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Abstract

Thermo-elastic fracture is a matter of important concern for thin-walled structures made of functionally
graded materials (FGMs). Based on this practical relevance, a thermodynamically consistent framework is
proposed in this investigation for solving the coupled thermo-mechanical phase-field fracture problem in thin-
walled structures made of FGMs. The formulation of the current model is constructed via the evaluation
of the phase-field in the Clausius-Duhem inequality leading in to first-order stability conditions in order
to ensure thermodynamic consistency. The three-dimensional Kirchhoff-Saint-Venant constitutive model is
modified to accommodate the functional grading in the material properties. The computational model is
combined with Enhanced Assumed Strain (EAS) and Assumed Natural Strains (ANS) to alleviate locking
pathology concerning the solid shell formulation, leading to a coupled non-linear variational formulation.
Several benchmark examples (straight and curved shells) are examined to assess the model capabilities.
Moreover, crack deflection, and temperature distributions in the FGM structures are compared with their
homogeneous surrogates, to show the importance of the technological solutions with two or even three FGM
phases.

Keywords: A. Solid Shell, B. Phase-Field Fracture, C. Finite Element Method, D: Non-linear
thermo-elasticity, E: Functionally Graded Materials.

1. Introduction

Modern technological processes concerning aerospace, automotive, power, electronics, bio-engineering,
demand materials that have mutually exclusive properties which are unobtainable using conventional mate-
rials. For example, gears must have a tough core to withstand fracture, but must be stiff and hard outside
to prevent wear [1], or an ideal turbine blade consists of a tough core but high-temperature resistance and
low melting point outside [2, 3]. Even though the concept of functionally graded materials (FGM) was
initially proposed to mimic structures such as bones [4], bamboo trees [5], these materials found their place
in the space industry [6], rocket engines [7], shell structures [8, 9], airplanes [10], to name a few. FGMs ex-
hibit many advantages as compared to conventional materials by providing or combining the benefits of two
different material via a gradual grading. They are often used to create thermal barriers [11] or connect two
incompatible materials [12]. See [3] for a detailed review of the production, classification, and application
of FGMs.

FGMs are shown to be fundamentally different from homogeneous materials [3] in terms of elastic and
thermal responses. The material properties such as Young’s modulus [13], fracture toughness [14], ther-
mal properties of their homogeneous constituents behave differently, making the crack prediction difficult.
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Computational methods such as FEM [15–17], XFEM [18–20], scaled boundary finite elements [21], isogeo-
metric FEM [22], hybrid phase-field isogeometric analysis [23], isoparametric graded finite elements [24–26],
cohesive zone models [27, 28], and many more have been used to study fracture events in FGMs.

Variational methods to fracture developed in the recent years constitute an effective tool for under-
standing nonlinear phenomena. Particularly, based on energy considerations, Phase-Field (PF) methods to
fracture have emerged as powerful methods to deal with fracture initiation and propagation [29]. The PF
approach has been applied to brittle materials [30], ductile materials [31–33], composites [34–41], hydrogen
assisted cracking [42, 43], fatigue [44–47], to name a few of previous applications. The extension of these
models to FGMs is discussed in [48, 49]. In this regard, Wu et al [50] conducted a detailed review of
the phase-field. See [51–53] for efficient alternative formulations for phase-field crack. Within this context,
thermo-mechanics coupled with PF models have been developed in recent years for various applications
[54, 55], such as chemo-thermo-mechanical couplings [56], composite materials [33, 57].

Regarding the shell structures, many authors have proposed different approaches for their computation,
as well as kinematic description such as XFEM [58–61], gradient enhanced damage methods [62–66], isopara-
metric shell analysis [67–69] using the classical shell theories such as the Kirchhoff-Love theory [70–73], or the
Reissner-Mindlin theory [58, 60]. Recently, thermo-mechanical analysis of the solid shell with full integration
with Enhanced Assumed Strains (EAS) and Assumed Natural Strain (ANS) to alleviate locking pathology
has been discussed [74]. Moreover, the authors extended this idea to include the phase-field [9, 75]. A more
detailed discussion on the application of thermo-mechanics models for shells can be found in [76] concerning
the use of solid shells with reduced integration schemes at the element level.

This work presents a thermodynamically consistent phase-field modeling of fracture for thin-walled FGMs
coupled with thermo-mechanics using the solid shell concept. The kinematic description of the body re-
sembles that of the 8-node brick element [77–79] allowing to accommodate the constituent material model
in three dimensions. Phase-field is introduced via Clausius-Duhem inequality leading to thermodynamic
consistency and first-order optimality conditions consistent with [74]. Moreover, the Kirchhoff-Saint-Venant
material law is modified to accommodate FGMs. Both elastic energy and thermal energy are degraded using
same degradation function as in [80]. Specifically, the thermal energy degradation is achieved by degrading
thermal conductivity. The potential locking deficiencies stemming from the shell complying with the low
order kinematic displacement schemes are alleviated by combining EAS [81–85] and ANS schemes [86, 87],
in line with [74, 88–91]. Furthermore, the coupling between thermal, phase-field and displacement fields
concerning the EAS formulation are treated via static condensation of the enhancing stains at the element
level [84], preserving the original size of the thermo-mechanical problem at the element level.

The article is organized as follows. Section 2 outlines the theoretical aspects of the coupled thermo-
mechanical phase-field formulation in solid shells and the constitutive equations, focusing on thermodynamic
consistency. Section 3 presents the finite element implementation of the model. Section 4 examines the
numerical application of the proposed model to benchmark examples. The effect of grading in terms of
crack path and load-bearing capacity is explored thoroughly. The thermo-mechanical interactions in the
FGM are compared with the homogeneous materials response. The effect of temperature on the load-bearing
capacity of the FGM structure is carefully analyzed. The impact of material properties such as Young’s
modulus, thermal conductivity, fracture energy on the FGM performance is examined using three different
FGM pairs (metal-metal, ceramic-ceramic, ceramic-polymer). The model is then modified to accommodate
a three-phase/ double FGM, and its thermo-elastic behavior is analyzed. Finally, the main conclusions of
this article are drawn in Section 5.

2. Coupled thermo-mechanical formulation

2.1. Primary fields of thermo-mechanical analysis

Let B0 ⊂ Rn be a reference configuration of the n-dimensional Euclidean space with its delimiting
boundary ∂B0 ⊂ Rn−1. Define the displacement field u(X, t) : B0 × [0, t]→ Rn, temperature field T (X, t) :
B0 × [0, t] → R+, and the scalar damage (phase-field) d(X, t) : B0 × [0, t] → [0, 1] in the time interval [0, t].
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Figure 1: a) Finite deformation of a body: reference and current configurations. Deformation mapping ϕ(X, t), that transforms
at time t the reference configuration B0 onto the current configuration Bt, and the displacement-derived deformation gradient
Fu := ∂Xϕ(X, t). b) ANS for transverse shear locking and ANS for trapezoidal locking.
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The external boundary ∂B0 is split into four parts ∂B0,t̄, ∂B0,u, ∂B0,q, and ∂B0,T such that ∂B0,u∩∂B0,t̄ = ∅,
∂B0,T ∩ ∂B0,q = ∅, and ∂B0 = ∂B0,u ∪ ∂B0,t̄ ∪ ∂B0,T ∪ ∂B0,q.

The Dirichlet boundary conditions with respect to displacement and temperature, i.e boundary displace-
ment ū and initial (reference) temperature T0 are applied on ∂B0,u and ∂B0,T respectively. Meanwhile,
Neumann boundary conditions in terms of traction t̄ = σ · n(X, t) and heat flux q̄ can be applied on ∂B0,t̄

and ∂B0,q, respectively, as shown in Fig. 1 for normal unit vector n.
The phase-field approach to fracture can be interpreted as the competition between elastic energy

(thermo-elastic) and the crack surface energy created due to the evolution of the scalar phase-field vari-
able d. Within this context, assuming that the phase-field variable d evolves from 0 (intact material) to 1
(fully damaged), the crack set Γt at any given time [0, t] can be formulated as the following minimisation
problem (see [30] for more details):

(u∗, T ∗,Γt) = arg min
S

Π(u, T,Γt) = arg min
S

{∫
B0/Γt

Ψ(u, T )dΩ +

∫
Γt

GCdΓ

}
, (1)

with S = {u = ū on ∂B0, Γt ⊆ Γt+1}. Here, GC represents the critical energy release rate, and Ψ(u, T ) is the
thermo-elastic strain energy density that depends on the material model. The total energy function in Eq.
(1) is approximated as a free-discontinuous problem [92], owing to a smeared/diffusive crack representation
using the scalar field d of the sharp crack Γ. Under this approximation, the total energy takes the form:

Π(u, d, T ) =

∫
B0

g(d)Ψ0(u, T )dΩ +

∫
B0

GC
4cw

[
α(d)

l
+ l |∇d|2

]
dΩ + Πext. (2)

Here, cw :=
∫ s

0

√
α(s)ds is the normalization parameter, α(d) is the geometric crack function such that

α(0) = 0 and α(1) = 1, and g(d) : [0, 1]→ [1, 0] defines the degradation function of the initial thermo elastic
energy. Naturally, such a degradation function is monotonically decreasing and satisfies g(0) = 1, g(1) = 0,
and dg

dd < 0 in order to fulfill the thermodynamic consistency. The term Ψ0(u, T ) in Eq. (2) represents the
initial thermo-elastic energy stemming from the material models, whose details are discussed in the sequel.

2.2. Solid shell formulation for thin walled structures

The key idea of the solid shell formulation with full integration is based on a locking free element which
can alleviate transverse shear locking, volumetric locking, Poisson’s locking and trapezoidal locking. Use
of curvilinear co-ordinate system facilities the introduction of EAS and ANS parameter into the framework
which in turn alleviates the locking pathology. The body under external forces undergoes deformation can
be seen as a map ϕ(X, t) : B0 × [0, t] → R3 from reference material point X ∈ B0 onto a current material
point x ∈ Bt in the current configuration Bt such that x = ϕ(X, t) = X + u(X, t) for each t. The singular
valued continuously differential function ϕ(X, t) is then subjected to local conditions such that

Fu := ∂Xϕ(X, t) ∈ Rn⊗n, and Ju := det[Fu] > 0,

where Fu is the displacement derived deformation gradient, whose jacobian is characterized as Ju. In
the curvilinear setting, the displacement derived gradient can be expressed as a combination of covariant
and contravariant basis vectors in the reference (Gi,G

i) and current configurations (gi,g
i). With the

usual notations, the metric tensors (general) in their basis vectors can be written as χ = χijχ
i ⊗ χj =

χijχi⊗χj , see [74] for more details. Here, χij , and χij represents the covariant and contravariant components
respectively. As a natural consequence of the curvilinear coordinates, Green-Lagrangian strain tensor Eu

(derived via Cauchy-Green deformation) and the Second Piola-Kirchoff stress tensor S (PK2) in the reference
configuration is estimated as

Eu :=
1

2
[gij −Gij ]Gi ⊗Gj ; S = SijGi ⊗Gj . (3)

4



Similarly, from the Stoke theorem, heat flux vector Q in the reference configuration takes the form

Q = QiGi. (4)

Complying with the solid shell approach, any position vector in the reference, X, (and in the current
configuration x), can be expressed as a linear combination of the corresponding points on the top and bottom
surface, (that are identified with the subscripts t and b, respectively) (see Fig. 1):

X(ξ) =
1

2

(
1 + ξ3

)
Xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
Xb(ξ

1, ξ2), (5)

x(ξ) =
1

2

(
1 + ξ3

)
xt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
xb(ξ

1, ξ2), (6)

in the parametric space of natural coordinates A := {ξ = (ξ1, ξ2, ξ3) ∈ R3 | − 1 ≤ ξi ≤ +1; i = 1, 2, 3}.
Here (ξ1, ξ2) represents in-plane directions and ξ3 identifies thickness direction.

For the phase-field within the solid shell, as a consequence of the definition of position vectors, d in the
parametric space A is estimated as a linear combination of the top (dt) and bottom (db) values expressed as

d(ξ) =
1

2

(
1 + ξ3

)
dt(ξ

1, ξ2) +
1

2

(
1− ξ3

)
db(ξ

1, ξ2). (7)

Using the previous derivations, the EAS method can be introduced to the total energy function. This
is achieved by additive decomposition of the total Lagrangian strain E as a combination of displacement
derived Green-Lagrangian strain Eu in Eq. (3) and incompatible strain Ẽ. i,e E = Eu + Ẽ. Consequently,
the displacement derived deformation gradient (F) is modified to accommodate the incompatible strain as
F = Fu + F̃ with corresponding modified jacobian takes the form J = det[F] > 0.

Based on these considerations, the total internal energy in Eq. (2) is modified to accommodate incom-
patible strain are expressed as

Π(u, Ẽ, d, T ) =

∫
B0

g(d)Ψ0(Eu, Ẽ, T )dΩ +

∫
B0

GC
4cw

[
α(d)

l
+ l |∇d|2

]
dΩ + Πext. (8)

Here, Ψ0(Eu, Ẽ, T ) is the intact free energy density function that involves the incompatible strains Ẽ.
Within this framework of Hu-Washizu variational principle, modified total internal energy takes the form

Π(u, Ẽ, d, T ) =

∫
B0

g(d)Ψ(u, Ẽ, T )dΩ−
∫
B0

S : Ẽ dΩ +

∫
B0

GC
4cw

[
α(d)

l
+ l |∇d|2

]
dΩ + Πext. (9)

As described in the forthcoming section, it is worth noting that the ANS method is a collocation-based
numerical technique, whose application is used for the treatment of the transverse shear and curvature
thickness locking as proposed in [9, 93], see Fig. 1b).

For the intact free energy density function Ψ(u, Ẽ, T ), an isotropic Kirchoff-Saint-Venant material model
is chosen, whose free energy in its local material forms reads

Ψ0(E, T ) = 1
2λ (tr[E])

2
+ µtr[E2]− 3καtr[E] (T − T0) +cp

[
(T − T0)− T log

T

T0

]
, (10)

where λ and µ are the Lamé constants, κ is the bulk modulus, and α is the coefficient of thermal expan-
sion, whereas T0 is the initial reference temperature. Moreover, Lamé constants and bulk modulus can be
computed using Young’s Modulus E and Poisson’s ratio ν.

The constitutive equations can be now derived by complying conservation laws and second law of ther-
modynamics which in its local form leads to the Clausius-Duhem inequality, see [74] for more details.
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2.3. Extension to FGMs

Within this context of functionally graded materials (FGMs), material properties changes across the
domain. Let A and B be two materials compositions of a functionally graded materials, then the volume
fraction (V fA) of the material A in the domain B0 can be defined as

V fA(x) := V fA(x, ζ, III) : B0 → [0, 1], (11)

where ζ is the grading constant and III is a set of internal variable that depends on the domain B0. Then, the
volume fraction of the material B can be estimated as a function of material A, i.e., V fB(x) = 1− V fA(x).
Based on the rule of mixtures, the material properties such as Young’s Modulus E, Poisson’s ratio ν, co-
efficient of thermal expansion α, thermal conductivity k0, heat capacity cp and fracture energy GC as a
function of volume fraction of one of the material. Given V fA(x) as a function with known values, the
material properties take the form

E(x) = EA + (EB − EA)V fA(x), (12a)

ν(x) = νA + (νB − νA)V fA(x), (12b)

α(x) = αA + (αB − αA)V fA(x), (12c)

k0(x) = k0,A + (k0,B − k0,A)V fA(x), (12d)

cp(x) = cp,A + (cp,B − cp,A)V fA(x), (12e)

GC(x) = GC,A + (GC,B − GC,A)V fA(x). (12f)

It can be argued that internal length scale lc of the phase field approach to fracture is largely considered as

material parameters [94]. In particular, the length scale lc can be estimated using the relation lc =
27

256

GCE
σ2
c

for σc being apparent tensile strength, [48]. In order to include the vast literature regarding the choice of
the length scale lc, here the length scale is considered as a function of volume fraction i.e.,

lc(x) = lc,A + (lc,B − lc,A)V fA(x). (13)

But the special case of a spatially constant lc can be achieved by setting lc,A = lc,B for the two material
phases A and B. Since Clausius-Duhem Inequality and the balance equations are defined locally, the Kirchoff-
Saint-Venant in Eq. (10) is modified to accommodate FGMs as

Ψ0(E, T ;X) = 1
2λ(X) (tr[E])

2
+ µ(X)tr[E2]− 3κ(X)α(X)tr[E] (T − T0(X))

+cp(X)
[
(T − T0(X))− T log T

T0(X)

]
. (14)

Here, the material properties λ(X), µ(X), κ(X), α(X), cp(X), and T0(X) exhibit a variation in the
spatial dimension. The material parameters from the surface energy, GC and l, are also written as GC(X)
and l(X) to explicitate such a spatial dependency. Moreover, the Lamé constants, κ(X), µ(X) and the bulk
modulus κ(X) can be estimated as

λ(X) =
E(X)ν(X)

(1 + ν(X))(1− 2ν(X))
; µ(X) =

E(X)

2(1 + ν(X))
; κ(X) =

ν(X)E(X)

3(ν(X)− 2)
, for each X ∈ B0

(15)
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whereas E(X) and ν(X) are computed according to Eqs. (12a) and (12b).
From the Clausius-Duhem inequality and the second law of thermodynamics, the equations corresponding

to the second Piola-Kirchoff tensor S and entropy η read

S := ∂EΨ0 = λ(X) (tr[E])1 + 2µ(X)E− 3κ(X)α(X) (T − T0(X))1, (16)

η := −∂TΨ0 = 3κ(X)α(X)tr[E] + cp(X) log
T

T0(X)
. (17)

Note that, from here onward, the dependency on X is dropped from the material properties just to
simplify the notation. The Clausius-Duhem inequality which ensures the thermodynamic consistency of the
formulation takes the form

Dloc = [S− ∂EΨ] : Ė− [η + ∂TΨ] Ṫ − ∂∇XTΨ : ∇XṪ − ∂IIIΨ : İII ≥ 0, (18)

where III can be referred as a set of interval variables. Setting the damage variable d as the internal variable
among others, and putting Eqs. (16) and (17) into Eq. (18), leads to

Dloc := −∂IIIΨ : İII = −∂dΨ : ḋ ≥ 0, (19)

As a consequence of Eq. (19), we have that ḋ ≥ 0 and ∂dΨ = 0 (or ḋ = 0 and ∂dΨ ≥ 0) constituting
irreversibility of the phase-field d and the first order optimality condition for the evolution of phase-field,
often referred as KKT conditions. The constitutive operators in the curvilinear setting reads

C = ∂EEΨ0 =
[
λGijGkl + µ

(
GikGjl +GilGjk

)]
Gi ⊗Gj ⊗Gk ⊗Gl, (20a)

Z = ∂TEΨ0 = −3κα
[
GijGi ⊗Gj

]
, (20b)

Q = −JF−1 · k · F−T∇XT . (20c)

Here, Z and Q are second order tensor associated with free energy function and heat flux. The isotropic
thermal conductivity k can be written using contravariant basis vectors as k = k(X)gijgi ⊗ gi.

With this, the solution of Eq. (2) can be obtained by solving the modified minimization problem

Determine (u, Ẽ, d, T ) from

(u∗, Ẽ∗, d∗, T ∗) = arg min
S

Π(u, Ẽ, d, T ), (21)

with S = {ḋ ≥ 0 for all x ∈ B0}. The set (u∗, Ẽ∗, d∗, T ∗) in Eq. (21) is solved by taking Gateaux derivative
assuming enough regularity of the involved fields. For any admissible test function (δu, δẼ, δd, δT ) in

(Bu,BẼ ,Bd,BT ) in the appropriate space of distribution with

Bu = {δu ∈ H1(B0), δu = 0 on ∂B0,u}, (22a)

BẼ = {δẼ ∈ L2(B0)}, (22b)

Bd = {δd ∈ H1(Ω)
∣∣∣δd ≥ 0 ∀ X ∈ B0}, (22c)

BT = {δT ∈ H1(Ω)
∣∣∣δT = 0 on ∂B0,q}, (22d)
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the following final multi-field problems is provided:

Ru(u, Ẽ, d, T, δu) =

∫
B0

g(d) [S : δEu] dΩ−
∫
B0

ρ0γ̄δu dΩ−
∫
∂B0,t

t̂δu d∂Ω = 0,

Ru =Ruint −Ruext = 0,

(23a)

RẼ(u, Ẽ, d, T, δẼ) =

∫
B0

g(d)
[
S : δẼ

]
dΩ = RẼint = 0, (23b)

Rd(u, Ẽ, d, T, δd) =

∫
B0

GC
[
d

l
δd + l∇d · ∇δd

]
dΩ−

∫
B0

2(1− d)Ψ(u, Ẽ, T )δd dΩ = 0, (23c)

RT (u, Ẽ, d, T, δT ) =

∫
B0

cpṪ δT dΩ−
∫
B0

g(d)
[
TZ : Ė

]
δT dΩ

+

∫
∂B0,q

QNδT d∂Ω +

∫
B0

g(d)Jk [∇XδT ]
T
C−1∇X[T ] dΩ = 0.

(23d)

3. Finite Element Implementation

Following the standard isoparametric interpolation arguments, the functional space B0 is discretized such

that B0 ≈
⋃ne

e=1 B
(e)
0 for ne non-overlapping elements. The discrete reference and current position vectors

are interpolated via standard trilinear shape function N I (N(ξ) in matrix notation) as

X ≈
8∑
I=1

N I(ξ)XI = N(ξ)X̃ and x ≈
8∑
I=1

N I(ξ)xI = N(ξ)x̃, (24)

for the respective global vectors X̃ and x̃.
The interpolation of the fields (u, Ẽ, d, T ), their respective variations (δu, δẼ, δd, δT ) takes the form

u ≈ N(ξ)d; Ẽ ≈M(ξ)ς; d ≈ N(ξ)d̃; T ≈ N̂(ξ)T̂ , (25a)

δu ≈ N(ξ)δd; δẼ ≈M(ξ)δς; δd ≈ N(ξ)δd̃; δT ≈ N̂(ξ)δT̂ . (25b)

Here, the ς is the collection of EAS parameters and M(ξ) is the enhancing interpolation matrix. In
particular, the operator M(ξ) is equipped with 7 parameters at each element suitable to alleviate volumetric,
membrane and Poisson’s thickness locking. Within the natural co-ordinate system ξ = {ξ1, ξ2, ξ3}, the
operator M(ξ) takes the form

M =


ξ1 0 0 0 0 0 0
0 ξ1 0 0 0 0 0
0 0 ξ3 ξ1ξ3 ξ2ξ3 0 0
0 0 0 0 0 ξ1 ξ2

0 0 0 0 0 0 0
0 0 0 0 0 0 0

 . (26)
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Note that, it is also possible to have 11 parameters at each elemental level as in [74], but 7 parameters
are chosen here for the sake of reducing complexity of the model.

In order to circumvent transverse shear and trapezoidal locking, the transverse shear (E13, E23) and
transverse normal strain (E33) are modified according to ANS interpolation method. The interpolation of
the transverse shear strains and transverse normal strains are performed at points (A, B, C, D) and (O, P,
S, T ) respectively as in Fig. 1. Accordingly, the modified strains takes the form

{
2EANS13

2EANS23

}
=

{
(1− ξ2)2E13(ξA) + (1 + ξ2)2E13(ξC)
(1 + ξ1)2E23(ξB) + (1− ξ1)2E23(ξD)

}
. (27)

and

EANS33 =
∑

m=O,P,S,T

Nm(ξ1, ξ2)E33;

Nm(ξ1, ξ2) =
1

4

(
1 + ξ1

mξ
1
) (

1 + ξ2
mξ

2
)
,

with ξ1
m, ξ

2
m = ±1.

(28)

The displacement derived compatible strain tensor Eu are interpolated using displacement strain operator
B as

Eu ≈ B(d)d, δEu ≈ B(d)δd, (29)

Similarly, gradient of the phase-field ∇xd and gradient of temperature ∇XT are interpolated as

∇xd ≈ Bd(d)d̃, ∇xδd ≈ Bd(d)δd̃, (30a)

∇XT = G−1∇ξT ≈ G−1∇ξN̂(ξ)T̂ ; ∇XδT ≈ G−1∇ξN̂(ξ)δT̂ ; (30b)

where Bd is suitable gradient operator and ∇ξ is the gradient of temperature with respect to natural
coordinates in curvilinear setting.

For each pseudo-time step increment ∆t := t
(k)
n+1 − tn > 0, assuming that the fields (u, Ẽ, d, T )tn at

time step tn is known, the unknown fields (u, Ẽ, d, T )tn+1
are computed via consistent linearization of the

residual functions. Following the standard finite element procedure, Eqs. (23a), (23b), (23c), (23d), can be
expressed as a system of linear equations


Kdd Kdς Kdd̃ KdT

Kςd Kςς Kςd̃ KςT

Kd̃d Kd̃ς Kd̃d̃ Kd̃T

KTd KTς KT d̃ KTT




∆d
∆ς
∆d

∆T̂

 =


R̂uext

0
0

R̂Text

−

R̂uint

R̂ςint

R̂d̃
int

R̂Tint

 . (31)

The different elements of tangent stiffness matrix reads

Kdd =

∫
B0

g(d)

(
B(d)TCB(d) +

[
∂B(d)

∂d

]T

S

)
dΩ = Kdd,mat + Kdd,geom

Kdς =

∫
B0

g(d)M(ξ)TCB(d) dΩ; Kdd̃ =

∫
B0

−2(1− d)B(d)TSN(ξ) dΩ,

KdT =

∫
B0

g(d)B(d)TZN̂(ξ) dΩ,

(32a)
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Kςu =

∫
B0

g(d)M(ξ)TCB(d) dΩ; Kςς =

∫
B0

g(d)M(ξ)TCM(ξ) dΩ,

Kςd̃ =

∫
B0

−2(1− d)M(ξ)TSN(ξ) dΩ; KςT =

∫
B0

M(ξ)TZN̂(ξ) dΩ,

(32b)

Kd̃d =

∫
B0

−2(1− d)N(ξ)TSB(d) dΩ; Kd̃ς =

∫
B0

−2(1− d)N(ξ)TSM(ξ) dΩ,

Kd̃d̃ =

∫
B0

[
2
GC
l
H
]
N(ξ)TN(ξ) dΩ +

∫
B0

2GC lBd(ξ)TBd(ξ) dΩ,

Kd̃T =

∫
B0

−2(1− d)N(ξ)BT (d)N̂(ξ) dΩ,

(32c)

KTd =

∫
B0

g(d)∆d[J ]BT
TF
−1 · k · F−T∇XT dΩ,

+

∫
B0

g(d)JBT
T

(
∆d[F−1] · k · F−T + F−1 · k ·∆d[F−T]

)
∇XT dΩ−

∫
B0

N̂T T

∆t
ZTB dΩ,

KTς = −
∫
B0

N̂(ξ)T T

∆t
ZTM(ξ) dΩ; KTd = −

∫
B0

−2(1− d)N̂(ξ)T(ZTĖ)N(ξ) dΩ,

KTT =

∫
B0

N̂(ξ)T cp
∆t

N̂(ξ) dΩ−
∫
B0

g(d)N̂(ξ)T(ZTĖ)N̂(ξ) dΩ +

∫
B0

g(d)JBT
TF
−1 · k · F−TBT dΩ.

(32d)

with H being the crack driving force (history variable) as in [93] takes the form

H = max
τ∈[0,t]

[
Ψ(u, Ẽ, T )

]
, (33)

Here, kdd,geom and kdd,mat refers to the geometric and material contributions, whereas ∆d[J ], ∆d[F−1]
and ∆d[F−T] are the consistent linearization of the Jacobian J of the transformation F, the inverse of the
displacement-derived deformation gradient and its transpose, respectively with respect to the kinematic
field, see [74] for computation of these terms.

Owing to inter element continuity of enhanced strains, the above stiffness matrix can be condensed at
element level via a standard condensation process as

K∗dd K∗
dd̃

K∗dT
K∗

d̃d
K∗

d̃d̃
K∗

d̃T
K∗Td K∗

T d̃
K∗TT

∆d
∆d

∆T̂

 =


˜̂Rd

˜̂Rd

˜̂RT

 (34)

where K∗ij = Kij −KiςK
−1
ςς Kςj and

˜̂Rj = Rjext −R
j
int + KiςK

−1
ςς Rεint for each i, j = {d, d, T}.

Owing to the staggered scheme implementation, the coupled terms Kdς ,KdT ,KTς ,KT d̄,Kd̄T ,Kd̄ςKςT =
0 for implementation. The resulting system of algebraic system in Eq. (34) can be solved using the
Newton-Raphson solver or the Broyden-Fletcher-Goldfarb-Shanna (BFGS) solver. In the following numerical
application, plate with multiple holes and cylinder with grading are solved using Newton solver, whereas all
the others are solved using BFGS solver. Note that for the problem involving geometric non-linearity (i.e
cylinder with grading and plate with multiple holes), BFGS solver computation times increases significantly
leading to increased iteration required for convergence at each step, hence, Newton solver is used. For
problem without geometric non-linearity, BFGS shows efficient computation. The comparison between the
solvers in terms of CPU time or iteration is out of scope for the current article. See [95–97] for details
regarding the BFGS solver.
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Material E (MPa) ν α(10−6/oK) k0(W/mm
o
K) cp(kJ/kg

o
K) GC (MPa

√
mm) lc (mm)

Copper 120× 103 0.34 16.5 150 0.372 11.968 0.1
Titanium 116× 103 0.34 8.90 17 0.72 5.9973 0.1267
Zirconia 210× 103 0.31 10.1 5.05 0.4 0.32 0.06
Alumina 380× 103 0.26 7.7 25 0.880 0.06634 0.08

Silicon carbide 410× 103 0.35 4 120 0.750 0.045643 0.003
Polymer Glass 85× 103 0.21 5.1 1.35 0.805 0.007197 0.008

Table 1: Properties of the simulated materials.

a) b)

Figure 2: (a) Geometric description of the model, (b) force vs. displacement plots comparison with Hrishikesh et al [49].

4. Numerical applications

In this section, the predictive capability of the proposed thermo-mechanical solid shell formulation with
phase-field for functionally graded materials is assessed using several representative examples. First, a
benchmark test is proposed. Then, the numerical aspects concerning the grading are discussed by introducing
a volume fraction that can describe the change of material properties. The examples of a plate with two
notches and a plate with many holes are examined to study the deflection of cracks due to material properties
grading and temperature effects. Later, a thin cylindrical shell is analyzed to show the applicability of the
proposed model to complex structures. The classic benchmark examples concerning a plate with a notch
is considered to study the effects of Young’s modulus on crack propagation and temperature distribution
using metal-metal, ceramic-polymer, and ceramic-ceramic FGM specimens. A three-phase FGM is finally
considered to pinpoint the influence grading on the material behavior.

The details on the function V fA and the discussion on grading are provided for each example for more
clarity. In order to show examples spanning the wide range of material behavior, six material parameters
are considered spanning metals, ceramic, and polymers, namely: Copper (metal), Titanium (metal), Alu-
mina (ceramic), Zirconia (ceramic), Silicon carbide (ceramic) and polymer glass (polymer) whose material
properties are given in Tab. 1.

4.1. Verification example

This example concerns the verification of the proposed model. Due to the scarce experiment concerning
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after fracture

displacement [mm]
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d 
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ZrO

Figure 3: (left) Geometric description of the model, (right) force vs. displacement plots with ζ = 1 in Eq. (36) and its
homogeneous components.

thermo-mechanical FGMs, the numerical results has been compared against elastic numerics in two dimen-
sion [49]. Equal temperature is applied everywhere throughout the analysis to eliminate the temperature
effects. Fig. 2a) shows the sketch of the model under consideration with grading in y−direction such that
alumina (material-A) occupies the top surface, and zirconia (material-B) occupies the bottom surface. The
material properties of alumina and zirconia are shown in Tab. 1. The volume fraction function is defined
as

V fA =
(y

1

)ζ
for 0 ≤ y ≤ L. (35)

The force vs. displacement curve for homogeneous material (material-A) and the FGM with ζ = 1, and
ζ = 3 with l = 0.006 are compared against the experiments in [49] as in Fig. 2b). A satisfactory agreement
between the two can be observed. The small discrepancy in the results maybe stemming from the fact
that numerical experiments in [49] are done in plane strain conditions, whereas the developed model in this
article considers three-dimensional constitutive law.
4.2. Plate with two edge notches

This example concerns the application of the proposed model to functionally graded double edged asym-
metrical notched specimen comprising Alumina (Al2O3) and Zirconia (ZrO2) with grading in y−direction,
with alumina on the top and zirconia on the bottom. Fig. 3 shows the sketch of the model under consid-
eration with L = 2 mm, a = 0.3 mm, w = 1 mm, L̃ = 0.9 mm, and thickness h = 0.028 mm. The model
is discritized with 4896 elements. The bottom of the specimen is fully restrained whereas the displacement
of ∆ = 0.005 mm is applied on the top edge. The properties of alumina and zirconia are shown in Tab. 1.
With alumina being considered as material-A, the volume fraction function is defined as

V fA =
(y

2

)ζ
for 0 ≤ y ≤ L. (36)
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2

2 3

ZrO

Al O

Figure 4: Force vs displacement curve for (left) variation of grading function ζ and (right) variation of temperature boundary
conditions for double notched plate.

The evolution force vs. displacement curves of the homogeneous materials and of the FGM with ζ = 1
(linear) are shown in Fig. 3. In these examples, a temperature of T1 = T2 = 25oC is applied on the left and
right edges, respectively. Due to the thermo-elastic mismatch, the maximum load-bearing capacity and the
thermal distributions are different in FGM compared to its homogeneous constituents.

Since the thermal conductivity of the alumina is five times larger than zirconia, the temperature distribu-
tion in FGM is unequal, and high temperatures are largely concentrated towards the top surface (alumina).
The difference in temperature distributions between the homogeneous material (alumina) and the FGM are
shown in Fig. 5 along with the crack propagation at different time instances. Notice that from Eq. (32d), the
degradation function g(d) is applied on the Z and QQQ matrix which contains the thermal conductivity k. As
the d approaches 1, k tends to 0. In the region of crack propagation, k is almost zero and acts as a thermal
barrier which can be observed in Fig. 5. Moreover, Fig. 4(Right) shows the force vs. displacement curve
for the variation of temperature boundary condition with ζ = 1. It can be noticed that, as the temperature
increases, the load-bearing capacity decreases.

Referring to the other material properties’ mismatch, the Young’s modulus E and the fracture energy
GC , and subsequently the characteristic length scale lc, they play a vital role in determining the load-bearing
capacity. It can be observed from Fig. 3 that, as expected, the initial slope depends on Young’s modulus,
whereas the peak response (load-bearing capacity) depends on the GC and lc (that are related to the apparent
strength). Due to the fact that the alumina has the highest value of E and the lowest value of GC among
the two materials herein considered, the slope of alumina is higher, and the maximum load-bearing capacity
is lower than zirconia. Since the properties of FGM are a linear/nonlinear combination of its homogeneous
materials, the crack deflection of the FGM is different compared to the homogeneous materials as shown in
Fig. 5. Moreover, Fig. 4 (left panel) shows the evolution of force vs. displacement curve for the variation
of grading parameter ζ with the same temperature boundary condition as before. Naturally, as ζ goes to
infinity, the load-bearing capacity approaches that of zirconia.

For the pure elastic analysis (without temperature imposed), the maximum load-bearing capacity of the
FGM is always bounded between its homogeneous constituents, see [48] for more details. When the tem-
perature effects are considered, this is partially true. For the same boundary temperatures, the maximum
load-bearing capacity of the FGM is bounded between its homogeneous constitutes, whose mathematical
proof is a simple extension of Theorem- 3 in [48]. In contrast, the peak load cannot be predicted accu-
rately based on the energy bounds when different boundary temperatures are applied between FGM and its

13



Temp

Temp0 0.5

0 0.5 3.5 3.51 0 1

0 1

Temp 3.78 3.79

Temp 11.28 11.2910.78 10.79

Before Fracture After Fracture

  FGM
Material

Homogenous
   Material 

Figure 5: Double edge notched plate: phase-field and temperature distribution during initiation of fracture, and at failure.
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Figure 6: Plate with holes: force vs. displacement curves and the differences in crack propagation between FGM and homoge-
neous case.

homogeneous materials.

4.3. Plate with multiple holes

In this example, the proposed model investigates crack deflection in FGMs. For this, a square plate of
length L = 2.5 mm and thickness h = 0.056 mm is considered. The square plate contains 12 holes of radius
r = 0.125 mm randomly placed across the plate. The model is discritized with 11209 elements. Similar to
the previous example, the plate consists of FGM made up of alumina-zirconia graded in y−direction. In
this example, a constant length scale lc = 0.06 mm is considered for both homogeneous and FGM. See also
[49]. The bottom surface made of zirconia (material-B) is restrained, and a vertical displacement is applied
on the top surface made of alumina (material-A). The temperature of 25oC is applied on both lateral sides.
The volume fraction is defined as

V fA =
( y

2.5

)ζ
0 ≤ y ≤ L; =⇒ V fB = (1− V fA). (37)

Fig. 6 shows the evolution of force vs. displacement curve for the FGM with ζ = 1 and is compared to its
homogeneous constituents. Owing to the lower fracture of alumina, it can be seen that the crack initiation
and propagation in FGM occur near the top surface compared to the central crack in the homogeneous
surrogate.

The temperature distribution is very similar to the previous example where the temperature is concen-
trated towards the top surface. Recalling the reduction of thermal conductance due to crack propagation,
the thermal insulation of the crack path can be observed in Fig. 7.

4.4. Cylinder with grading

In this example, a curved cylinder of radius R = 2 mm and length L = 20 mm with a central hole of
radius r = 0.15 mm is made of FGM (alumina-zirconia) is considered. The model is discritized with 12491
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Figure 7: Plate with holes: temperature distribution in FGM as compared with that of the homogeneous model, before and
after failure.

Figure 8: Cylinder with hole: properties of the materials and force vs displacement curve for change of grading function ζ.
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Figure 9: Cylinder with hole: force vs displacement curve FGM (ζ = 1) and the Homogeneous surrogates and variation of
temperature boundary conditions.

(Log Scale)
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(Log Scale)
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FGM

Homogenous

Before Fracture After Fracture

Figure 10: Cylinder with hole: phase-field and temperature distribution in FGM compared with homogeneous model before
and after fracture.
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elements. One axial end of the cylinder is restrained, whereas an axial displacement is prescribed on the
opposite end. The initial temperature of T = 25oC is applied on both axial ends. The grading is done along
its axial length (z−direction) such that the function V f takes the form

V fA =

(
|z − 10|

10

)ζ
, 0 ≤ y ≤  L. (38)

Meaning that, alumina occupies both the axial ends (i.e z = 0, and z = 20) and zirconia occupies the
centre (z = 10). The grading profiles for different ζ, and the change of material properties due to the
function V fA is shown in Fig. 8 (left panel). The force vs. displacement curves for the FGM, along with
its homogeneous constituents, are shown in Fig. 9 (left panel). On the other hand, Fig. 8 (right panel)
shows the variation of force vs displacement curve for different grading parameter ζ. It is evident that as
ζ → ∞, the load-bearing capacity of the FGM approaches alumina (material-A) since the volume fraction
of alumina is dense in the region of crack propagation.

Figure. 10 shows the comparison between crack paths for FGM and the homogeneous material (zirco-
nia) and shows that the crack is deflected approximately 8o towards the load end. The variation of the
temperature boundary conditions shows that as the temperature increases, the load-bearing capacity of the
specimen decreases as in Fig. 9 (right panel).

Note that total energy can be fairly split into elastic, thermal, and crack energy constituents. Numerical
experiments show that elastic energy is driven mainly by Young’s Modulus, whereas a combination of k and
α primarily drives thermal energy. In contrast, crack energy is largely driven by GC and lc in line with [48].
When the length scale of FGM is considered constant as in example-2, the crack energy is driven by GC . The
crack propagation is usually towards the lowest GC side (for example, alumina in the previous example).
In the presence of stress concentrators such as a notch, hole, etc., the crack initiation and propagation
also depends on the material properties at the stress concentration zones (crack tip). Since the variational
formulation is considered as a competition between the thermo-elastic energy and the crack energy, the
following conclusions can be readily drawn.

1. As the grading parameters increase, i.e (ζ ≥ 1) or decrease (ζ ≤ 1), the FGM tends to behave like its
homogeneous constituents.

2. As the temperature increases, the maximum load bearing capacity decreases.

3. The slope of the force vs. displacement curve depends strongly on the Young’s modulus E.

4. The maximum load bearing capacity depends largely on GC , and it is directly proportional to lc (or
to the apparent tensile strength σc).

5. Since the thermal conductance is degraded as a function of d, and the maximum load bearing capacity
is a function of applied temperature and g(d).

4.5. Plate with notch

This example concerns with the effect of grading and their subsequent temperature effects by considering
three different FGM pairs. As an example, (i) Copper-Titanium (Cu-Ti), (ii) Alumina-Zirconia (A-Z), and
(iii) Silicon carbide- Polymer Glass (SiC-G), representing (i) metal-metal, (ii) ceramic-ceramic, and (iii)
ceramic polymer pairs respectively are considered. In each of the example, the model is discritized with
4476 elements.

The properties of materials mentioned above are given in Tab. 1, whereas the ratio of Young’s modulus,
fracture energy, thermal conductivity, and length scale are given in Tab. 2. Here, material-A has the
highest Young’s modulus among the FGM pairs. i.e EA = max(EA, EB), i.e Copper, alumina and SiC is
their respective FGM pairs.

Note that the ratio of chosen pairs represents vastly different mechanical and thermal properties, each
of them is discussed in the sequel. A plate of length L = 10 mm and width w = 10 mm with initial notch
of 3 mm at the centre are considered with the displacement boundary conditions applied as in Fig. 11a)
to simulate stable crack propagation. A temperature T = 25oC is applied on both sides for the numerical
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Figure 11: a) Model under consideration, force vs displacement curve with variation of ζ in b) Copper-Titanium FGM pair, c)
Alumina-Zirconia FGM pair, d) Silicon carbide-Epoxy glass FGM pair.

FGM pair
EA
EB

Gc,A
Gc,B

k0,A

ko,B

lc,A
lc,B

Copper-Titanium (Cu-Ti) 1.03 2 8.82 0.754
Alumina-Zirconia (A-Z) 1.8 0.207 4.95 1.33

Silicon Carbide- Polymer Glasss (SiC-G) 4.8 6.34 88.88 0.375

Table 2: ratio of the simulated materials.
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Figure 12: phase field and temperature distributions comparison between FGM and homogeneous material during (t1) initiation,
(t2) crack propagation until 1/2 of plate (t3) crack propagation until 3/4 of plate (t4) after complete failure.
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simulations in this example. The grading is done along the y−direction such that grading happens from the
bottom (material-B) to top (material-A), whose function is defined as

V fA =
( y

10

)ζ
0 ≤ y ≤ L. (39)

For the copper-titanium FGM pair with copper as material-A, Young’s modulus ratio
EA
EB

is approxi-

mately 1. The force vs. displacement curve for the FGM with different grading parameters ζ along with its
homogeneous constituents are presented in Fig. 11(b). It is clear that the slope of all the curves is similar
due to the similarity in the Young’s moduli. Then, the peak load-bearing capacity of the model is driven by

the GC and lc. In fact, using the expression, lc =
27

256

GCE
σ2
c

, GC and lc can be directly related with σc. Note

that both copper and titanium are highly conductive metals with a thermal conductance ratio
k0,A

ko,B
= 8.82,

meaning that the temperature distribution is highly concentrated towards the Copper end.

For the alumina-zirconia pair, the Young’s modulus ratio
EA
EB

is approximately 2, whereas
k0,A

ko,B
= 4.95,

Fig. 11(c) shows the force vs displacement curve for different grading parameters ζ. Moreover, Fig. 12
presents the crack propagation and temperature distribution of the homogeneous material (zirconia as an
example) and FGM (with ζ = 1) during four stages, namely (i) crack initiation, (ii) crack propagating

approximately half the plate, (iii) crack propagating approximately 3
4

th
of the plate, and finally (iv) fully

cracked model. The temperature distribution at each of these stages is shown in Fig. 12 to comprehend
the differences. As the crack propagates, the temperature around the crack increases, leaving a trail around
the crack tips. Meanwhile, thermal conductance in the crack region approaches 0, hence creating thermal
insulation around the region. Temperature distribution in all the FGM’s are similar owing to the conductivity
ratio always higher than 1 in all the pairs. See Fig. 12 for more details.

For the Silicon carbide and polymer glass FGM, the Young’s Modulus ratio
EA
EB

is approximately 5,

whereas the
k0,A

ko,B
= 88.88, notice that, due to very high

GC,A
GC,B

ratio, the FGM with ζ ≥ 1 gave a nonphysical

boundary cracks, hence only ζ ≤ 1 is considered for the analysis. Fig. 11(d) shows the force vs. displacement
curve for the FGM Sic-G along with its homogeneous constituents. From Fig. 11(a), (b), and (c), it is
apparent that as Young’s modulus ratio increases, the peak load-bearing capacity of the FGM changes
drastically as a linear/nonlinear combination of their homogeneous constitutes.

4.6. Double FGM (three-phase FGM)

Double FGM is a three-phase functionally graded material where the material is graded with three
different materials. This can also be considered as two functionally graded materials combined together at
a point, see, [3] for more details. In order to accommodate such a model, the material parameters in Eq.
(11) and (12) have to be modified accordingly.

Consider three materials, Mat-A, Mat-B and Mat-C. The volume fraction of each material at any position
x ∈ B0 can be written as V fA, V fB and V fC such that V fA + V fB + V fC = 1 for each x ∈ B0. Introduce
two grading parameters ζ1 and ζ2 that controls the behaviours of the grading in the materials. Then the
volume fraction function for the FGM at any position vector can be defined as

V f =

{
V f1(x) 0 ≤ x ≤ (L1, w1, h1)

V f2(x) (L1, w1, h1) ≤ x ≤ (L2, w2, h2),
(40)

for some length (L1, L2) ≤ L, width (w1, w2) ≤ w, and thickness (h1, h2) ≤ h. The material properties now
can be written as a function of V f . As an example, we consider the square plate with an initial notch as
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Figure 13: Force vs displacement curve for Double FGM.

in Sec. 4.5 with the same dimensions and boundary conditions. Alumina, zirconia, and silicon carbide are
considered for the double FGM, where two combinations of grading of each of these materials to form a
double FGM are considered in the y−direction are shown in Fig. 13.

The volume fraction functions can be defined as

V f =


(y

5

)ζ1
0 ≤ y ≤ 5(

−y
5

+ 2
)ζ2

5 ≤ y ≤ 10,
(41)

The material properties now takes the form

Ξ =


ΞA + (ΞB − ΞA)

(y
5

)ζ1
0 ≤ y ≤ 5

ΞC + (ΞB − ΞC)
(
−y

5
+ 2
)ζ2

5 ≤ y ≤ 10,

for each Ξ = {E, ν, α, k0,GC , lc}. Two combinations of the material properties are considered to explore the
thermo-elastic behaviours of the double FGM’s. In combination-1, zirconia is considered to exist everywhere
across the model (coined as primary material). Meaning that, combination-1 can be considered as a two
pairs of FGM of alumina-zirconia, zirconia-silicon carbide combined together with zirconia in both pairs.
Similarly, combination-2, consists of silicon carbide-alumina, alumina-zirconia with alumina as a primary
material. The choice of the materials is motivated by the fact that the E and k0 ranges in the order of
magnitude 1, whereas GC ranges in the order of magnitude 2. The material properties of combination-1 can
be written as

Ξ =


ΞAlumina + (Ξzirconia − ΞAlumina)

(y
5

)ζ1
0 ≤ y ≤ 5

ΞSiC + (Ξzirconia − ΞSiC)
(
−y

5
+ 2
)ζ2

5 ≤ y ≤ 10,
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Figure 14: Temperature distribution between in combination-1 and combination-2 on different time instances for ζ = 1 − 2
both.
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whereas the material properties of combination-2 takes the form

Ξ =


ΞSiC + (ΞAlumina − ΞSiC)

(y
5

)ζ1
0 ≤ y ≤ 5

ΞAlumina + (ΞAlumina − Ξzirconia)
(
−y

5
+ 2
)ζ2

5 ≤ y ≤ 10,

Fig. 13 presents the pictorial representation of the combination-1 and combination-2 for ζ1, ζ2 = 1.
For the different variations of the grading function ζ1 and ζ2 and the two combinations, the force vs.
displacement curves can be seen in Fig. 13. It can be noticed that since the combination-1 is dominant
with zirconia, the peak load response accumulates between the zirconia and the SiC. For combination-2,
since alumina is dominant, the peak load responses are accumulated between alumina and zirconia. The
temperature distribution for the combination-1 and combination-2 during the (i) crack initiation, (ii) crack
propagating approximately half the plate, (iii) crack propagating approximately 3/4 of the plate, and finally
(iv) fully cracked model is presented in Fig. 14. It is noticed that combination-2 has a faster rate of heat
transfer compared to combination-1 owing to the thermal conductivity of alumina. And the temperature
distributions are inclined towards the SiC in both combinations.

5. Concluding remarks

A thermodynamically consistent locking-free solid shell with full integration has been herein proposed
for functionally graded materials. By the combination of 7 parameter shell elements, locking effects are
alleviated. The numerical predicting capabilities of the model have been explored using several examples.
The thermal conductivity degradation and the elastic energy degradation have been implemented using
the same function g(d), although the formulation could be easily generalized by considering also different
degradation functions.

An asymmetrical double-edge notched plate or with many holes have been analyzed to investigate the
crack deflection in such complex FGM with all thermo-mechanical and fracture mechanics material properties
function of space. The cylindrical shell example showed that the method can be effectively simulate crack
deflection in FGM curved shells stemming from the material definition. The thermo-mechanical interaction
and the difference between the elastic and temperature distribution between the FGM and homogeneous
materials have been highlighted.

Furthermore, based on the representative examples, the model has been shown to predict that the
temperature distributions affect crack growth patterns and, conversely, cracks do affect heat transfer since
they create thermally insulated zones in the material.

A double FGM example has been also provided to show the possibility of combining two different FGM
materials, which might be significant for material science.

Finally, it can be emphasized that the proposed model is promising in addressing a wide range of industrial
applications dealing with thermo-elastic applications involving thin/thick (straight or curved) plates such as
heat ex-changers, cutting tools, turbine blades, biomedical implants, heat-resisting elements in space crafts,
sports equipment, etc., where FGMs are extensively used.
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