, F., Ledyaev, Y., & Stern, R. (1998). Asymptotic stability and smooth
Lyapunov functions. Journal of Differential Equations, 149(1), 69–114.

oob, J. L. (1953). Stochastic processes. Wiley.
eller, W. (1971). Introduction to probability theory and its applications. Wiley.
rimm, M. J., Messina, G., Tuna, S. E., & Teel, A. R. (2004). Examples when

nonlinear model predictive control is nonrobust. Automatica, 40, 1729–1738.
rüne, L. (2009). Analysis and design of unconstrained nonlinear MPC schemes

for finite and infinite dimensional systems. SIAM Journal on Control and
Optimization, 48(2), 1206–1228.

Hewing, L., Wabersich, K. P., Menner, M., & Zeilinger, M. N. (2020). Learning-
based model predictive control: Toward safe learning in control. Annual
Review of Control, Robotics, and Autonomous Systems, 3, 269–296.

ouska, B., Ferreau, H. J., & Diehl, M. (2011). An auto-generated real-time
iteration algorithm for nonlinear MPC in the microsecond range. Automatica,

47, 2279–2285.

13
Houska, B., & Villanueva, M. E. (2019). Robust optimzation for MPC. In S. Raković,
& W. Levine (Eds.), Handbook of model predictive control (pp. 413–443).
Birkäuser.

Kantorovich, L. V. (2006). On the translocation of masses. Journal of Mathematical
Sciences, 133(4), 1381–1382.

Kouvaritakis, B., & Cannon, M. (2015). Model predictive control: Classical, robust
and stochastic. Springer.

Kouvaritakis, B., & Cannon, M. (2016). Feasibility, stability, convergence and
Markov chains. In Advanced textbooks in control and signal processing, Model
predictive control (pp. 271–301). Springer.

Kushner, H. J. (1965). On the stability of stochastic dynamical systems.
Proceedings of the National Academy of Sciences, 53(1), 8–12.

Kushner, H. J. (2014). A partial history of the early development of
continuous-time nonlinear stochastic systems theory. Automatica, 50(2),
303–334.

Langson, W., Chryssochoos, I., Raković, S. V., & Mayne, D. Q. (2004). Robust model
predictive control using tubes. Automatica, 40(1), 125–133.

Ledyaev, Y., & Sontag, E. (1999). A Lyapunov characterization of robust
stabilization. Nonlinear Analysis, 37, 813–840.

Lorenzen, M., Dabbene, F., Tempo, R., & Allgöwer, F. (2016). Constraint-tightening
and stability in stochastic model predictive control. IEEE Transactions on
Automatic Control.

Mayne, D. Q. (2015). Robust and stochastic MPC: are we going in the right
direction? IFAC-PapersOnLine, 48(23), 1–8.

Mayne, D. Q., Seron, M. M., & Raković, S. (2005). Robust model predictive control
of constrained linear systems with bounded disturbances. Automatica, 41(2),
219–224.

Mesbah, A. (2016). Stochastic model predictive control: An overview and
perspectives for future research. IEEE Control Systems Magazine, 36(6), 30–44.

Munoz-Carpintero, D., & Cannon, M. (2020). Convergence of stochastic nonlin-
ear systems and implications for stochastic model predictive control. IEEE
Transactions on Automatic Control, 1–8, (early access).

Raković, S., Kouvaritakis, B., Findeisen, R., & Cannon, M. (2012). Homothetic tube
model predictive control. Automatica, 48(8), 1631–1638.

Rawlings, J. B., Mayne, D. Q., & Diehl, M. M. (2018). Model predictive control:
Theory and design. Madison, WI: Nob Hill Publishing.

Rockafellar, R. T., & Uryasev, S. (2013). The fundamental risk quadrangle in risk
management, optimization and statistical estimation. Surveys in Operations
Research and Management Science, 18, 33–53.

ockafellar, R. T., & Wets, R. J. (2005). Variational analysis. Springer.
ehr, M. A., & Bitmead, R. R. (2018). Stochastic output-feedback model predictive

control. Automatica, 94, 315–323.
opasakis, P., Herceg, D., Bemporad, A., & Patrinos, P. (2019). Risk-averse model

predictive control. Automatica, 100, 281–288.
aylor, J. C. (1996). An introduction to measure and probability. Springer.
an Parys, B., Kuhn, D., Goulart, P., & Morari, M. (2016). Distributionally robust

con- trol of constrained stochastic systems. IEEE Transactions on Automatic
Control, 61(2), 430–442.

asershtein, L. N. (1969). Markov processes over denumerable products of
spaces describing large system of automata. Problemy Peredači Informacii,
5(3), 64–72.

illani, C. (2005). Optimal transport, old and new. Springer.
illanueva, M. E., De Lazzari, E., Müller, M. A., & Houska, B. (2020). A set-theoretic

generalization of dissipativity with applications in Tube MPC. Automatica,
122(109179).

illanueva, M. E., & Houska, B. (2020). On stochastic linear systems with
zonotopic support sets. Automatica, 111(108652).

illanueva, M. E., Quirynen, R., Diehl, M., Chachuat, B., & Houska, B. (2017).
Robust MPC via min–max differential inequalities. Automatica, 77, 311–321.

anon, M., & Gros, S. (2021). Safe reinforcement learning using robust MPC. IEEE
Transactions on Automatic Control, 66(8), 3638–3652.

Fan Wu is a graduate student at the School of In-
formation Science and Technology at ShanghaiTech
University. She has received bachelor’s degrees in
mathematics and law from East China University of
Science And Technology in 2019. Her research interests
include model based learning and control algorithms.



AUT: 110648

F. Wu, M.E. Villanueva and B. Houska Automatica xxx (xxxx) xxx

g

Mario Eduardo Villanueva is an assistant professor at
the IMT School for Advanced Studies Lucca. He received
a master and Ph.D. in chemical engineering from Impe-
rial College London in 2011 and 2016, respectively. He
was a postdoctoral researcher at Texas A&M University
in 2016 and at the School of Information Science and
Technology at ShanghaiTech University from 2017 to
2022. Mario E. Villanueva is the recipient of the 2016
Dudley Newitt Price and the 2018 as well as 2019 SIST
Excellent Postdoc Award. His research interests include
set based computing, robust and stochastic control,

lobal optimization and system theoretic tools for data analysis.
14
Boris Houska is an associate professor at the School of
Information Science and Technology at ShanghaiTech
University. He received a diploma in mathematics and
physics from the University of Heidelberg in 2007,
and a Ph.D. in Electrical Engineering from KU Leuven
in 2011. From 2012 to 2013 he was a postdoctoral
researcher at the Centre for Process Systems Engineer-
ing at Imperial College London. His research interests
include numerical optimization and optimal control,
robust and global optimization, as well as fast model
predictive control algorithms.


	Ambiguity tube MPC
	Introduction
	Control of ambiguity tubes
	Uncertain control systems
	Models of stochastic uncertainties
	Ambiguity tubes
	Proper ambiguity measures
	Ambiguity tube MPC

	Stability analysis
	Conditions on the stage and terminal cost function
	On concave cost functions
	Supermartingales for ambiguity tube MPC
	Stability of ambiguity tube MPC

	Practical implementation of ambiguity tube MPC for linear systems
	Linear stochastic systems
	Construction of stage and terminal costs
	Implementation details
	Numerical illustration

	Conclusion
	References


