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INTERVAL SUPERPOSITION ARITHMETIC

YANLIN ZHA∗, MARIO E. VILLANUEVA∗, AND BORIS HOUSKA∗,†

Abstract. This paper presents a novel set-based computing method, called interval superposition arithmetic,

for enclosing the image set of multivariate factorable functions on a given domain. In order to construct such

enclosures, the proposed arithmetic operates over interval superposition models which are parameterized by a matrix

with interval components. Every point in the domain of a factorable function is then associated with a sequence

of components of this matrix and the superposition, i.e. Minkowski sum, of these elements encloses the image

of the function at this point. Interval superposition arithmetic has a linear runtime complexity with respect to the

number of variables. Besides presenting a detailed theoretical analysis of the accuracy and convergence properties

of interval superposition arithmetic, the paper illustrates its advantages compared to existing set arithmetics via

numerical examples.
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1. Introduction. Tools for constructing enclosures of the image set of nonlinear func-

tions are needed for a wide variety of numerical computing algorithms. These include global

optimization based on complete-search [9, 15], robust and semi-infinite optimization [8, 19],

as well as validated integration algorithms [31, 14]. Here, factorable functions [17] are func-

tions that can be represented as a finite recursive composition of atom operations from a

(finite) library

L = {+,−,∗, inv,sin,exp, log, . . .} .
This library typically includes binary sums, binary products, and a number of univariate atom

functions such as univariate inversion, trigonometric functions, exponential functions, loga-

rithms, and others.

Existing methods for computing enclosures of factorable functions can be divided into

three categories: traditional interval arithmetics and its variants, arithmetics using other con-

vex sets such as ellipsoids or zonotopes, as well as non-convex set arithmetics [5]. Interval

arithmetics is one of the oldest and most basic tools for set-based computing [21, 22]. Un-

fortunately, one of the main limitations of standard interval arithmetics is that the computed

interval enclosures are often much wider than the exact range of the given factorable func-

tion. This overestimation effect is mainly caused by the so called dependency problem, which

appears when multiple occurrences of the same variable (interval) are taken independently

during the computation of the enclosure. On the other hand, an advantage of interval arith-

metics is its favorable computational complexity: the evaluation of an interval extension of a

factorable function usually takes only 2 to 4 times longer than a nominal evaluation [22].

One way to generalize interval arithmetics is to replace intervals (or interval vectors)

with more general computer representable convex sets. For example, McCormick relaxations

propagate convex lower and concave upper bounds rather than standard intervals [17, 20].

McCormick’s arithmetic sometimes yields tighter bounds, but it is also slightly more ex-

pensive than interval arithmetics [20]. Another class of convex set based enclosure tools is

the so-called ellipsoidal calculus [11, 30], where multi-dimensional ellipsoids rather than in-

terval vectors are used in order to represent the set enclosures. Because the storage of an

n-dimensional ellipsoid grows quadratically with the number of variables, i.e., O
(
n2
)
, el-

lipsoidal arithmetics are typically computationally more demanding than standard interval

arithmetics, but often yield much tighter enclosures, especially in the context of validated
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integration algorithms [10]. Thus, at least for particular applications, the higher computa-

tional effort associated to ellipsoidal computations pays out in terms of the accuracy of the

enclosure set. Other convex enclosure methods use polyhedral sets, which are in general

even more expensive to store than ellipsoids. Unlike ellipsoids, polytopes can be used to rep-

resent convex sets with arbitrary precisions by controlling the number of facets. Polyhedral

relaxations are popular in the field of global optimization and are for example used in the soft-

ware tools BARON [25, 27] and GloMIQO [18]. Another example for an enclosure algorithm

based on polyhedral sets is the so-called affine arithmetic [7], which is based on zonotopes, a

particular class of point-symmetric polytopes.

A rather apparent disadvantage of all arithmetics based on convex sets is that they can,

in the best case, represent the convex hull of the image of a given factorable function. Conse-

quently, if the exact image set of a factorable function is non-convex, the benefit of investing

into more accurate convex set representations, such as zonotopes or even general polytopes

with many facets, is limited. One way to overcome this limitation is by working with non-

convex sets, which, in practice, is often done using polynomials. Interval polynomials or

polynomials with interval remainder terms have been in use since their development in the

1960s [21] and 1980s [6, 24]. These early works have been the basis for the popular Taylor

model arithmetic, which has been developed by Berz and coworkers [2, 3, 16]. Nowadays,

there exist mature tools, for example the software MC++ [20], implementing Taylor model

arithmetics with arbitrary order. The favorable convergence properties of Taylor models on

variable domains with small diameter have been analyzed thoroughly [4]. However, the con-

vergence properties of Taylor series on wider domains are often less favorable [23].

One promising direction towards overcoming this limitation of Taylor models is the on-

going research on so-called Chebychev models. For functions with one or two variables

Chebychev models can be constructed by the software Chebfun as developed by Trefethen

and coworkers [1, 28, 29]. Chebychev models for functions with more than two variables are

the focus of recent research [23]. While computing bounds on convex sets is computationally

tractable, finding tight bounds of a multivariate polynomial is itself a complex task. Here,

one way to compute bounds on such polynomials is to use linear matrix inequalities [12].

Heuristics for computing range bounders for multivariate polynomials can be found in [13].

The main contribution of this paper is the development of a novel non-convex set arith-

metic, called interval superposition arithmetic, for enclosing the image set of factorable func-

tions on a given interval domain. The paper starts in Section 2 by introducing interval super-

position models, a data structure that can be used to represent piecewise constant enclosure

functions. In contrast to the above reviewed non-convex set based arithmetics the ongoing

developments do not rely on local approximation methods such as variational analysis, Tay-

lor expansions, or other polynomial approximation techniques. Instead, Section 3 presents

algorithms for propagating interval superposition models through the directed acyclic graph

of factorable functions by exploiting partially separable sub-structures. Moreover, we de-

velop associated remainder bounds by exploiting globally valid algebraic properties, such as

addition theorems, which can be found in Appendix A. A detailed analysis of the local con-

vergence properties of the proposed arithmetic as well as results on its global behavior can

be found in Sections 4.1 and 4.2, respectively. Section 5 presents numerical results based on

a prototype implementation of the proposed interval superposition arithmetic, written in the

programming language JULIA. The numerical case studies show that the proposed arithmetic

often yields more accurate enclosures of factorable functions than existing interval arith-

metics and Taylor model based arithmetics, at least on wider domains. Section 6 concludes

the paper.



INTERVAL SUPERPOSITION ARITHMETIC 3

Notation. We use the symbol

I = { [a,b]⊆ R | a,b ∈ R, a ≤ b} .

to denote the set of real valued compact interval vectors. The notation c+ I = I + c with

I = [a,b]∈ I and c∈R is used to represent the shifted interval [c+a,c+b]. Similarly, cI = Ic

denotes the scaled interval [ca,cb] if c≥ 0 and [cb,ca] if c < 0. All other interval operations

are assumed to be evaluated by a simple application of standard interval arithmetic. For

example, we use the shorthand notation

[a,b]+ [c,d] = [a+ b,c+ d]

[a,b]∗ [c,d] = [min{ac,ad,bc,bd},max{ac,ad,bc,bd}]
exp([a,b]) = [exp(a),exp(b)] , etc.. .

A complete list of these standard interval arithmetic operations can be found in [21].

2. Interval Superposition Models. Let f : X → R be a given factorable function and

X = [x1,x1]× [x2,x2]× . . . [xn,xn] ∈ I
n a given interval domain. A set valued function Ff ,X :

X→ I is called an interval valued enclosure function of f on the given domain X , if it satisfies

∀x ∈ X , f (x) ∈ Ff ,X(x) .

In the following, coordinate aligned branching is applied in order to cut the whole domain

into smaller intervals of the form

X
j

i = [xi +( j− 1)hi, xi + jhi ] with hi =
xi− xi

N
(1)

for all i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,N}, where N is an integer that the user can choose.

Here, the intervals [xi,xi] are all cut into N equidistant intervals for simplicity of presenta-

tion, although the following algorithms can easily be generalized for non-equidistant interval

branching and for the case that each coordinate is not necessarily subdivided into the same

number of intervals. Next, we introduce the basis functions

φ
j

i (x) =

{

1 if xi ∈ X
j

i

0 otherwise
(2)

for all i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,N}. Now, the goal is to develop an arithmetic that

computes piecewise constant enclosure functions of the form

(3) Ff ,X(x) =
n

∑
i=1

N

∑
j=1

A
j
i φ

j
i (x) ,

where the coefficients A
j
i ∈ I are intervals. The enclosure function Ff ,X given by (3) is called

an interval superposition model. This name is motivated by the fact that Ff ,X(x) is represented

as a Minkowski sum of n interval valued functions. Notice that the complexity of storing an

interval superposition model is 2nN, as we need to store the upper and lower bounds of the nN

intervals A
j
i . The function Ff ,X(x) is piecewise constant in x and may take different interval

values on all of its Nn pieces.

In the following, the index i in (3) is called the row index of the coefficient matrix

A =






A1
1 . . . AN

1
...

. . .
...

A1
n . . . AN

n




 .
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Similarly, j is called the column index. This matrix notation is introduced in order to have a

convenient storage format for the interval coefficients.

REMARK 1. Notice that that there is more than one way to represent the same interval

superposition model. This is mainly due to the fact that the enclosure set Ff ,X(x) remains

invariant if we pick two pairwise disjoint row indexes, k1 6= k2, and a constant c ∈R; add the

offset c to all intervals in the k1-th row; and subtract c from all intervals in the k2-th row, i.e.

∀ j ∈ {1, . . . ,N}, A
j
k1
← A

j
k1
+ c and A

j
k2
← A

j
k2
− c .

Such redundancies can be removed using a sparse interval matrix A, which maintains sys-

tematically as many zero interval entries as possible.

2.1. Range Bounders. Bounds for the range of an interval superposition model Ff ,X

can be found by computing the global minimum and global maximum of the model, i.e.

λ (A) / µ(A) = min
x,y

/ max
x,y

y s.t.

{
y ∈ Ff ,X(x)
x ∈ X .

The functions λ and µ are called range bounders. Let us denote the row-wise upper and lower

bounds of a given interval matrix A by

U (Ai) = max
j∈{1,...,N}

A
j

i and L(Ai) = min
j∈{1,...,N}

A
j
i with A

j
i =

[

A
j
i ,A

j

i

]

.

The exact range bounders of Ff ,X can now be evaluated by using the following proposition.

PROPOSITION 2.1. An interval superposition model Ff ,X has range [λ (A),µ(A)], with

λ (A) =
n

∑
i=1

L(Ai) and µ(A) =
n

∑
i=1

U(Ai) .

Proof. The main idea is to exploit complete separability of Ff ,X , i.e.

∀x ∈ X , Ff ,X(x) =
n

∑
i=1

[
N

∑
j=1

A
j
i φ

j
i (x)

]

︸ ︷︷ ︸

depends on xi only

.

The definition of the basis functions φ
j

i in (2) implies that φ
j

i (x) depends on xi only. In other

words, the summands in the above expression can be minimized and maximized separately

finding the componentwise extrema L(Ai) and U(Ai), respectively. The sum of these extrema

corresponds to the exact range bounder of Ff ,X , as stated by the proposition.

An immediate consequence of the above proposition is that if Ff ,X is an enclosure func-

tion of f on X , then upper and lower bounds on the function f on the domain X are given

by

∀x ∈ X , λ (A) =
n

∑
i=1

L(Ai) ≤ f (x) ≤
n

∑
i=1

U(Ai) = µ(A) .

Notice that the cost of evaluating the functions U and L for one row Ai is of order O(N).
Thus, if Ff ,X(x) is a given superposition model of f , the cost of computing the above upper

and lower bounds µ(A) and λ (A) is of order O(nN), as the functions U and L have to be

evaluated for all n rows of the coefficient matrix A and added up.
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3. Interval Superposition Arithmetic. This section deals with the propagation of in-

terval superposition models through a factorable function whose atom operations belong to a

library

L = {+,−,∗, inv,exp,sin, log, . . .} ,

which contains bivariate and univariate operators. With respect to the bivariate operators, we

consider only addition and multiplication, as for two given atom operations g and h, their

difference and quotient

h(x)− g(x) = h(x)+ (−g(x)) and h(x)/g(x) = h(x)∗ inv(g(x)) ,

can be obtained by combining binary addition and binary multiplication with univariate mir-

roring and univariate inversion.

3.1. Univariate Compositions. Let us consider the interval superposition model

Fh,X(x) =
n

∑
i=1

N

∑
j=1

A
j
i φ

j
i (x) ,

of h : X→R on X ∈ In. Let g∈L denote a given univariate atom operation. The goal of this

section is to find an interval superposition model of the function f = g ◦ h,

Ff ,X(x) =
n

∑
i=1

N

∑
j=1

C
j
i φ

j
i (x) .

Here, g ◦ h denotes the composition of g and h, (g ◦ h)(x) = g(h(x)) for all x. The input of a

composition rule of a univariate atom operation g ∈L are the coefficients A
j
i and its output

are the coefficients C
j
i such that whenever Fh,X(x) is an enclosure function of h on X , then

Ff ,X is an enclosure function of f = g ◦ h on X . Although the particular construction of a

valid map from A to C differs for each atom function g, the main concept for computing C is

outlined in Algorithm 1. Notice that the complexity of this algorithm is of order O(nN).

THEOREM 3.1. Let Fh,X(x) = ∑n
i=1 ∑N

j=1 A
j
i φ

j
i (x) be an interval superposition model of

h on X. If the interval coefficients C
j
i are computed by Algorithm 1, the function

Ff ,X(x) =
n

∑
i=1

N

∑
j=1

C
j
i φ

j
i (x)

is an interval superposition model of f = g ◦ h on X.

Proof. Let x∈X be any point in the interval X . Since Fh,X =∑n
i=1 ∑N

j=1 A
j
i φ

j
i (x) is an interval

superposition model of the function h, there must exist a sequence of integers j1, j2, . . . , jn ∈
{1, . . . ,N} and associated points yi ∈ A

ji
i such that h(x) =∑n

i=1 yi. Next, we define δi = yi−ai

and recall the definition ω = ∑n
i=1 ai from Step 1 of Algorithm 1. These definitions can be

used to write the function f (x) in the form

f (x) = g(h(x)) = g

(
n

∑
i=1

yi

)

= g

(

ω +
n

∑
i=1

δi

)

=
n

∑
i=1

(

g(ω + δi)−
n− 1

n
g(ω)

)

−
(

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

))

︸ ︷︷ ︸

∈rg(A)·[−1,1]

.



6 Y. ZHA, M. E. VILLANUEVA, AND B. HOUSKA

Algorithm 1 Composition rule of interval superposition arithmetic

Input: Interval valued coefficients A
j
i ∈ I of the input model Fh,X and an atom function g ∈L .

Main Steps:

1. Choose for all i ∈ {1, . . . ,n} suitable central points ai ∈ R such that

L(Ai) ≤ ai ≤ U(Ai) and set ω =
n

∑
i=1

ai .

2. Choose a suitable remainder bound rg(A)≥ 0 such that

∣
∣
∣
∣
∣

n

∑
i=1

g(ω +δi)− (n−1)g(ω)−g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
≤ rg(A)

for all δ ∈ R
n with ∀i ∈ {1, . . . ,n}, L(Ai)≤ ai +δi ≤U(Ai).

3. Compute the interval valued coefficients

C
j
i = g

(

ω−ai +A
j
i

)

− n−1

n
g(ω) .

for all i∈ {1, . . . ,n} and all j ∈ {1, . . . ,N}, where g
(

ω−ai +A
j
i

)

is evaluated by using

traditional interval arithmetic.

4. Pick a suitable k ∈ {1, . . . ,n} and set C
j

k ←C
j

k + rg(A) · [−1,1] for all j ∈ {1, . . . ,N}.
Output: The coefficients C

j
i of a interval superposition model Ff ,X of the function f = g◦h.

As we have δi ∈ A
ji
i − ai, the inclusion g(ω + δi) ∈ g

(

ω− ai+A
ji
i

)

holds. Consequently,

f (x) ∈
n

∑
i=1

(

g
(

ω− ai+A
ji
i

)

− n− 1

n
g(ω)

)

+ rg(A) · [−1,1] =
n

∑
i=1

C
ji
i .

This implies that Ff ,X(x), as stated, is an interval superposition model of f = g ◦ h.

The most important steps of Algorithm 1 are Step 1 and Step 2, where central points

and an associated remainder bound rg(A) have to be constructed. This remainder bound is

required to satisfy the inequality
∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
≤ rg(A)(4)

for all δ ∈ R
n with L(Ai) ≤ ai + δi ≤U(Ai) for all i ∈ {1, . . . ,n}. Table 1 lists such central

points and remainder bounds for particular atom operations. The corresponding technical

derivations of these remainder bounds can be found in Appendix A.

REMARK 2. As discussed in Remark 1 the proposed interval superposition model stor-

age scheme is redundant with respect to offsets. Consequently, in Step 4 of Algorithm 1 the

remainder can in principle be added to any row of the matrix C. One possible implementa-

tion heuristic is to add the remainder to a row, which contains the intervals with the maximum

average diameter.

REMARK 3. Notice that the left column of Table 1 specifies a domain on which the re-

mainder bound is valid. In some cases this domain can be extended by combining univariate

atom operations. For example, an implementation of the function g(x) = x−1 for negative x

is is obtained by combining the atom operations g(x) = x−1 and g(x) =−x. Similarly, the

cotangent function can be written in the form cot(x) = tan(π
2
− x). Other functions such as√

x = exp(0.5 ∗ log(x)) can be composed by combining the atom operations in Table 1.
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Domain g(x) Central points Remainder bound

R −x ai =
U(Ai)+L(Ai)

2 rg(A) = 0

R x2 ai =
U(Ai)+L(Ai)

2

rg(A) = ∑n
i=1 (σ − si) si

with si =
U(Ai)−L(Ai)

2
and σ = ∑n

i=1 si

R++ x−1 ai =
L(Ai)µ(A)

λ(A)+µ(A) +
U(Ai)λ(A)
λ(A)+µ(A)

rg(A) =
∑n

i=1 si(µ(A)−ω−(U(Ai)−ai))

ωλ(A)

with si = max
{

ai−L(Ai)
ω−ai+L(Ai)

, U(Ai)−ai

ω−ai+U(Ai)

}

R ex ai = log
(

eU(Ai)+eL(Ai)

2

) rg(A) = eω [∏n
i=1(1+ si)−∑n

i=1 si−1]

with si =
eU(Ai)−eL(Ai )

eL(Ai )+eU(Ai)

R++ log(x) ai =
U(Ai)+L(Ai)

2

rg(A) =− log

(

1− ∏n
i=1(ω+si)−ωn−1(ω+∑n

i=1 si)
ωn−1λ(A)

)

with si =
U(Ai)−L(Ai)

2

R sin(x) ai =
U(Ai)+L(Ai)

2

rg(A) = Ω(∏n
k=1(1+ sk)−∑n

k=1 sk−1)

with Ω = |sin(ω)|+ |cos(ω)| ,

si = 2|sin([−ri,ri])| , and ri =
U(Ai)−L(Ai)

4

R cos(x) same as for sin(x) same as for sin(x)

(
− π

2
, π

2

)
tan(x) ai =

U(Ai)+L(Ai)
2

rg(A) =
∣
∣∑n−1

i=1 tan(Si+1) tan
(

∑i
k=1 Sk

)
tan
(

∑i+1
k=1 Sk

)

∗ [1+ tan(ω) tan (ω +Σ)]

+∑n
i=1 tan(ω) tan (Si) tan (Ti)

∗ [1+ tan(ω +Si) tan (Ti) tan (ω +Σ)]|

with si =
U(Ai)−L(Ai)

2
, Si = [−si,si] , σ = ∑n

i=1 si

and Σ = [−σ ,σ ] , Ti = [−σ + si,σ − si]

TABLE 1

Central points and remainder bounds for common univariate atom functions.

3.2. Bivariate Compositions. This section discusses how to construct arithmetic rules

for interval superpositions for bivariate operators. The addition of two given interval super-

position models is straightforward. Consider the interval superposition models

Fh,X(x) =
n

∑
i=1

N

∑
j=1

A
j
i φ

j
i (x) and Fg,X(x) =

n

∑
i=1

N

∑
j=1

B
j
i φ

j
i (x)

of the given functions h,g : Rn→ R, on X ∈ I
n. Then

Ff ,X(x) =
n

∑
i=1

N

∑
j=1

C
j
i φ

j
i (x) with C

j
i = A

j
i +B

j
i

is an enclosure of the function f (x) = h(x)+g(x). Algorithm 2 provides a mean to construct

an interval superposition model of f = g ∗ h on X , given interval superposition models Fg,X

and Fh,X .
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Algorithm 2 Product rule of interval superposition arithmetic

Input: Interval valued coefficients A
j
i ∈ I and B

j
i ∈ I of the factors.

Main Steps:

1. Compute the central points

∀i ∈ {1, . . . ,n}, ai =
U(Ai)+L(Ai)

2
and bi =

U(Bi)+L(Bi)

2

and set

α =
n

∑
i=1

ai , β =
n

∑
i=1

bi , and γ =
n

∑
i=1

aibi as well as ω =
1

n
[αβ − γ ] .

2. Compute the row-wise radii

ρi(A) =
U(Ai)−L(Ai)

2
and ρi(B) =

U(Bi)−L(Bi)

2

for all i ∈ {1, . . . ,n} as well as the associated remainder bound

R(A,B) =

(
n

∑
i=1

ρi(A)

)(
n

∑
i=1

ρi(B)

)

−
n

∑
i=1

ρi(A)ρi(B) .

3. Compute the output coefficients

C
j
i =

(

A
j
i +α−ai

)(

B
j
i +β −bi

)

− (α−ai)(β −bi)−ω

for all i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,N}.
4. Pick a suitable k ∈ {1, . . . ,n} and set C

j

k ←C
j

k +R(A,B) · [−1,1] for all j ∈ {1, . . . ,N}.
Output: The coefficients C

j
i of a interval superposition model that encloses the product of the input models.

Similar to Algorithm 1, the complexity of Algorithm 2 is of order O(nN). The validity

of the bounds from Algorithm 2 is established in the following theorem.

THEOREM 3.2. Let Fh,X(x) = ∑n
i=1 ∑N

j=1 A
j
i φ

j
i (x) and Fg,X(x) = ∑n

i=1 ∑N
j=1 B

j
i φ

j
i (x) be

interval superposition models of h,g : Rn→ R on X ∈ I
n. If the coefficients C

j
i are computed

by Algorithm 2, the function given by

Ff ,X(x) =
n

∑
i=1

N

∑
j=1

C
j
i φ

j
i (x)

is an interval superposition model of the function f = h ∗ g on X.

Proof. Let x be any point in X . Since Fh,X and Fg,X are interval superposition models of

the functions h and g, there must exist a sequence of integers j1, j2, . . . , jn ∈ {1, . . . ,N} and

associated points yi ∈ A
ji
i as well as zi ∈ B

ji
i such that

h(x) =
n

∑
i=1

yi and g(x) =
n

∑
i=1

zi .
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Thus, we have

f (x) = h(x)∗ g(x) =

(
n

∑
i=1

yi

)

∗
(

n

∑
i=1

zi

)

=
n

∑
i=1

[yizi + yi (β − bi)+ (α− ai)zi−ω ]

−
(

n

∑
i=1

(yi− ai)

)(
n

∑
i=1

(zi− bi)

)

+
n

∑
i=1

(yi− ai)(zi− bi) .

Here, the latter equation follows from the addition theorem for the product rule with

α =
n

∑
i=1

ai , β =
n

∑
i=1

bi , and ω =
1

n

[(
n

∑
i=1

ai

)(
n

∑
i=1

bi

)

−
n

∑
i=1

aibi

]

The construction of the remainder bound R(A,B) in Step 2 of Algorithm 2 is such that
∣
∣
∣
∣
∣

(
n

∑
i=1

(yi− ai)

)(
n

∑
i=1

(zi− bi)

)

−
n

∑
i=1

(yi− ai)(zi− bi)

∣
∣
∣
∣
∣
≤ R(A,B)

for all yi ∈ A
ji
i and all zi ∈ B

ji
i . Consequently,

f (x) ∈
n

∑
i=1

(

A
ji
i B

ji
i +A

ji
i (β − bi)+ (α− ai)B

ji
i −ω

)

+R(A,B) · [−1,1] =
n

∑
i=1

C
ji
i .

This implies that Ff ,X(x), as stated, is an interval superposition model of f = h ∗ g.

3.3. Initialization. Algorithm 1 and 2 can be combined in order to implement the pro-

posed interval superposition arithmetic by either operator overloading or source code transfor-

mation. This is in complete analogy to the implementation of other existing set propagation

methods operating on the directed acyclic computational graph of the given factorable func-

tion. The corresponding procedure is initialized by constructing (trivial) interval superposi-

tion models of all input variables xi. As xi does not depend on other variables its associated

interval coefficients A
j
k = 0 can be set to 0 for all k 6= i and all j ∈ {1, . . . ,N}. The remaining

i-th row of the interval coefficient matrix is initialized by

∀ j ∈ {1, . . . ,N}, A
j
i = X

j
i ,

recalling that the branches X
j

i have been defined in (1).

4. Properties of interval superposition arithmetic. This section analyzes the mathe-

matical properties of interval superposition arithmetic. Here, we first analyze the local prop-

erties of this arithmetic for small domains X . Moreover, Section 4.2 analyzes the global

properties and conservatism of the method on large domains.

4.1. Local overestimation error. The proposed interval superposition arithmetic is af-

fected by two sources of overestimation. The first source of overestimation comes from the

fact that scalar functions, such as f (x) = x, can be represented by interval superposition mod-

els with finite accuracy only. However, for Lipschitz continuous functions, this error is of

order O
(

1
N

)
and can be controlled by choosing N sufficiently large. Therefore, the focus

of the following analysis is on the second source of overestimation, namely the remainder

bounds rg(A) and R(A,B), needed in Algorithms 1 and 2 respectively. The following lemma

analyzes the local properties of the term that must be bounded by rg(A).
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LEMMA 4.1. If the function g : R→ R is twice continuously differentiable, then

∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
≤ O

(

[µ(A)−λ (A)]2
)

.

for all δ ∈R
n with |δi| ≤U(Ai)−L(Ai).

Proof. Let g′ denote the derivative of the function g. As g is twice continuously differen-

tiable, we can substitute the Taylor expansions

n

∑
i=1

g(ω + δi) = ng(ω)+ g′(ω)
n

∑
i=1

δi +O

(
n

∑
i=1

δ 2
i

)

as well as

g

(

ω +
n

∑
i=1

δi

)

= g(ω)+ g′(ω)
n

∑
i=1

δi +O





[
n

∑
i=1

δi

]2


 .

Consequently, we have

∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
≤ O





[
n

∑
i=1

δi

]2


 .(5)

We use |δi| ≤U(Ai)−L(Ai) together with the triangle inequality and Proposition 2.1 to find

∣
∣
∣
∣
∣

n

∑
i=1

δi

∣
∣
∣
∣
∣
≤

n

∑
i=1

|δi| ≤
n

∑
i=1

(U(Ai)−L(Ai)) = µ(A)−λ (A) .(6)

The statement of the lemma follows now by combining the inequalities (5) and (6).

Motivated by Lemma 4.1, a reasonable requirement on rg : In×N →R is that it satisfies

∀A⊆ D, rg(A) ≤ O
(

[µ(A)−λ (A)]2
)

,(7)

where D ⊆ D is a compact subset of the (open) domain D of the atom function g. This re-

quirement is satisfied all remainder bounds listed in Table 1 (see Appendix A for the details).

LEMMA 4.2. The remainder term R(A,B) of Algorithm 1 satisfies

R(A,B)≤ 1

4
(µ(A)−λ (A))(µ(B)−λ (B)) .

Proof. The definition of R(A,B) in Step 2 of Algorithm 2 is such that the inequality

R(A,B)≤
(

n

∑
i=1

ρi(A)

)(
n

∑
i=1

ρi(B)

)

=
1

4
(µ(A)−λ (A))(µ(B)−λ (B))(8)

holds, as stated by the lemma.

The local convergence of interval superposition arithmetic is summarized next.
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THEOREM 4.3. Let all atom operations g ∈L be twice continuously differentiable and

let the remainder bounds rg of all univariate atom operations satisfy (7). The maximum dis-

tance between the upper and lower bound of an interval superposition model Ff ,X computed

by the above outlined arithmetic rules satisfies

max
x∈X

{
diam

(
Ff ,X(x)

)}
≤ O

(
diam(X)

N
+[diam(X)]2

)

,

for all intervals X ⊆ D, where D⊂ D is a compact subset of an open domain D on which the

function f has no singularities.

Proof. The statement of this theorem follows from the fact that variables can be represented

with accuracy O
(

diam(X)
N

)

(induction start) while the remainder bound contributions from

each atom operation can be bounded by expressions of order O
(

diam(X)
N

+[diam(X)]2
)

by

using the results from Lemma 4.1 and 4.2 (induction step). The details of this induction

argument are straightforward and skipped for the sake of brevity.

At this point, one might argue that the convergence rate of interval superposition arith-

metic is only linear with respect to the diameter of X . However, first of all, the constant in

front of the linear term scales with 1
N

and can thus be made arbitrarily small by choosing a

sufficiently large N. And secondly, one possible path towards generalizing the above super-

position arithmetic could be to construct a superposition of Taylor models or other sets rather

than intervals, if the goal is to move towards better local properties. However, the focus of

the proposed arithmetic is not on the local but rather global properties of the arithmetic.

4.2. Global Properties of Interval Superposition Arithmetic. In order to discuss the

global properties of the arithmetic, we introduce the following definition of separability of an

interval superposition model.

DEFINITION 4.4. An interval superposition model Ff ,X(x) = ∑n
i=1 ∑N

j=1 A
j
i φ

j
i (x) is sep-

arable, if there exist an integer k ∈ {1, . . . ,n} such that

L(Ai) =U(Ai) for all i ∈ {1, . . . ,n} \ {k} .

An immediate consequence of the initialization routine from Section 3.3 is that the inter-

val superposition model of every variable has degree 1. For the univariate composition rule

the following result can be established.

LEMMA 4.5. Let the interval superposition model Fh,X , with interval coefficient A, of the

inner function h(x) in the composition rule (Algorithm 1) be separable. Then

∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
= 0

for all δ ∈R
n with L(Ai)≤ ai + δi ≤U(Ai) for all i ∈ {1, . . . ,n}.

Proof. Since Fh,X is a separable interval superposition model, we must choose L(Ai) = ai =
U(Ai) for all indices i ∈ {1, . . . ,n} \ {k} for a fixed k ∈ {1, . . . ,n}. Thus, δi = 0 is the only
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possible choice for all i 6= k. A direct substitution yields
∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑
i6=k

g(ω)− (n− 1)g(ω)

︸ ︷︷ ︸

=0

+g(ω + δk)− g(ω + δk)
︸ ︷︷ ︸

=0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 ,

which corresponds to the statement of the lemma.

The above lemma implies that the remainder bound function rg : In×N → R can be con-

structed such that rg(A) = 0 whenever the input model Ff ,X(x) = ∑n
i=1 ∑N

j=1 A
j
i φ

j
i (x) is sepa-

rable. It can be checked easily that all remainder bounds from Table 1 have this property.

LEMMA 4.6. If the input models of the product rule from Algorithm 2 are separable with

respect to the same index k, i.e., if there exists an integer k ∈ {1, . . . ,n} such that

∀i ∈ {1, . . . ,n} \ {k}, L(Ai) =U(Ai) and L(Bi) =U(Bi) ,(9)

then the remainder term R j(A,B) of Algorithm 2 satisfies R(A,B) = 0.

Proof. If the input models satisfy condition (9), then the equation

∀i ∈ {1, . . . ,n} \ {k}, ρi(A) = ρi(B) = 0

is satisfied. A substitution of this equation in the definition of R from Step 2 of Algorithm 2

yields

R(A,B) =

(
n

∑
i=1

ρi(A)

)(
n

∑
i=1

ρi(B)

)

−
n

∑
i=1

ρi(A)ρi(B)

= ρk(A)∗ρk(B)−ρk(A)∗ρk(B) = 0 .

This is the statement of the lemma.

A combination of the above lemmata yields the following global statement about the

accuracy of the proposed interval superposition arithmetic.

THEOREM 4.7. Let f is a separable function, i.e., such that there exist factorable func-

tions fi : [xi,xi]→ R with

f (x) =
n

∑
i=1

fi(xi) .

If the remainder bound of all univariate functions in the atom library L satisfies rg(A) = 0

whenever the input model is separable (this condition is satisfied for all operations in Table 1),

then the interval superposition model Ff ,X computed by the above outlined arithmetic rules

satisfies

max
x∈X

{
diam

(
Ff ,X(x)

)}
≤ O

(
1

N

)

for all bounded domains X ⊆ I
n.

Proof. Since the functions fi depend on one variable only, all intermediate models remain

separable (see Lemmas 4.5 and 4.5), i.e., we have rg(A) = 0 during the whole evaluation.
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FIG. 1. Upper-left: 3-dimensional visualization of the function f on the domain X = [0,10]× [0,20].
Upper-right: Hausdorff distance between the exact image set f (X) and its enclosure sets on the interval

X = [0,0.1]× [0,x2] as a function of x2 ∈ [0.1,20]. Lower-left: Hausdorff distance between the exact image

set f (X) and its enclosure sets on the interval X = [0,1]× [0,x2] as a function of x2 ∈ [0.1,20]. Lower-right:

Hausdorff distance between the exact image set f (X) and its enclosure sets on the interval X = [0,10]× [0,x2] as a

function of x2 ∈ [0.1,20]. In all plots the black solid line corresponds to the results obtained with interval superpo-

sition arithmetics with N = 1. The black dotted lines correspond to interval superposition arithmetic with N = 10,

and the black dashed lines use N = 100. The red solid and red dotted line correspond to the results obtained with

Taylor models of order 1 and 2, respectively.

5. Implementation and Examples. The goal of this section is to illustrate the potential

of the proposed interval superposition arithmetic for bounding factorable functions. For this

aim, the proposed interval superposition arithmetic has been implemented in the program-

ming language Julia. In order to measure the quality of the proposed arithmetic, we use

the following notation for the Hausdorff distance of a function f : X → R
m and its enclosure

function F ,

dH( f (X),F(X)) = max
y∈F(x),

min
x∈ f (X)

‖x− y‖∞ .(10)

Here, f (X) = { f (x) | x ∈ X} denotes the exact image set of f on X and ‖ · ‖∞ denotes the

standard ∞-norm in R
n.

5.1. Interval superposition models versus Taylor models. The goal of this section is

to compare the performance of interval superposition models versus Taylor models on wider

domains. Let f : R2→ R denote a non-convex factorable function of the form

f (x) = exp(sin(x1)+ sin(x2)cos(x2))
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on the two-dimensional domain X = [0,x1]× [0,x2]⊆R
2. Here, x1 ≥ 0 and x2 ≥ 0 are param-

eters that can be used to control the diameter of the domain X . The upper left plot in Figure 1

shows a 3-dimensional visualization of the function f on the interval domain [0,10]× [0,20],
i.e., for x1 = 10 and x2 = 20. The upper right plot in Figure 1 shows the overestimation of

five different enclosure methods for bounding f for x1 = 10−1 as a function of the domain

parameter x2 ∈ [0.1,20]: the red solid and red dotted lines show the overestimation of Taylor

models of order 1 and 2, respectively. The black solid, black dotted, and black dashed lines

correspond to the overestimation of the enclosures that are obtained by using interval super-

position models with N = 1, N = 10, and N = 100. Here, the overestimation is measured

in terms of the Hausdorff distance (10) between the exact image set and the five different

enclosure sets. The lower left plot in Figure 1 shows the overestimation of the five mentioned

methods for a fixed x1 = 1 as a function of x2 ∈ [0.1,20]. Similarly, the lower right plot in Fig-

ure 1 depicts the corresponding results for x1 = 10, again as a function of x2 ∈ [0.1,20]. Here,

the results for the Taylor models is not shown, as the overestimation error is larger that 107,

i.e., Taylor models do not yield reasonable enclosures on this rather large domain. In order

to avoid misunderstanding at this point, notice that the width of the exact image set f (X) is

monotonically increasing with respect to the parameter x2. However, the Hausdorff difference

between f (X) and an enclosure F(X) is not necessarily monotonous in x2. In fact, also the

overestimation of standard Taylor models decreases in sections, if the domain X is increased,

although one might argue that, overall, a rough trend is that the overestimation error of the

enclosure methods increases when increasing the domain X . One aspect that is not shown

in the Figure 1 is that Taylor models do outperform interval superposition models on very

small domains, i.e., if we would zoom in and analyze the overestimation for x1,x2 ≤ 10−1,

we could see that Taylor models are the better choice on such small domains. Notice that

on the domain [0,10]× [0,20] the overestimation of the interval superposition method with

N = 100 yields an enclosure that is approximately 1.62 times larger than the width of the

exact range, i.e., the relative over-approximation is approximately 62 %. This is in contrast to

Taylor models, which yield bounds that are more than 107 times larger than the exact image

set. The performance of Taylor models of order larger than 2 is not shown in the figure, as

they perform even worse than the Taylor models of order 1 and 2 on the analyzed, particularly

large domains. Here, of course, if we would zoom in on smaller domains X , we could see that

increasing the Taylor model order does improve the accuracy for such smaller X [2, 3, 26].

In order to illustrate how the proposed interval superposition arithmetics performs for

another, more challenging example, we introduce the function

f1(x) =







p1

(

e− sin(4x1)+x2−x2
2−x2

1 − 1
)

p1 cos
(

1
p1

x2 + p2 tan(p2x3)
)

− 2p2x2
2

p2
1 sin(cos(x3))







.(11)

Notice that f1 : R3→R
3 is a multivariate non-convex function with parameters p1 =

1
10

and

p2 =
1
5
. In the next step we define the functions

∀k ∈ N, fk+1(x) = f1( fk(x))(12)

recursively. The goal of this section is to find enclosure sets of the exact image sets fk(X)
on the rather large interval domain X = [−0.25π ,0.25π ]× [−0.5π ,0.5π]2⊆ R

3. The exact

image set of the above recursion satisfies a convergence rate condition of the form

lim
k→∞

diam( fk(X)) = 0 ,
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FIG. 2. The Hausdorff distance between the exact image sets fk(X) and their computed enclosure sets Fk(X) in

dependence on the running index k. The corresponding results for standard interval arithmetic are labeled as “IA”.

The other results are obtained by using interval superposition models with N = 20 labeled as “ISA” and first order

Taylor models with interval remainder as “TM”, respectively.

i.e., the diameter of the exact image set contracts to 0 for sufficiently large k. Figure 2 shows

the Hausdorff distance between the exact image set fk(X) and the enclosure sets that are ob-

tained by applying standard interval arithmetic, interval superposition arithmetic with N = 20,

and first order Taylor models with interval remainder bounds. All results are shown in depen-

dence on k. Notice that the interval superposition arithmetic yields convergent enclosure sets

that are much less conservative than the enclosures that are obtained by Taylor models and

standard interval arithmetic. Taylor models of higher expansion orders perform even worse

on this example and are therefore not shown in the figure.

6. Conclusions. This paper has introduced interval superposition arithmetic and illus-

trated its advantages compared to existing enclosure methods for factorable functions on

wider domains. The construction of interval superposition models is based on derivative-free

composition rules which exploit global algebraic properties of factorable functions. Interval

superposition arithmetic has polynomial run-time and storage complexity of order O(nN),
which depends on the number n of variables of the factorable functions and the branching ac-

curacy N. Moreover, this paper has established local and global convergence estimates of the

proposed arithmetic. From a practical perspective, the main advantage of interval superpo-

sition arithmetics compared to other enclosure methods is that it yields reasonably accurate

bounds of the image set of factorable functions on wider interval domains, for which ex-

isting methods often yield divergent or very conservative bounds. This advantage has been

illustrated through numerical case studies.

Appendix A. Derivation of the remainder bounds from Table 1.

This section briefly discusses how to derive remainder bounds for interval superposition

arithmetic. These remainder bounds are needed in Algorithm 1 and are required to satisfy

∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
≤ rg(A)(13)

for all δ ∈ R
n with ∀i ∈ {1, . . . ,n}, L(Ai) ≤ ai + δi ∈ U(Ai). Recall that g ∈ L denotes

a univariate atom function and its associated remainder bound rg depends on the particular

properties of g. Also recall that we use shorthand ω = ∑n
i=1 ai as introduced in the first step

of Algorithm 1.
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A.1. Exponential. For the atom function g(x) = ex we have to bound the expression

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)

= eω

[
n

∑
i=1

eδi − (n− 1)−
n

∏
i=1

eδi

]

for all δi with L(Ai)≤ ai+δi ≤U(Ai). Let us apply the addition theorem for the exponential

function,

eω+δi = eωeδi and eω+∑n
i=1 δi = eω

n

∏
i=1

eδi .

It is convenient to introduce the auxiliary variables ti = eδi − 1 such that

eω

[
n

∑
i=1

eδi − (n− 1)−
n

∏
i=1

eδi

]

= eω

[
n

∑
i=1

ti + 1−
n

∏
i=1

(1+ ti)

]

.(14)

The absolute value of this expression can be bounded as

eω

∣
∣
∣
∣
∣

n

∑
i=1

ti + 1−
n

∏
i=1

(1+ ti)

∣
∣
∣
∣
∣
≤ eω

(
n

∏
i=1

(1+ si)−
n

∑
i=1

si− 1

)

with si = max
{

eU(Ai)−ai− 1,1− eL(Ai)−ai

}

. This motivates to choose the central points ai =

log
(

1
2

(

eU(Ai)+ eL(Ai)
))

such that si takes the smallest possible value, given by

si =
eU(Ai)− eL(Ai)

eU(Ai)+ eL(Ai)
.

In summary, we have shown that
∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
≤ eω

(
n

∏
i=1

(1+ si)−
n

∑
i=1

si− 1

)

= rg(A) .

A.2. Inverse. The aim of this section is to find a remainder bound for the atom function

g(x) = 1
x

on the positive domain R++ = {x | x> 0}. Bounds on the domain R−−= {x | x< 0}
can be found analogously. If an interval contains 0, the bounds are set to [−∞,∞]. We start

with the equation

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)

=
n

∑
i=1

1

ω + δi

− 1

ω +∑n
i=1 δi

− n− 1

ω

=
1

ω

(
n

∑
i=1

−δi

ω + δi

+
∑n

i=1 δi

ω +∑n
i=1 δi

)

=
1

ω

1

ω +∑n
i=1 δi

(
n

∑
i=1

δi(δi−∑n
k=1 δk)

ω + δi

)

.

Next, we bound the terms in the last equation separately under the assumption that λ (A)> 0,
∣
∣
∣
∣

1

ω +∑n
i=1 δi

∣
∣
∣
∣
≤ 1

λ (A)
,

∣
∣
∣
∣

δi

ω + δi

∣
∣
∣
∣
≤max

{
ai−L(Ai)

ω− ai+L(Ai)
,

U(Ai)− ai

ω− ai+U(Ai)

}

= si ,

and

∣
∣
∣
∣
∣
δi−

n

∑
k=1

δk

∣
∣
∣
∣
∣
≤ µ(A)−ω− (U(Ai)− ai) .

Substituting these inequalities yields the desired remainder bound
∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣
≤ ∑n

i=1 si (µ(A)−ω− (U(Ai)− ai))

ωλ (A)
= rg(A).
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A.3. Logarithm. The aim of this section is to find a remainder bound for the atom

function g(x) = log(x) on the positive domain R++ = {x | x > 0},
n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)

=
n

∑
i=1

log(ω + δi)− log

(

ω +
n

∑
i=1

δi

)

− (n− 1) log(ω)

= log

(
∏n

i=1 (ω + δi)

ωn−1 (ω +∑n
i=1 δi)

)

= log

(

1+
∏n

i=1 (ω + δi)−ωn−1 (ω +∑n
i=1 δi)

ωn−1 (ω +∑n
i=1 δi)

)

.

The desired bound is found by bounding the absolute value of this term, choosing the central

points ai =
U(Ai)+L(Ai)

2
such that |δi| ≤ si =

U(Ai)−L(Ai)
2

and

∣
∣
∣
∣
∣

n

∑
i=1

g(ω + δi)− (n− 1)g(ω)− g

(

ω +
n

∑
i=1

δi

)∣
∣
∣
∣
∣

≤− log

(

1−∏n
i=1 (ω + si)−ωn−1 (ω +∑n

i=1 si)

ωn−1λ (A)

)

= rg(A) .

A.4. Sine and Cosine. In order to derive remainder bounds for the sine and cosine func-

tions we use Euler’s formula, eix = cos(x)+ i sin(x) with i =
√
−1. The derivation requires

the following steps.

Step 1. In the first step, we derive for all k ∈ {1, . . . ,n} the bound
∣
∣
∣e
±iδk − 1

∣
∣
∣= |cos(±δk)− 1+ i sin(±δk)|

= 2

∣
∣
∣
∣
sin

(

±δk

2

)∣
∣
∣
∣
≤ 2

∣
∣
∣
∣
sin

([

−U(Ak)−L(Ak)

4
,
U(Ak)−L(Ak)

4

])∣
∣
∣
∣
= sk .

Here, the expression for the scalars sk is evaluated by using standard interval arithmetic, i.e.,

sk = 2

∣
∣
∣
∣
sin

([

−U(Ak)−L(Ak)

4
,
U(Ak)−L(Ak)

4

])∣
∣
∣
∣

=

{

2sin
(

U(Ak)−L(Ak)
4

)

if
U(Ak)−L(Ak)

4
≤ π

2

2 otherwise
.

Step 2. In the second step, we use the bounds sk to derive the auxiliary inequalities
∣
∣
∣
∣
∣

n

∑
k=1

e±iδk −
n

∏
k=1

e±iδk − (n− 1)

∣
∣
∣
∣
∣
≤

n

∏
k=1

(1+ sk)−
n

∑
k=1

sk− 1 .

Step 3. The auxiliary inequalities from Step 2 are used to establish the inequalities
∣
∣
∣
∣
∣

n

∑
k=1

cos(δk)− cos

(
n

∑
k=1

δk

)

− (n− 1)

∣
∣
∣
∣
∣

=
1

2

∣
∣
∣
∣
∣

n

∑
k=1

eiδk +
n

∑
k=1

e−iδk −
n

∏
k=1

eiδk −
n

∏
k=1

e−iδk − 2(n− 1)

∣
∣
∣
∣
∣
≤

n

∏
k=1

(1+ sk)−
n

∑
k=1

sk− 1
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and, using an analogous argument,

∣
∣
∣
∣
∣

n

∑
k=1

sin(δk)− sin

(
n

∑
k=1

δk

)∣
∣
∣
∣
∣
≤

n

∏
k=1

(1+ sk)−
n

∑
k=1

sk− 1 .

Step 4. For the sine function, the estimate from Step 3 yields the remainder bound

Rsin(δ ) =

∣
∣
∣
∣
∣

n

∑
k=1

g(ω + δk)− (n− 1)g(ω)− g

(

ω +
n

∑
k=1

δk

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n

∑
k=1

sin(ω + δk)− sin

(

ω +
n

∑
k=1

δk

)

− (n− 1)sin(ω)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

sin(ω)

(
n

∑
k=1

cos(δk)− cos

(
n

∑
k=1

δk

)

− (n− 1)

)

+cos(ω)

(
n

∑
k=1

sin(δk)− sin

(
n

∑
k=1

δk

))∣
∣
∣
∣
∣

≤ (|sin(ω)|+ |cos(ω)|)
(

n

∏
k=1

(1+ sk)−
n

∑
k=1

sk− 1

)

= rg(A) .

Similarly, the corresponding bound for the cosine function is given by

Rcos(δ ) =

∣
∣
∣
∣
∣

n

∑
k=1

g(ω + δk)− (n− 1)g(ω)− g

(

ω +
n

∑
k=1

δk

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n

∑
k=1

cos(ω + δk)− cos

(

ω +
n

∑
k=1

δk

)

− (n− 1)cos(ω)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
cos(ω)

(
n

∑
k=1

cos(δk)− cos

(
n

∑
k=1

δk

)

− (n− 1)

)

− sin(ω)

(
n

∑
k=1

sin(δk)− sin

(
n

∑
k=1

δk

))∣
∣
∣
∣
∣

≤ (|sin(ω)|+ |cos(ω)|)
(

n

∏
k=1

(1+ sk)−
n

∑
k=1

sk− 1

)

= rg(A) .

A.5. Tangent. In order to construct a remainder bound for the function g(x) = tan(x)
on the open domain

(
− π

2
, π

2

)
it is helpful to notice that the addition theorem for this function,

tan(x+ y) =
tan(x)+ tan(y)

1− tan(x) tan(y)
,

can alternatively be written in the difference form

tan(x+ y)− tan(x)− tan(y) = tan(x) tan(y) tan(x+ y) .(15)

The correctness of this equation can be verified by multiplying the addition theorem for the

tangent function by 1− tan(x) tan(y) on both sides and by re-bracketing terms. A generaliza-

tion of the difference formula (15) for general sums is given by the equation

ρ0(δ ) = tan

(
n

∑
i=1

δi

)

−
n

∑
i=1

tan(δi) =
n−1

∑
i=1

tan(δi+1) tan

(
i

∑
k=1

δk

)

tan

(
i+1

∑
k=1

δk

)

;(16)
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which is proven by induction. For n = 2, (16) reduces to (15). For the induction step, we have

tan

(
n+1

∑
i=1

δi

)

−
n+1

∑
i=1

tan(δi)

= tan

(
n+1

∑
i=1

δi

)

− tan

(
n

∑
i=1

δi

)

− tan(δn+1)+ tan

(
n

∑
i=1

δi

)

−
n

∑
i=1

tan(δi)

(15)
= tan

(
n+1

∑
i=1

δi

)

tan

(
n

∑
i=1

δi

)

tan(δn+1)+

[

tan

(
n

∑
i=1

δi

)

−
n

∑
i=1

tan(δi)

]

(16)
=

n

∑
i=1

tan(δi+1) tan

(
i

∑
k=1

δk

)

tan

(
i+1

∑
k=1

δk

)

.

Thus, the difference formula (16) holds for all integers n. In order to generalize the above

formula further for the case ω 6= 0, the following algebraic manipulations are made

ρ(δ ) = g

(

ω +
n

∑
i=1

δi

)

+(n− 1)g(ω)−
n

∑
i=1

g(ω + δi)

=

[

tan

(

ω +
n

∑
i=1

δi

)

− tan(ω)

]

−
n

∑
i=1

[tan(ω + δi)− tan(ω)]

(15)
= tan

(
n

∑
i=1

δi

)[

1+ tan

(

ω +
n

∑
i=1

δi

)

tan(ω)

]

−
n

∑
i=1

tan(δi) [1+ tan(ω + δi) tan(ω)]

=

(

tan

(
n

∑
i=1

δi

)

−
n

∑
i=1

tan(δi)

)

+ tan(ω)

(

tan

(
n

∑
i=1

δi

)

tan

(

ω +
n

∑
i=1

δi

)

−
n

∑
i=1

tan(δi) tan(ω + δi)

)

(16)
= ρ0(δ )+ tan(ω)

(

ρ0(δ ) tan

(

ω +
n

∑
i=1

δi

)

+
n

∑
i=1

tan(δi)

[

tan

(

ω +
n

∑
i=1

δi

)

− tan(ω + δi)

])

= ρ0(δ )

[

1+ tan(ω) tan

(

ω +
n

∑
i=1

δi

)]

+
n

∑
i=1

tan(ω) tan(δi) tan

(

∑
k 6=i

δk

)[

1+ tan(ω + δi) tan

(

∑
k 6=i

δk

)

tan

(

ω +
n

∑
i=1

δi

)]

.

The right-hand expression can be bounded with interval arithmetic yielding

ρ(δ )≤ rg(A) =

∣
∣
∣
∣
∣

n−1

∑
i=1

tan(Si+1) tan

(
i

∑
k=1

Sk

)

tan

(
i+1

∑
k=1

Sk

)

[1+ tan(ω) tan(ω +Σ)]

+
n

∑
i=1

tan(ω) tan(Si) tan(Ti) [1+ tan(ω + Si) tan(Ti) tan(ω +Σ)]

∣
∣
∣
∣
∣
,
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the desired bound. Here we have introduced the auxiliary variables

si =
U(Ai)−L(Ai)

2
, Si = [−si,si] and σ =

n

∑
i=1

si , Σ = [−σ ,σ ] , Ti = [−σ + si,σ − si] .
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