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Abstract: The problem of guaranteed parameter estimation (GPE) consists in enclosing the
set of all possible parameter values, such that the model predictions match the corresponding
measurements within prescribed error bounds. One of the bottlenecks in GPE algorithms,
commonly exploiting set inversion, is the construction of enclosures for the image-set of
factorable functions. In this paper, we introduce a novel set-based computing method called
interval superposition arithmetics (ISA) for the construction of enclosures of such image sets
and its use in GPE algorithms. The main benefits of using ISA in the context of GPE lie
in the improvement of enclosure accuracy and in the implied reduction of the number of set-
membership tests in the set-inversion algorithm.
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1. INTRODUCTION

In science and engineering, the behavior of processes
and systems is often described using a mathematical
model. Mathematical model development often follows
three steps: model structure specification, design (and
realization) of experiments, and estimation of unknown
model parameters (Franceschini and Macchietto, 2008). In
the last step, parameters are sought for which the model
outputs match the available measurements (Ljung, 1999).

One way of addressing the parameter estimation problem
is the use of set-membership estimation (Schweppe, 1968),
also called guaranteed parameter estimation (GPE). The
GPE problem can be formulated as an identification of
the set of all possible model parameter values which are
not falsified by the plant measurements, within some
prescribed error bounds. A set-inversion algorithm (e.g.
SIVIA by Jaulin and Walter, 1993) can be applied to find
such set for nonlinear models. Here, the parameter set
is successively partitioned into smaller boxes and using
exclusion tests some of these boxes are eliminated, until a
desired approximation is achieved. Since its advent, GPE
has found various applications (see e.g., Marco et al., 2000;
Jaulin et al., 2002; Lin and Stadtherr, 2007; Hast et al.,
2015; Paulen et al., 2016).

An important computational aspect of SIVIA is that its
complexity is proportional to the tightness of the interval
enclosures. Thus, considerable effort has been invested into
the development of different set-arithmetics to produce
tighter enclosures of the image-set of factorable functions,
for example Taylor (Makino and Berz, 1996) (TMA)
and Chebyshev model arithmetics (CMA) (Battles and

Trefethen, 2004; Rajyaguru et al., 2017) (see also Paulen
et al., 2016, for their application to GPE).

Here, we propose an attempt to improve GPE algorithms
using a novel nonconvex set-arithmetic called Interval
Superposition Arithmetic (ISA). This arithmetic operates
over Interval Superposition models (ISM), representing a
piecewise constant enclosure over a grid of the domain.
Unlike a naive application of interval arithmetic (IA)
over the grid, the computational and storage complexity
of ISA is polynomial. Furthermore, it is able to exploit
separable structures in the computational graph of a
factorable function. Finally, the remainder bounds in ISA
(unlike those in TMA and CMA) are based on globally
valid algebraic relations—namely, addition theorems. As
a result, ISMs are tighter than Taylor models—at least
over large domains.

The rest of the paper is organized as follows, Section 2
reviews GPE and set inversion. Section 3 presents an
overview of ISA. An algorithm for intersecting ISMs with
an interval—which forms the basis for a set-inversion
algorithm—is presented in Section 4. It is important to
notice that the intersection algorithm runs in polynomial
time, but the complexity of computing an arbitrarily close
approximation of the parameter set is exponential. The
application of the proposed algorithm to a simple case
study is shown in Section 5. Section 6 concludes the paper.

Notation The set of real valued compact interval vectors
is denoted by In = {[a, b] ⊂ Rn | a, b ∈ Rn, a ≤ b}. Let
I = [a, b] ∈ I and c ∈ R, c+ I = I+ c we have [a+ c, b+ c].
Similarly, cI = Ic denotes [ca, cb] if c ≥ 0 ([cb, ca] if c < 0).
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The diameter of I is denoted by diam(I) = b− a. Interval
operations are evaluated by IA (Moore et al., 2009), e.g.,

[a, b] + [c, d] = [a+ b, c+ d] ,

[a, b] ∗ [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]
exp([a, b]) = [exp(a), exp(b)]

2. GUARANTEED PARAMETER ESTIMATION

We consider a system represented by the algebraic model

y = f(x) . (1)

Here, x ∈ Rnx denotes unknown parameter while y ∈ Rny

the (observed) output variables. The model is described
by the, possibly nonlinear, function f : Rnx → Rny .

Given nm ∈ N measurements, ym1 , . . . , ymnm
∈ Rny , the

GPE paradigm works under the assumption that the true
system outputs y◦1 , . . . , y

◦
N can be observed only within

some bounded measurement bounds. Thus, for each i ∈
{1, . . . , nm}, we have

y◦i ∈ ymi + [−ηi, ηi] =: Yi ∈ Iny , (2)

with η1, . . . , ηnm
≥ 0. The aim of GPE is to compute the

set

Xe := {x ∈ X0 | ∀i ∈ {1, . . . , N} : f(x) ∈ Yi} , (3)

i.e., the set of parameters (within some admissible domain
X0 ∈ Inx) for which the model outputs are consistent with
all the uncertain observations Yi.

Computing (3) requires intersecting the preimage of Yi

under f , with the initial parameter domain, i.e.,

Xe =

(
nm⋂
i=1

f−1(Yi)

)
∩X0 . (4)

This problem is intractable, in all but the simplest cases,
and thus one has to settle for approximations of this set.
State-of-the-art algorithms for set inversion provide inner
(Xint) and boundary (Xbnd) subpavings, i.e. lists of non
overlapping interval vectors, satisfying

⋃
X∈Xint

X ⊆ Xe ⊆

( ⋃
X∈Xint

X

)
∪

( ⋃
X∈Xbnd

X

)
. (5)

In a nutshell, these algorithms work by subdividing the
parameter domain X0 into smaller boxes such that X0 =⋃

j Xj . Set arithmetics are then used to construct enclo-

sures of f on Xj , i.e. sets Y j ⊂ Rny satisfying

Y j ⊇ {f(x) | x ∈ Xj} . (6)

Using the information provided by the enclosure Yj , the
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(1) If Y j ⊆ Yi for all i ∈ {1, . . . , nm}, Xj ∈ Xint.
(2) Else, if Yi ∩ f(X) = ∅ for some i ∈ {1, . . . , nm},

Xj ∩Xe = ∅.
(3) Else, X ∈ Xbnd.

Figure 1 shows the result of the above process for the
function f = x3

1+x3
2 over X0 = [−3, 3]2, with Y = [−2, 2].

The set X0 has been divided into N = 20 equidistant
pieces along each coordinate, resulting in 400 interval

vectors Xj . The plot shows the set
⋃Nnx

i=1

(
Xj × Y j

)
, and

its projection onto the (x1, x2)-space. The red and blue
boxes belong to Xint and Xbnd, respectively.

y

x1x2

Fig. 1. Graph of an enclosure of f = x3
1 + x3

2 over X0 =
[−3, 3]2 (gridded using N = 20 subintervals at each
coordinate). The sets Xbnd (blue) and Xint (red) were
computed using Y = [−2, 2].

In practice, the domain X0 is subdivided iteratively by
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Xint = ∅. The bounding, set-membership, and bisection
operations are repeated until a termination criterion, e.g.

∀X ∈ Xbnd, diam(X) ≤ ε , (7)

is met for a user-defined tolerance ε > 0.

One of the bottlenecks of set inversion algorithms is the
over-conservatism of existing set-arithmetics, particularly
over large domains. Hence we propose to approach this
problem within a novel set-arithmetics paradigm.

3. INTERVAL SUPERPOSITION ARITHMETIC

Interval superposition arithmetic is a novel method for
enclosing the image of nonlinear factorable functions. It
operates by propagating nonconvex sets, called interval
superposition models, through computational graph of the
function. Unlike Taylor and Chebyshev models—which
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local approximation methods. Instead, it uses global al-
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]
.
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i = [xi + (j− 1)hi, xi + jhi] with hi =
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N
, (8)

for all i ∈ {1, . . . , nx} and all j ∈ {1, . . . , N}, with N
being a user-specified integer. An interval superposition
model of a real-valued function f : Rnx → R on X is an
interval valued function Γ : X× Inx×N × Inx → I, given by

Γ(x,A,X) =

nx∑
i=1

N∑
j=1

Aj
iϕ

j
i (x) , (9)

with

ϕj
i (x) =

{
1 if xi ∈ Xj

i ,

0 otherwise.
(10)
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1. INTRODUCTION

In science and engineering, the behavior of processes
and systems is often described using a mathematical
model. Mathematical model development often follows
three steps: model structure specification, design (and
realization) of experiments, and estimation of unknown
model parameters (Franceschini and Macchietto, 2008). In
the last step, parameters are sought for which the model
outputs match the available measurements (Ljung, 1999).

One way of addressing the parameter estimation problem
is the use of set-membership estimation (Schweppe, 1968),
also called guaranteed parameter estimation (GPE). The
GPE problem can be formulated as an identification of
the set of all possible model parameter values which are
not falsified by the plant measurements, within some
prescribed error bounds. A set-inversion algorithm (e.g.
SIVIA by Jaulin and Walter, 1993) can be applied to find
such set for nonlinear models. Here, the parameter set
is successively partitioned into smaller boxes and using
exclusion tests some of these boxes are eliminated, until a
desired approximation is achieved. Since its advent, GPE
has found various applications (see e.g., Marco et al., 2000;
Jaulin et al., 2002; Lin and Stadtherr, 2007; Hast et al.,
2015; Paulen et al., 2016).

An important computational aspect of SIVIA is that its
complexity is proportional to the tightness of the interval
enclosures. Thus, considerable effort has been invested into
the development of different set-arithmetics to produce
tighter enclosures of the image-set of factorable functions,
for example Taylor (Makino and Berz, 1996) (TMA)
and Chebyshev model arithmetics (CMA) (Battles and

Trefethen, 2004; Rajyaguru et al., 2017) (see also Paulen
et al., 2016, for their application to GPE).

Here, we propose an attempt to improve GPE algorithms
using a novel nonconvex set-arithmetic called Interval
Superposition Arithmetic (ISA). This arithmetic operates
over Interval Superposition models (ISM), representing a
piecewise constant enclosure over a grid of the domain.
Unlike a naive application of interval arithmetic (IA)
over the grid, the computational and storage complexity
of ISA is polynomial. Furthermore, it is able to exploit
separable structures in the computational graph of a
factorable function. Finally, the remainder bounds in ISA
(unlike those in TMA and CMA) are based on globally
valid algebraic relations—namely, addition theorems. As
a result, ISMs are tighter than Taylor models—at least
over large domains.

The rest of the paper is organized as follows, Section 2
reviews GPE and set inversion. Section 3 presents an
overview of ISA. An algorithm for intersecting ISMs with
an interval—which forms the basis for a set-inversion
algorithm—is presented in Section 4. It is important to
notice that the intersection algorithm runs in polynomial
time, but the complexity of computing an arbitrarily close
approximation of the parameter set is exponential. The
application of the proposed algorithm to a simple case
study is shown in Section 5. Section 6 concludes the paper.

Notation The set of real valued compact interval vectors
is denoted by In = {[a, b] ⊂ Rn | a, b ∈ Rn, a ≤ b}. Let
I = [a, b] ∈ I and c ∈ R, c+ I = I+ c we have [a+ c, b+ c].
Similarly, cI = Ic denotes [ca, cb] if c ≥ 0 ([cb, ca] if c < 0).
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algorithm—is presented in Section 4. It is important to
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piecewise constant enclosure over a grid of the domain.
Unlike a naive application of interval arithmetic (IA)
over the grid, the computational and storage complexity
of ISA is polynomial. Furthermore, it is able to exploit
separable structures in the computational graph of a
factorable function. Finally, the remainder bounds in ISA
(unlike those in TMA and CMA) are based on globally
valid algebraic relations—namely, addition theorems. As
a result, ISMs are tighter than Taylor models—at least
over large domains.

The rest of the paper is organized as follows, Section 2
reviews GPE and set inversion. Section 3 presents an
overview of ISA. An algorithm for intersecting ISMs with
an interval—which forms the basis for a set-inversion
algorithm—is presented in Section 4. It is important to
notice that the intersection algorithm runs in polynomial
time, but the complexity of computing an arbitrarily close
approximation of the parameter set is exponential. The
application of the proposed algorithm to a simple case
study is shown in Section 5. Section 6 concludes the paper.

Notation The set of real valued compact interval vectors
is denoted by In = {[a, b] ⊂ Rn | a, b ∈ Rn, a ≤ b}. Let
I = [a, b] ∈ I and c ∈ R, c+ I = I+ c we have [a+ c, b+ c].
Similarly, cI = Ic denotes [ca, cb] if c ≥ 0 ([cb, ca] if c < 0).
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The diameter of I is denoted by diam(I) = b− a. Interval
operations are evaluated by IA (Moore et al., 2009), e.g.,

[a, b] + [c, d] = [a+ b, c+ d] ,

[a, b] ∗ [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]
exp([a, b]) = [exp(a), exp(b)]

2. GUARANTEED PARAMETER ESTIMATION

We consider a system represented by the algebraic model

y = f(x) . (1)

Here, x ∈ Rnx denotes unknown parameter while y ∈ Rny

the (observed) output variables. The model is described
by the, possibly nonlinear, function f : Rnx → Rny .

Given nm ∈ N measurements, ym1 , . . . , ymnm
∈ Rny , the

GPE paradigm works under the assumption that the true
system outputs y◦1 , . . . , y

◦
N can be observed only within

some bounded measurement bounds. Thus, for each i ∈
{1, . . . , nm}, we have

y◦i ∈ ymi + [−ηi, ηi] =: Yi ∈ Iny , (2)

with η1, . . . , ηnm
≥ 0. The aim of GPE is to compute the

set

Xe := {x ∈ X0 | ∀i ∈ {1, . . . , N} : f(x) ∈ Yi} , (3)

i.e., the set of parameters (within some admissible domain
X0 ∈ Inx) for which the model outputs are consistent with
all the uncertain observations Yi.

Computing (3) requires intersecting the preimage of Yi

under f , with the initial parameter domain, i.e.,

Xe =

(
nm⋂
i=1

f−1(Yi)

)
∩X0 . (4)

This problem is intractable, in all but the simplest cases,
and thus one has to settle for approximations of this set.
State-of-the-art algorithms for set inversion provide inner
(Xint) and boundary (Xbnd) subpavings, i.e. lists of non
overlapping interval vectors, satisfying

⋃
X∈Xint

X ⊆ Xe ⊆

( ⋃
X∈Xint

X

)
∪

( ⋃
X∈Xbnd

X

)
. (5)

In a nutshell, these algorithms work by subdividing the
parameter domain X0 into smaller boxes such that X0 =⋃

j Xj . Set arithmetics are then used to construct enclo-

sures of f on Xj , i.e. sets Y j ⊂ Rny satisfying

Y j ⊇ {f(x) | x ∈ Xj} . (6)

Using the information provided by the enclosure Yj , the
following set membership tests can be performed to classify
the parameter boxes Xj as interior or boundary boxes:

(1) If Y j ⊆ Yi for all i ∈ {1, . . . , nm}, Xj ∈ Xint.
(2) Else, if Yi ∩ f(X) = ∅ for some i ∈ {1, . . . , nm},

Xj ∩Xe = ∅.
(3) Else, X ∈ Xbnd.

Figure 1 shows the result of the above process for the
function f = x3

1+x3
2 over X0 = [−3, 3]2, with Y = [−2, 2].

The set X0 has been divided into N = 20 equidistant
pieces along each coordinate, resulting in 400 interval

vectors Xj . The plot shows the set
⋃Nnx

i=1

(
Xj × Y j

)
, and

its projection onto the (x1, x2)-space. The red and blue
boxes belong to Xint and Xbnd, respectively.

y

x1x2

Fig. 1. Graph of an enclosure of f = x3
1 + x3

2 over X0 =
[−3, 3]2 (gridded using N = 20 subintervals at each
coordinate). The sets Xbnd (blue) and Xint (red) were
computed using Y = [−2, 2].

In practice, the domain X0 is subdivided iteratively by
bisecting boundary boxes, starting with Xbnd = X0 and
Xint = ∅. The bounding, set-membership, and bisection
operations are repeated until a termination criterion, e.g.

∀X ∈ Xbnd, diam(X) ≤ ε , (7)

is met for a user-defined tolerance ε > 0.

One of the bottlenecks of set inversion algorithms is the
over-conservatism of existing set-arithmetics, particularly
over large domains. Hence we propose to approach this
problem within a novel set-arithmetics paradigm.

3. INTERVAL SUPERPOSITION ARITHMETIC

Interval superposition arithmetic is a novel method for
enclosing the image of nonlinear factorable functions. It
operates by propagating nonconvex sets, called interval
superposition models, through computational graph of the
function. Unlike Taylor and Chebyshev models—which
require derivative information in order to compute their
coefficients or remainder bounds—ISA does not rely on
local approximation methods. Instead, it uses global al-
gebraic relations—such as addition theorems—as well as
partially separable structures within the function.

3.1 Interval superposition models

Consider an interval domainX = [x1, x1]×. . .×
[
xnx

, xnx

]
.

Now, take a partition of X into intervals of the form

Xj
i = [xi + (j− 1)hi, xi + jhi] with hi =

xi − xi

N
, (8)

for all i ∈ {1, . . . , nx} and all j ∈ {1, . . . , N}, with N
being a user-specified integer. An interval superposition
model of a real-valued function f : Rnx → R on X is an
interval valued function Γ : X× Inx×N × Inx → I, given by

Γ(x,A,X) =

nx∑
i=1

N∑
j=1

Aj
iϕ

j
i (x) , (9)

with

ϕj
i (x) =

{
1 if xi ∈ Xj

i ,

0 otherwise.
(10)
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Here, Aj
i =

[
Ai

j , A
i

j

]
are the components of a matrix

A =




A1
1 . . . AN

1
...

. . .
...

A1
nx

. . . AN
nx


 ∈ Inx×N , (11)

which, for a fixed X, completely determines the enclosure
function of f . Note that ISMs for functions f : Rnx → Rny

are defined by stacking ISMs for each fi. The matrix A is
constructed such that Γ(·, A,X) is a piecewise constant
enclosure function of f over X, i.e.

∀x ∈ X, f(x) ∈ Γ(x,A,X) . (12)

The name interval superposition model is motivated by the
structure of the enclosure: At any x ∈ Xj

1 × . . .×Xj
nx
, the

interval Y = Γ(x,A,X) is given by the Minkowski sum (or

superposition) of nx interval functions
∑N

j=1 A
j
iϕ

j
i (x). The

separable structure of ISMs allows for a storage complexity
of order O(nxN), since only nxN intervals need to be
stored, in the matrix A, to represent the Nnx pieces of
the enclosure. In Figure 1, the graph of an ISM is shown
over a partition of X (with N = 20). Although this set
consists of 400 interval vectors (shown in red, white and
blue), only 40 intervals are stored in the matrix A.

This separability also allows for the global minima and
maxima of Γ(·, A,X) over X,

λ(A) =

nx∑
i=1

min
j∈{1,...,N}

Aj
i

︸ ︷︷ ︸
=:L(Ai)

and µ(A) =

nx∑
i=1

max
j∈{1,...,N}

A
j

i

︸ ︷︷ ︸
=:U(Ai)

,

to be computed with a complexity of order O(nxN). The
interval [λ(A), µ(A)] denotes the range of ISM.

3.2 Arithmetic rules for interval superposition models

Interval superposition arithmetics propagates ISMs through
the computational graph of a factorable function, defined
by a finite recursive composition of atom operations from
a finite library L = {exp, sin, +, ∗, . . .}.
Consider the functions g, h : Rnx → R, and a (possibly
bivariate) atom operation α. Let the interval matrices
A,B ∈ Inx×N be the respective parameters for ISMs of
g and h over X. In ISA, a univariate composition rule is a
map taking A as an input and returning an interval matrix
C ∈ Inx×N parameterizing an ISM such that

∀x ∈ X, (α ◦ g)(x) ∈ Γ(x,C,X) .

Here, α ◦ g denotes the composition of α and g.

Bivariate composition rules in ISA are defined analogously,
with the map taking both A and B as inputs. Although
such maps are specific for each atom operation α, the
main steps are outlined in Algorithms 1 and 2 for uni-
variate compositions and bivariate products, respectively.
The addition rule in interval superposition arithmetic is
simple. An interval superposition model of g + h on X is
parameterized by the matrix C = A + B, with the sum
computed componentwise using interval arithmetics.

Theorem 1. Let Γ(x,A,X) and be an ISM of g on X.
If the matrix C ∈ Inx×N is computed using Algorithm 1,
then Γ(x,C,X) is an ISM of α ◦ g on X.

Algorithm 1. Composition rule of interval superposition arithmetic

Input: Matrix A ∈ Inx×N parameterizing Γ(·, A,X) for g and an
atom operation α.

Main Steps:

(1) Choose, for all i ∈ {1, . . . , nx}, central points ai ∈ R satisfying

L(Ai) ≤ ai ≤ U(Ai) and set ω =

nx∑
i=1

ai .

(2) Choose a suitable remainder bound rα(A) ≥ 0 such that∣∣∣∣∣
nx∑
i=1

α(ω + δi)− (nx − 1)α(ω)− α

(
ω +

nx∑
i=1

δi

)∣∣∣∣∣ ≤ rα(A)

for all δ ∈ Rnx with ∀i ∈ {1, . . . , nx}, L(Ai) ≤ ai + δi ≤ U(Ai).
(3) Compute the interval valued coefficients

Cj
i = α

(
ω − ai +Aj

i

)
−

nx − 1

nx
α(ω) .

for all i ∈ {1, . . . , nx} and all j ∈ {1, . . . , N}, where α
(
ω − ai +Aj

i

)
is evaluated in interval arithmetic.
(4) Set Cj

k
← Cj

k
+ rα(A) · [−1, 1] for all j ∈ {1, . . . , N} with

k ∈ argmax
i∈{1,...,nx}

N∑
j=1

A
j
i −Aj

i

.

Output: Matrix C ∈ Inx×N parameterizing Γ(·, C,X) for α ◦ g.

Algorithm 2. Product rule of interval superposition arithmetic

Input: Matrices A,B ∈ Inx×N parameterizing and Γ(·, A,X) and
Γ(·, B,X) for h and g, respectively.

Main Steps:

(1) Compute the central points, ∀i ∈ {1, . . . , nx}

ai =
U(Ai) + L (Ai)

2
and bi =

U(Bi) + L (Bi)

2

then set

a =

nx∑
i=1

ai , b =

n∑
i=1

bi , c =

nx∑
i=1

aibi , and ω =
ab− c

nx
.

(2) Compute ρi(A) =
U(Ai)−L(Ai)

2
and ρi(B) =

U(Bi)−L(Bi)
2

for
all i ∈ {1, . . . , nx} as well as the associated remainder bound

R(A,B) =

(
nx∑
i=1

ρi(A)

)(
nx∑
i=1

ρi(B)

)
−

nx∑
i=1

ρi(A)ρi(B) .

(3) Compute, for each i ∈ {1, . . . , nx} and all j ∈ {1, . . . , N}

Cj
i =

(
Aj

i + a− ai
) (

Bj
i + b− bi

)
− (a− ai) (b− bi)− ω .

(4) Set Cj
k
← Cj

k
+R(A,B) · [−1, 1] for all j ∈ {1, . . . , N} with

k ∈ argmax
i∈{1,...,nx}

N∑
j=1

A
j
i −Aj

i

.

Output: Matrix C ∈ Inx×N parameterizing Γ(·, C,X), for g ∗ h.

Proof. Consider an arbitrary point x in the domain X.

Since Γ(x,A,X) =
∑nx

i=1

∑N
j=1 A

j
iϕ

j
i (x) is an ISM of g,

there exists a sequence j1, . . . jnx
∈ {1, . . . , N} and points

yi ∈ Aji
i satisfying g(x) =

∑nx

i=1 yi. Let δi = yi − ai, with
ω defined as in Algorithm 1 one can write
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α(g(x)) = α

(
ω +

nx∑
i=1

δi

)

=

nx∑
i=1

(
α(ω + δi)−

nx − 1

nx
α(ω)

)

−

(
nx∑
i=1

α(ω + δi)− (nx − 1)α)ω − α

(
ω +

nx∑
i=1

δi

))

︸ ︷︷ ︸
rα(A)[−1,1]

.

Since δi ∈ Aji
i − ai, we have α(ω + δi) ∈ α

(
ω − ai +Aji

i

)

as well as

α(g(x)) ∈
nx∑
i=1

(
α
(
ω − ai +A

ji
i

)
−

nx − 1

nx
α(ω)

)
+ rα(A)[−1, 1]

=

nx∑
i=1

C
ji
i .

This implies the statement of the theorem. �

Theorem 2. Let Γ(x,A,X) and Γ(x,B,X) be ISMs of g
and h, respectively, on X. If C ∈ Inx×N is computed using
Algorithm 2, then Γ(x,C,X) is an ISM of g ∗ h on X.

A proof of Thm. 2 proceeds along the same lines as the
proof of Thm. 1 and is omitted for the sake of brevity.

The construction of remainder bounds and central points
used in Algorithm 1 relies on globally valid algebraic
relations, called addition theorems, of common univariate
operations. As an example, for the exponential function,

the addition theorems eω+δi = eωeδi and eω+
∑nx

i=1
δi =

eω
∏nx

i=1 e
δi , hold globally over the real numbers. Letting

ti = eδi − 1, rα(A) can be constructed by bounding the
left-hand side of the expression in Step 2) of Algorithm 1.
This yields the expression

eω

∣∣∣∣∣
nx∑
i=1

ti + 1−
nx∏
i=1

(1 + ti)

∣∣∣∣∣ ≤ eω

(
nx∏
i=1

(1 + si)−
nx∑
i=1

si − 1

)

with si = max
{
eU(Ai)−ai − 1, 1− eL(Ai)−a1

}
. Choosing

ai = log
(
1
2

(
eU(Ai) + eL(Ai)

))
, minimizes

si =
eU(Ai) − eL(Ai)

eU(Ai) + eL(Ai)
.

The technical derivations for the remainder bounds rα(A)
and the central points ai for other atom operations can be
found in (Zha et al., 2016).

The final ingredient for ISA is the construction of a
(trivial) ISM for the input variables xi. As each variable
is independent of the rest, the coefficients can be set as
Aj

k = 0 for all k �= i and all j ∈ {1, . . . , N}. The ith row of

A is then initialized as Aj
i = Xj

i for each j ∈ {1, . . . , N}.
The computational complexity for both composition rules
in ISA is of order O(nxN). Furthermore, whenever f is
separable, i.e. f(x) =

∑nx

j=1 fj(xj) for some factorable
functions f1, . . . , fnx , the global approximation error is of
order O

(
1
N

)
over all bounded domains X ∈ Inx .

Algorithm 3. Intersection of a superposition model with an interval

Input: Parameters A and X of the input model and an interval Y

Main Step:

(1) Sort each Ai to obtain the permutations Π and Π.

(2) Choose a finite number nJ of intervals Jk = [0, j
k
] with index

vectors j
k
∈ {1, . . . , N}nx such that

∀k ∈ {1, . . . , nJ},
nx∑
i=1

A
πi((jk

)i)

i ≥ y

(3) Choose a finite number nJ of intervals Jk = [0, jk] with index
vectors jk ∈ {1, . . . , N}nx such that

∀k ∈ {1, . . . , nJ},
nx∑
i=1

A
πi((jk)i)
i ≤ y

Output: Permutations Π,Π and intervals J = (J1, . . . , JnJ
), J =

(J1, . . . , JnJ ).

4. ISA-BASED SET-INVERSION ALGORITHM

This section proposes a novel search strategy based on
ISA for addressing GPE. It has as its core computing the
intersection of an ISM with an interval.

Consider an ISM, of the function f over X, parameterized
by A ∈ Inx×N . The direct way of computing the inter-
section between this ISM and Y = [y, y] is to compute
the value of the ISM at each interval Xj1 × . . . × XjN in
the partition of X. This requires computing all possible
superpositions of coefficients Ai

j . Such approach, while
straightforward, is unfortunately not efficient since its
computational complexity is O (Nnx).

As it turns out, computing an over approximation of the
desired intersection can be done by testing only certain
selected combinations. The proposed approach, requires

sorting the components Aj
i = [Aj

i , A
j

i ] of the rows Ai of
the matrix A in both decreasing and increasing orders. The
corresponding permutations are denoted by the functions
πi, πi : {1, . . . , N} → {1, . . . , N} which satisfy

A
πi(1)

i ≥ A
πi(2)

i ≥ . . . ≥ A
πi(N)

i

and

A
πi(1)
i ≤ A

πi(2)
i ≤ . . . ≤ A

πi(N)
i .

In the following, we use the shorthand Π = (π1, . . . , πnx
)

and Π = (π1, . . . , πnx
). The main pre-processing step for

computing a set inversion is outlined in Algorithm 3.

Theorem 3. Let Π,Π and J = (J1, . . . , JnJ
), J =

(J1, . . . , JnJ
) be computed by Algorithm 3. Define

Ξ =
⋃

k∈{1,...,nJ}

⋃
j∈Jk

Ξ
π
1
(j1)

1 × . . .× Ξ
π
nx

(jnx )
nx (13)

and

Ξ =
⋃

k∈{1,...,nJ}

⋃

j∈Jk

Ξ
π1(j1)
1 × . . .× Ξ

πnx (jnx )
nx (14)

with Ξj
i = [xi + (j − 1)hi, xi + jhi] and hi =

xi−x
i

N . Then,

X \
(
Ξ ∪ Ξ

)
⊇ Xint ∪ Xbnd . (15)
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α(g(x)) = α

(
ω +

nx∑
i=1

δi

)

=

nx∑
i=1

(
α(ω + δi)−

nx − 1

nx
α(ω)

)

−

(
nx∑
i=1

α(ω + δi)− (nx − 1)α)ω − α

(
ω +

nx∑
i=1

δi

))

︸ ︷︷ ︸
rα(A)[−1,1]

.

Since δi ∈ Aji
i − ai, we have α(ω + δi) ∈ α

(
ω − ai +Aji

i

)

as well as

α(g(x)) ∈
nx∑
i=1

(
α
(
ω − ai +A

ji
i

)
−

nx − 1

nx
α(ω)

)
+ rα(A)[−1, 1]

=

nx∑
i=1

C
ji
i .

This implies the statement of the theorem. �

Theorem 2. Let Γ(x,A,X) and Γ(x,B,X) be ISMs of g
and h, respectively, on X. If C ∈ Inx×N is computed using
Algorithm 2, then Γ(x,C,X) is an ISM of g ∗ h on X.

A proof of Thm. 2 proceeds along the same lines as the
proof of Thm. 1 and is omitted for the sake of brevity.

The construction of remainder bounds and central points
used in Algorithm 1 relies on globally valid algebraic
relations, called addition theorems, of common univariate
operations. As an example, for the exponential function,

the addition theorems eω+δi = eωeδi and eω+
∑nx

i=1
δi =

eω
∏nx

i=1 e
δi , hold globally over the real numbers. Letting

ti = eδi − 1, rα(A) can be constructed by bounding the
left-hand side of the expression in Step 2) of Algorithm 1.
This yields the expression

eω

∣∣∣∣∣
nx∑
i=1

ti + 1−
nx∏
i=1

(1 + ti)

∣∣∣∣∣ ≤ eω

(
nx∏
i=1

(1 + si)−
nx∑
i=1

si − 1

)

with si = max
{
eU(Ai)−ai − 1, 1− eL(Ai)−a1

}
. Choosing

ai = log
(
1
2

(
eU(Ai) + eL(Ai)

))
, minimizes

si =
eU(Ai) − eL(Ai)

eU(Ai) + eL(Ai)
.

The technical derivations for the remainder bounds rα(A)
and the central points ai for other atom operations can be
found in (Zha et al., 2016).

The final ingredient for ISA is the construction of a
(trivial) ISM for the input variables xi. As each variable
is independent of the rest, the coefficients can be set as
Aj

k = 0 for all k �= i and all j ∈ {1, . . . , N}. The ith row of

A is then initialized as Aj
i = Xj

i for each j ∈ {1, . . . , N}.
The computational complexity for both composition rules
in ISA is of order O(nxN). Furthermore, whenever f is
separable, i.e. f(x) =

∑nx

j=1 fj(xj) for some factorable
functions f1, . . . , fnx , the global approximation error is of
order O

(
1
N

)
over all bounded domains X ∈ Inx .

Algorithm 3. Intersection of a superposition model with an interval

Input: Parameters A and X of the input model and an interval Y

Main Step:

(1) Sort each Ai to obtain the permutations Π and Π.

(2) Choose a finite number nJ of intervals Jk = [0, j
k
] with index

vectors j
k
∈ {1, . . . , N}nx such that

∀k ∈ {1, . . . , nJ},
nx∑
i=1

A
πi((jk

)i)

i ≥ y

(3) Choose a finite number nJ of intervals Jk = [0, jk] with index
vectors jk ∈ {1, . . . , N}nx such that

∀k ∈ {1, . . . , nJ},
nx∑
i=1

A
πi((jk)i)
i ≤ y

Output: Permutations Π,Π and intervals J = (J1, . . . , JnJ
), J =

(J1, . . . , JnJ ).

4. ISA-BASED SET-INVERSION ALGORITHM

This section proposes a novel search strategy based on
ISA for addressing GPE. It has as its core computing the
intersection of an ISM with an interval.

Consider an ISM, of the function f over X, parameterized
by A ∈ Inx×N . The direct way of computing the inter-
section between this ISM and Y = [y, y] is to compute
the value of the ISM at each interval Xj1 × . . . × XjN in
the partition of X. This requires computing all possible
superpositions of coefficients Ai

j . Such approach, while
straightforward, is unfortunately not efficient since its
computational complexity is O (Nnx).

As it turns out, computing an over approximation of the
desired intersection can be done by testing only certain
selected combinations. The proposed approach, requires

sorting the components Aj
i = [Aj

i , A
j

i ] of the rows Ai of
the matrix A in both decreasing and increasing orders. The
corresponding permutations are denoted by the functions
πi, πi : {1, . . . , N} → {1, . . . , N} which satisfy

A
πi(1)

i ≥ A
πi(2)

i ≥ . . . ≥ A
πi(N)

i

and

A
πi(1)
i ≤ A

πi(2)
i ≤ . . . ≤ A

πi(N)
i .

In the following, we use the shorthand Π = (π1, . . . , πnx
)

and Π = (π1, . . . , πnx
). The main pre-processing step for

computing a set inversion is outlined in Algorithm 3.

Theorem 3. Let Π,Π and J = (J1, . . . , JnJ
), J =

(J1, . . . , JnJ
) be computed by Algorithm 3. Define

Ξ =
⋃

k∈{1,...,nJ}

⋃
j∈Jk

Ξ
π
1
(j1)

1 × . . .× Ξ
π
nx

(jnx )
nx (13)

and

Ξ =
⋃

k∈{1,...,nJ}

⋃

j∈Jk

Ξ
π1(j1)
1 × . . .× Ξ

πnx (jnx )
nx (14)

with Ξj
i = [xi + (j − 1)hi, xi + jhi] and hi =

xi−x
i

N . Then,

X \
(
Ξ ∪ Ξ

)
⊇ Xint ∪ Xbnd . (15)
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Proof. By construction, the function f takes values larger

than y on all interval boxes Ξ
π1(j1)
1 × . . . × Ξ

πnx
(jnx )

nx for

any j ∈ Jk. Similarly, f takes smaller values than y on

all intervals Ξ
π1(j1)
1 × . . . × Ξ

πnx (jnx )
nx for any j ∈ Jk.

Consequently, the union of all of these boxes cannot
possibly contain a point of Xint ∪ Xbnd, which is the
statement of the theorem. �

Theorem 3 provides a constructive procedure for finding
the desired outer approximation of the set Xint ∪ Xbnd.
Notice that the computational complexity of Algorithm 3
is of order O(nxN log(N)), because we need to sort the
intervals along all coordinate directions. The associated
storage complexity is of order O(nxN). Finally, we have
to keep in mind, that computing and storing the sets Ξ and
Ξ is expensive in general, as these sets may be composed
of an exponentially large amount of sub-intervals. Never-
theless, it is not necessary to store these sets explicitly as
long as we store the permutation matrices Π and Π as
well as the boxes J and J , which uniquely represent the
set X \

(
Ξ ∪ Ξ

)
.

Notice that there are various heuristics possible for re-
fining the above procedure. However, the corresponding
methods are analogous to the implementation in SIVIA
and based on state-of-the-art branching techniques. Thus,
the proposed technique based on Algorithm 3 can be
embedded in an exhaustive search procedure, if one wishes
to approximate the set Xint∪Xbnd with any given accuracy.

5. NUMERICAL EXAMPLES

This section illustrates some of the benefits of ISA as a
bounding method for the range of factorable functions,
as well as its application to GPE. Algorithms 1, 2, and
a set-inversion algorithm based on Algorithm 3 were im-
plemented in the programming language Julia. For com-
parison, a basic SIVIA algorithm was also implemented
in Julia. The termination for both algorithms was based
on (7). All results were obtained on an Intel Xeon CPU
X5660 with 2.80GHz and 16GB RAM.

5.1 Bounding a nonlinear function: ISA vs. TMA

Consider the nonlinear factorable function

f(x) = esin(x1)+sin(x2) cos(x2)

over the domain X = [0, 1] × [0, x2] . Here, x2 ∈ [0.1, 20]
denotes a parameter which controlling the diameter of the
domain. In order to measure the quality of an arithmetic,
we used the Hausdorff distance between the range of f ,
f(X) = f(x)|x ∈ X, and an enclosure set Y ⊇ f(X). This
distance is given by

dH(f(X), Y ) = max
y∈Y

min
x∈f(X)

||x− y||∞ .

Figure 2 shows the overestimation of enclosures in the
form of Taylor models of orders 1 and 2 as well as interval
superposition models with N = 1, N = 10, and N = 100
as a function of the domain parameter x2. Although the
Hausdorff distance between f(X) and Y does not increase
monotonically with x2, the rough trend observed on the
plot is that the overestimation increases with the size of
the domain. Furthermore, the plot shows that interval

superposition models outperform Taylor models over large
domains. One aspect that is not shown in the figure is
that over small domains, e.g. over [0, 10−1]2, enclosures
based on Taylor models outperform those constructed
using interval superposition arithmetics.

dH
(
f(X), Y

)

x2

N = 1
N = 10

N = 100

T
M
1

T
M
2

1 5 10 15 20

10−2

10−1

1

101

102

103

Fig. 2. Overestimation of enclosure sets with respect to the domain
size. The plot compares enclosures based on TMs of orders 1
(solid red) and 2 (dotted red) as well as ISMs with N = 1 (solid
black), N = 10 (dotted black), and N = 100 (dashed black).

5.2 Guaranteed parameter estimation via ISA

We consider a reaction system modelled by:

ż1(t) = −(x1 + x3)z1(t) + x2z2(t), z1(0) = 1,

ż2(t) = x1z1(t)− x2z2(t), z2(0) = 0 ,
(16)

with y(t) = z2(t) (Paulen et al., 2016). The output
variable, can be represented as a factorable function

y(t) = e
−tρ
2

(
e

tσ
2 − e

−tσ
2

)
x1(t)/σ, (17)

with σ = (x2
1 + x2

2 + x2
3 +2x1x2 +2x1x3 − 2x2x3)

1
2 as well

as ρ = x1 + x2 + x3. In the following, we fix x3 = 0.35
and consider nm = 15 measurements corresponding to the
time instants ti = 1, 2, . . . , 15. Process measurements were
obtained by simulating (16) with x = (0.6, 0.15, 0.35)T ,
rounding to the second significant digit. Measurement
errors of ±10−3 were added to these values.

The performance of the proposed GPE algorithm using
ISA was tested against a standard SIVIA. We use interval
superposition models with N = 2, 10, 20. Figure 3 shows a
summary of the results of the GPE algorithm using ISMs
with N = 2. The left plot, shows an approximation of
the set Xe. The plot shows the inner partition (in red)
for ε = 10−5 and the boundary partitions for ε = 10−4

(light blue) and ε = 10−5 (dark blue). The central and
right plots show, respectively, a comparison of the number
of iterations and CPU time against the tolerance ε—for
SIVIA (solid red line) and ISM-based set-inversion with
N = 2 (solid black line), N = 10 (dotted black line), and
N = 20 (dashed black line). In terms of the number of
iterations and the number of boundary boxes (not shown),
ISM-based set-inversion (for all N) outperforms SIVIA.
This is due to the fact that ISA is able to detect and exploit
structures in the factorable function to remove redundant
boxes. On the contrary, with respect to the CPU time,
SIVIA outperforms the proposed algorithm. This can be
traced back to the fact that the cost per iteration is
larger for ISA. Furthermore, the implementation is still
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Fig. 3. Results for the GPE problem. Left: Parameter inner partition (in red) for ε = 10−5 and the boundary partitions for ε = 10−4 (light
blue) and ε − 10−5 (dark blue). Center: Number of iterations vs. diameter of boundary partition. Right: CPU time vs. diameter of
boundary partition. Center and right plots show results for SIVIA (solid red line) and ISM-based set-inversion with N = 2 (solid black
line), N = 10 (dotted black line), and N = 20 (dashed black line).

at the prototype stage and requires further refinement in
terms of computing the remainder bounds and memory
management in the algorithms.

6. CONCLUSION

This paper presented Interval superposition arithmetics,
a novel set arithmetic for computing enclosures of the
image set of factorable functions and its use in guaran-
teed parameter estimation. The main advantage of ISA
is its polynomial storage and computational complexity.
The core routine behind the proposed GPE method is
the intersection of an interval superposition model and
an interval. Although the proposed intersection routine
has a computational complexity of order O(nxN log(N)),
computing an arbitrarily accurate approximation of the
parameter set requires exponential run time. Our numer-
ical examples illustrate the advantages of ISA over other
set arithmetics when constructing enclosures for factorable
functions—particularly over large domains. We have also
shown how the proposed technique can be used to solve
a GPE problem. Although the number of iterations is
reduced when using ISA, the overall CPU time is larger
than SIVIA. This suggests that, although ISA can improve
certain aspects of GPE algorithms, there is still much
room for improvement. Improved ISA-based algorithms
for constructing approximations of inverse image sets in
polynomial runtime will be investigated in the future work.
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Fig. 3. Results for the GPE problem. Left: Parameter inner partition (in red) for ε = 10−5 and the boundary partitions for ε = 10−4 (light
blue) and ε − 10−5 (dark blue). Center: Number of iterations vs. diameter of boundary partition. Right: CPU time vs. diameter of
boundary partition. Center and right plots show results for SIVIA (solid red line) and ISM-based set-inversion with N = 2 (solid black
line), N = 10 (dotted black line), and N = 20 (dashed black line).

at the prototype stage and requires further refinement in
terms of computing the remainder bounds and memory
management in the algorithms.

6. CONCLUSION

This paper presented Interval superposition arithmetics,
a novel set arithmetic for computing enclosures of the
image set of factorable functions and its use in guaran-
teed parameter estimation. The main advantage of ISA
is its polynomial storage and computational complexity.
The core routine behind the proposed GPE method is
the intersection of an interval superposition model and
an interval. Although the proposed intersection routine
has a computational complexity of order O(nxN log(N)),
computing an arbitrarily accurate approximation of the
parameter set requires exponential run time. Our numer-
ical examples illustrate the advantages of ISA over other
set arithmetics when constructing enclosures for factorable
functions—particularly over large domains. We have also
shown how the proposed technique can be used to solve
a GPE problem. Although the number of iterations is
reduced when using ISA, the overall CPU time is larger
than SIVIA. This suggests that, although ISA can improve
certain aspects of GPE algorithms, there is still much
room for improvement. Improved ISA-based algorithms
for constructing approximations of inverse image sets in
polynomial runtime will be investigated in the future work.
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