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Abstract

Robust numerical prediction of crack propagation in heterogeneous media has

been a matter of relevant importance in many engineering applications. In this

study, a modelling framework for triggering dynamic fracture events in hetero-

geneous media, like layered materials, with internal �nite thickness cohesive

interfaces is proposed through the exploitation of the combined use of the phase

�eld approach to fracture and the interface cohesive zone model to simulate the

interplay between bulk and interface cracking. The proposed formulation is con-

structed via a consistent variational formalism leading to a coupled system of

equations, which are solved using a staggered solution scheme. Representative

applications examine the robustness of the computational approach, exhibiting

results consistent with experimental evidences available in the literature.

Keywords: Nonlinear fracture mechanics; Dynamics; Finite thickness

interfaces; Phase Field fracture

1. Introduction

The landmark research conducted by Francfort and Marigo [1] revisiting the

foundations of the Gri�th's vision of brittle fracture has promoted the advent
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of a new paradigm for the numerical modelling of cracking events in solids and

structures. Subsequent developments on this matter recalled this variational5

viewpoint for the comprehensive formulation of new fracture models, being de-

nominated as Phase Field (PF) models of fracture, which emerged through

the consistent exploitation of Γ-convergence [2]. Taking as baseline the varia-

tional formalism of the formulation given in [1], notable research e�orts have

been carried out for the corresponding numerical framework and the subsequent10

computational implementation, leading to di�erent families of PF approaches

to fracture, such as the regularized variational formulation proposed by Bourdin

and co-authors [2, 3] and the thermodynamic consistent approximation advo-

cated by Miehe et al. [4] introducing a state-dependent variable (the maximum

of the elastic energy) in order to prevent the material healing, among many15

others.

This renovated interest for predictive fracture methods relying on a smeared

crack representation has been motivated by the inherent characteristics of PF

formulation, which e�ciently accounts for complex cracking patterns including

intersections, branching, among many other di�erent scenarios. PF methods20

inherently hold several appealing aspects such as the ability for the automatic

crack tracking and crack nucleation, the versatility to accommodate di�erent

constitutive models. This potential prompted that PF methods have garnered

a great deal of research attention in the last decade, including the correspond-

ing extensions for ductile fracture [5, 6], hydrogen-assisted cracking [7], �bre-25

reinforced composites at di�erent length scales [8, 9], polycrystalline materials

[10] and alternative formulations for PF methods [11].

Moreover, this computational technique for fracture has been also extended

to model dynamic fracture in solids [12, 13, 14, 15, 16, 17], following analogous

assumptions as for nonlocal damage formulations in dynamics, pinpointing again30

the inherent versatility of the method, although mainly focused to homogeneous

material systems and solids. However, in real materials and structures hetero-

geneities and inclusions in conjunction with di�erent constituents separated by

interfaces or thin adhesive layers are ubiquitous. Stemming from these aspects,
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the authors recently proposed a modeling framework exploiting the combined35

use of PF and cohesive zone model (CZM) techniques in statics, in order to

account for bulk and interface fracture events, respectively, in a consistent and

e�cient manner [18, 10]. In this concern, the present investigation is devoted to

formulate a consistent extension of the PF-CZM technique to dynamic fracture

events in heterogeneous systems, following the main developments outlined in40

[19, 20].

2. Dynamic Phase Field formulation for heterogeneous systems in-

cluding �nite thickness interfaces

2.1. Fundamentals of the combined phase �eld and cohesive-like fracture mod-

elling for heterogeneous media45

This section brie�y introduces the main aspects of the phase �eld (PF)

approach which can be interpreted as a regularization of the Gri�th's approach

to brittle fracture following an energetic representation. Restricting the scope

of the current study to the in�nistesimal 2D deformation setting, we consider an

arbitrary body in the general ndim Euclidean space, denoted by B ∈ Rndim , with50

its external boundary ∂B ∈ Rndim−1, see Fig. 1. The displacement �eld at any

material point x ∈ B is identi�ed by the vector u : B → Rndim , with in�nitesimal

strain tensor ε := ∇su for ε : B → Rndim×ndim . Prescribed boundary conditions

are identi�ed by u = u on ∂Bu and t = σ ·n on ∂Bt, satisfying ∂Bt ∪∂Bu = ∂B

and ∂Bt ∩ ∂Bu = ∅, where n is outward normal vector and σ is the Cauchy55

stress tensor.

For arbitrary cracked bodies, the central idea of the PF method concerns

the de�nition of a crack-like phase �eld variable d : B× [0, t]→ [0, 1], permitting

the identi�cation of unbroken d(x, t) = 0 and fully broken d(x, t) = 1 states at

x ∈ B, see Fig. 1. Therefore, for a given crack surface topology at time t as

Γc(t) ⊂ Rndim−1 in B, the regularized crack functional is given by

Γc(d, t) :=

∫
B
γ(d,∇xd) dΩ, (1)
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Figure 1: Schematic representation of the phase �eld representation of a cracked system with

prescribed �nite thickness interfaces.

where the so-called crack density functional in line with [21] is de�ned as:

γ(d,∇xd) :=
1

2l
d2 +

l

2
|∇xd|2 . (2)

The irreversibility of the fracture process within the solid under consideration

is dictated by the condition proposed in [21], such Γc(d, t) ∈ Γc(d, t+ ∆t).

The minimization problem associated with the di�usive crack topology reads

d(x, t) = Arg{ inf
d∈WΓ(t)

Γc(d, t) } (3)

under the Dirichlet-type constraint: WΓ(t) = {d | d(x, t) = 1 at x ∈ Γc(d, t)}.

Consequently, the internal potential energy of the cracked body can be ex-

pressed as:

Π(u,Γ) = ΠΩ(u,Γ) + ΠΓc
(Γ) =

∫
Ω\Γ

ψe(ε) dΩ,+

∫
Γc

Gc dΓ, (4)

where ψe(ε) stands for the elastic energy density and Gc corresponds to the60

fracture toughness. Moreover, note that in the previous expression, two contri-
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butions can be recalled: ΠΩ(u,Γ) is the elastic energy stored in the damaged

body, while ΠΓ(Γ) is the dissipative term complying with the Gri�th's approach

to fracture.

By the virtue of Γ-convergence concept [22], the fracture term can be ap-

proximated as:∫
Γc

Gc dΓ ≈
∫
B
Gcγ(d,∇Xd) dΩ. (5)

In the presence of prescribed thin interfaces within the systems domain,

Paggi and Reinoso [18] proposed an original modelling framework comprising

the combined use of PF and cohesive-like cracking models for bulk and interface

fracture events, respectively. This di�erentiation between dissipative phenom-

ena from di�erent signature can be introduced via the adoption of the following

split:

ΠΓc
= ΠΓb

+ ΠΓi
=

∫
Γb

Gbc(u, d) dΓ +

∫
Γi

Gi(u, d) dΓ, (6)

where Gbc is the bulk fracture energy and Gi is the energy dissipated along the

prescribed interfaces of the system. This latter contribution can be expressed in

terms of displacement discontinuities along the interface, g, the interface history

parameter, h, and the phase �eld degradation variable of the surrounding bulk

d:

Gi = G(g, h, d). (7)

The previous decomposition leads to the form of the internal potential of the

system (composed by the bulk Πb(u, d) and the interface contributions Πi(u, d)):

Πb(u, d) =

∫
Ω

ψ(ε, d)︸ ︷︷ ︸
ψb

e

dΩ +

∫
Ω

Gbcγ(d,∇xd)︸ ︷︷ ︸
ψb

fr

dΩ, (8)

Πi(u, d) =

∫
Γi

Gi(u, d)︸ ︷︷ ︸
ψi

fr

dΓ, (9)
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where ψ(ε, d) is the energy density of the bulk for the damaged state, whose

positive part is a�ected by the degradation function: g(d) = (1− d)
2

+K, being

K a parameter that de�nes a residual sti�ness to prevent numerical instabilities.

Note that we adopt the spectral decomposition of the elastic energy advocated

in [21]:

ψ(ε, d) = g(d)ψe+(ε) + ψe−(ε), (10a)

ψe+(ε) =
λ

2
(〈tr[ε]〉+)

2
+ µtr[ε2

+], (10b)

ψe−(ε) =
λ

2
(〈tr[ε]〉−)

2
+ µtr[ε2

−]. (10c)

The irreversibility aforementioned can be expressed in terms of the phase �eld65

variable using a local history �eld of the crack driving force [21]:

H(x, t) = max
τ∈[0,t]

ψe+(ε)(x, t), (11)

where H(x, t) stands for the maximal value of the positive part of the elastic

energy ψe+(ε).

Following [18, 10] and for the sake of simplicity, we herewith assume that

the interface response is ruled by a simple tension cut-o� cohesive zone model,70

where a linear variation of the critical normal, gnc(d), and tangential, gtc(d),

relative displacements at the internal discontinuities (interface) can be stated in

terms of the crack phase �eld variable of the bulk:

gnc(d) = (1− d)gnc,0 + dgnc,1 (12)

gtc(d) = (1− d)gtc,0 + dgtc,1 (13)

with gnc,0 = gnc(d = 0) gnc,1 = gnc(d = 1); and gtc,0 = gtc(d = 0) and gtc,1 =

gtc(d = 1). A graphical representation of the Mode I and Mode II cohesive laws75

is provided in Fig. 2.

The cohesive traction for fracture Mode I, according to the tension cut-o�
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Figure 2: Schematic representation of the cohesive zone model coupled with the phase �eld

variable for brittle fracture in the bulk: (a) Mode I CZM; (b) Mode II CZM.

model, is given by

σ =


kn

gn
gnc

, if 0 <
gn
gnc

< 1;

0, if
gn
gnc
≥ 1,

(14)

where σ is the normal traction component of the interface, being σc its corre-

sponding critical value. This leads to the computation of the Mode I interface

fracture energy:

GiIc =
1

2
kng

2
nc. (15)

Imposing the condition that GiIc is constant with respect to the phase �eld

variable d, the apparent interface sti�ness kn takes the form:

kn = kn,0

(
gnc,0
gnc

)2

, (16)
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where kn,0 is the interface sti�ness for d = 0. Moreover, due to the above con-

straint, the Mode I energy release rate, whose functional dependence is expressed

in Eq. (7), takes the following closed-form expression:

GiI =
1

2
kn,0g

2
n

g2
nc,0

[(1− d) gnc,0 + dgnc,1]
2 , (17)

The same constitutive hypothesis is assumed for the interface response under

the fracture Mode II, leading to the following de�nition of the corresponding

traction τ (whose critical value is identi�ed by τc):

τ =


kt
gt
gtc

, if 0 <
gt
gtc

< 1;

0, if
gt
gtc
≥ 1.

(18)

Thus, the apparent sti�ness for the fracture Mode II, kt, renders:

kt = kt,0

(
gtc,0
gtc

)2

. (19)

With the above de�nitions, the Mode II interface fracture energy is given by

GiIIc =
1

2
ktg

2
tc. (20)

Hence, the Mode II energy release rate reads:

GiI =
1

2
kn,0g

2
n

g2
nc,0

[(1− d) gnc,0 + dgnc,1]
2 , (21)

Finally, a standard quadratic criterion is used to govern the interface fracture

under Mixed Mode conditions:(
GiI
GiIc

)2

+

(
GiII
GiIIc

)2

= 1, (22)

where:

GiIc =
1

2
g2
nc,0kn,0; GiIIc =

1

2
g2
tc,0kt,0. (23)

2.2. Extension for dynamic fracture of the combined PF-CZM modeling frame-

work

The central development of the current investigation concerns with the ex-

tension of the modelling framework presented above for triggering dynamic frac-80

ture events in heterogeneous media with the presence of thick interfaces.
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Recalling [12, 13, 14], the kinetic energy of the system (including the bulk

and interface terms) can be expressed as:

K =

∫
B
ψbkin dΩ +

∫
Γi

ψikin dΓ, (24)

ψbkin =
1

2
ρbu̇ · u̇ ψikin =

1

2
ρihu̇ · u̇ (25)

where ρb is the density of the bulk, ρi is the density of the �nite interface and

h is the interface thickness.85

Accordingly, it is possible to compute the Lagrangian L of the system:

L = K −Π =
∫
B L

b(u, u̇, d,∇xd) dΩ + (26)∫
Γi
Li(u, u̇, d) dΓ + Πext,

with Πext denoting the exterior potential due to the prescribed loadings, and

Lb(u, u̇, d,∇xd) = ψbkin − ψbe − ψbfr (27)

Li(u, u̇, d) = ψikin − ψifr. (28)

The terms de�ned in Eqs.(27)�(28) denote the Lagrange density per unit of

volume and surface corresponding to the bulk and the interfaces, respectively.

The Hamilton's principle is given by∫ t2

t1

[∫
B
δLb dΩ +

∫
Γi

δLi dΓ + δΠext,

]
dt = 0, (29)

for arbitrary times t1 < t2. The corresponding variations of the Lagrange den-

sities can be expressed as:90

δLb = ∂Lb

∂u · δu + ∂Lb

∂u̇ · δu̇ + ∂Lb

∂∇xu
: ∇xδu +

∂Lb

∂d δd + ∂Lb

∂∇xδd
· ∇xδd (30)
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δLi =
∂Li

∂u
· δu +

∂Li

∂u̇
· δu̇ +

∂Li

∂d
δd. (31)

After some algebraic manipulations, the Euler-Lagrange equations of the

variational principle leads to the equations of motions

ρü−∇x · σ = 0, (32)

and the crack phase �eld evolution

2(1− d)ψe+(ε) = Gbc
[

1

l
+ l∇xd

]
+
∂Gi

∂d
. (33)

Note that Eqs.(32)�(33) govern the dynamic di�usive crack propagation problem

in systems with the presence of prescribed �nite thickness interfaces.

Through the exploitation of the previous formulation, it is possible the

construction of the corresponding numerical formulation within the spirit of

multi-�eld whereby the displacements and the crack phase �eld variable are the95

primary unknowns {u, d}. Within the context of the Finite Element Method

(FEM), we advocated a Jacobi-type staggered solution scheme in line with the

numerical implementation into the FE code FEAP [23] using a Newmark-type

constant-average-acceleration scheme. Details of the bulk phase �eld model and

the dynamic interface formulation can be respectively found in [12, 19], which100

are omitted here for the sake of brevity.

3. Representative applications

In this section, we demonstrate the numerical capability of the current dy-

namic PF-CZM formulation for triggering fracture events in heterogeneous me-

dia in dynamics. The application under study consists of a primary crack per-105

pendicular to an interface (separating two solids), Fig. 3. This specimen is made

from PMMA, whose mechanical properties are listed in Table 1.

The geometry of the specimen is a rectangular domain with dimensions

40×43 (lengths in mm), and with an edge crack of 6 mm in length. The vertical
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Figure 3: Specimen description and loading conditions.

interface is de�ned at 13 mm from the left side of the plate. The thickness is110

unitary. This system is subjected to a displacement rate applied to the top and

bottom sides, according to the scheme depicted in Fig. 3. The displacement

rate starts from zero and increases, following a speci�c ramp function designed

to minimize the e�ect of spurious vibrations, up to a steady-state value, cor-

responding to a strain rate of ε̇y = 100 s−1. The length of the ramp is 31µs,115

while the crack initiation, as it will be discussed later, occurs at about 73µs.

Therefore, the crack propagation takes place in the steady-state regime and it

is not in�uenced by the loading ramp. More details about the de�nition of

the loading ramp can be found in ref. [20] Regarding the FE discretization,

the system is meshed using 4-node quadrilateral elements with size equal to 0.2120

mm, and an increment time step in the solution scheme corresponding to 1 µs.

The value of the phase �eld regularization length, parameter l in Eq. (2), has

been set equal to 30µm. Such a parameter has been tuned through preliminary
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numerical simulations on un-notched specimens, in order to retrieve the correct

material average strength, equal to 55 MPa for PMMA.125

Eb [GPa] ν Gbc [J/m2] σbc [MPa] ρb [kg/m
3]

3 0.35 300 55 1180

Table 1: Material properties of PMMA.

With respect to the interface, we consider two possible con�gurations de-

pending on the thickness: (i) a thin interface, 0.2 mm thick, and (ii) a thick

interface, 1.0 mm thick. Moreover, we adopt the following assumptions:

� The apparent sti�ness of the cohesive law (both Mode I and Mode II) is

given by the ratio between the Young's modulus of the material consti-130

tuting the interface and the interface thickness, kn,t = Ei/h.

� The interface mass increases with its thickness, since the interface density

is multiplied by the thickness value in the corresponding formulation.

� The critical stress of the interface σic, i.e., the peak stress of the cohesive

law, decreases with the thickness, whereas the fracture energy is kept135

constant.

The latter hypothesis is supported by the results of several experiments and the

prediction of analytical models available in the literature, especially for adhesives

having a hyperelastic behaviour [24, 25, 26]. Moreover, it is also an obvious

choice, consequent to the use of the tension cut-o� cohesive law. In fact, only two140

out of the four parameters, namely initial sti�ness, peak stress, fracture energy

and critical relative displacement, are independent. The other two parameters

are determined through Eqs.(14) and (15) for Mode I and Eqs.(18) and (20) for

Mode II.

No speci�c material has been de�ned for the interface. However, the refer-145

ence material properties are representative of a generic polymeric resin: Ei =

0.7 GPa and Gic = 410 J/m2. The full set of parameters for the two interfaces
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are given in Table 2. Note also that in this study, for the sake of simplicity, we

set identical mechanical properties for fracture Modes I and II of the interface

and no coupling between the critical gap of the interface for intact and fully150

damaged states of the surrounding bulk.

h [mm] kn,t [N/mm3] Gic [J/m2] σic [MPa] gc [µm] ρi [kg/m
3]

0.2 3500 410 53.6 15.2 1200

1 700 410 24.0 34.2 1200

Table 2: Material properties of the interface: thin and thick scenarios.

As discussed in [18], the total force carried by the specimen can be consid-

ered as the representative system response, which can be accounted for via the

functional:

F = F
(
σic,Gbc ,Gic, Ei, ν, l, L,∆

)
. (34)

where l is the regularization length of the phase �eld formulation, L is the

characteristic sample size, and ∆ is the imposed displacement at the sample's

boundaries. Through the invocation of the Π-theorem of dimensional analysis,

the following dimensionless representation is derived by selecting σic and L as

the physical independent quantities:

F

σicL
2

= Φ

(
Gbc
Gic
,
GicEi

(σic)
2
L
, ν,

l

L
,

∆

L

)
= Φ

(
Π1,Π2, ν,

l

L
,

∆

L

)
(35)

where it is possible to recognize that the second dimensionless number Π2 is

proportional to the ratio between the process zone size along the interface,

lCZM ∼
(
GicEi

)
/(σic)

2, and the characteristic sample size, L. Therefore, the use

of Linear Elastic Fracture Mechanics (LEFM) results is retrieved in the limit155

case Π2 → 0. This analysis is herewith exploited in order to shed light to the

di�erences between static and dynamic fracture propagation.

3.1. Thin interface case: numerical predictions

This section presents the analysis of the thin interface case. Exploiting the

dimensional analysis presented above, this scenario can be examined with LEFM160
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results under quasi-static conditions, leading to Π1 = 0.73 and Π2 = 0.0025

and predicting crack penetration into the secondary body with no interface

failure. This result is in good agreement with the current numerical prediction

as shown by the crack pattern in Fig. 4. The absence of interface delamination

is con�rmed by the evolution of the tangential gap along the interface in the165

range y = [0, 21.5] mm, shown in Fig. 5a for three signi�cant steps of crack

propagation: initiation (step no. 75), interface crossing (step no. 100), and

complete propagation (step no. 130). Here, the tangential gap remains close

to zero and, in any case, much lower than the critical value corresponding to

complete delamination, gtc = 15.3µm. For dynamic fracture, the corresponding170

prediction exhibits appreciable di�erences with respect to the quasi-static case.

Under such con�guration, the proposed modelling approach estimates a crack

propagation into the �rst bulk till the crack impinges onto the �nite thickness

interface, which is followed by the occurrence of very moderate delamination

events, see the evolution of the tangential gap along the interface for di�erent175

time steps in Fig. 5b. Subsequently, the crack further propagates through the

second bulk following a straight path.

Figure 4: Crack path for the quasi-static loading condition, thin interface con�guration.

The evolution of the crack path is shown in Fig. 6 with the indication of

the time step of signi�cant events. The crack starts to propagate at t = 73µs,
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(a)

(b)

Figure 5: Evolution of the tangential gap along the thin interface for di�erent simulation

steps: (a) quasi-static loading condition; (b) dynamic loading condition.

impinges on the interface at t = 99µs, and penetrates in the second bulk at180

t = 100µs. Therefore, there is no time delay when the crack meets the interface.

The average crack propagation speed is about 440 m/s, far below the limiting

velocity 0.7cR above which crack branching takes place [27, 16]. Note that cR

is the Rayleigh wave speed, equal to about 900 m/s for PMMA. This con�rms

that crack branching cannot occur. The stress-displacement curves for the quasi-185

static and dynamic cases are shown in Fig. 7. The stress is the average value

computed with reference to the size of the initial ligament of the specimen, i.e.

34 mm, while the displacement is the total elongation of the specimen in the

loading direction. Compared to the quasi-static case, the dynamic response is
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characterised by a higher peak load due to inertia e�ects and a larger energy190

dissipation due to a thickening of the damaged zone, which is usually interpreted

as representative of the appearance of micro-branches.

Figure 6: Evolution of the crack path and time elapsed during the crack propagation for the

thin interface con�guration in dynamic loading conditions.

Figure 7: Stress - elongation curves for thin interface, quasi-static and dynamic loading con-

ditions.

3.2. Thick interface case: numerical predictions

This section comprises the analysis of the interface 1 mm thick. In line

with the previous results, the dimensional analysis under quasi-static condi-195

tions allows computing Π1 = 0.73 and Π2 = 0.012 and again predicting crack

16



penetration into the secondary body with absence of delamination events. Such

a prediction �nds again con�rmation in the results of the numerical simulations,

being the crack path identical to that obtained in the case of thin interface (see

Fig. 4), and the evolution of the tangential gap along the interface that shown200

in Fig. 8a. The tangential gaps are slightly larger than the thin interface case,

although their values remain much lower than the critical value gtc. Note that,

due to di�erent material properties, gtc for the thick interface is equal to 34.2µm.

(a)

(b)

Figure 8: Evolution of the tangential gap along the thick interface for di�erent simulation

steps: (a) quasi-static loading condition; (b) dynamic loading condition.

However, in contrast to the precedent case, the current scenario presents

signi�cant di�erences between the quasi-static and the dynamic case, as high-205
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lighted in the sequence of the crack propagation shown in Fig. 9. The crack

initiates propagating at t = 73µs, reaches the interface at t = 99µs, and pen-

etrates in the second bulk at t = 256µs. Therefore, a signi�cant time delay

of ∆t = 157µs is accumulated when the crack meets the interface before pen-

etrating in the second layer. In order to better understand the origin of such210

a delay, the evolution of the tangential gap (sliding displacement of layer two

with respect to layer one) along the common interface for di�erent time steps is

analyzed in Fig. 8b. The tangential gap is almost zero until the crack reaches

the interface. Then, it gradually increases, from the center to the edge of the

specimen, and rapidly overcomes the value of gtc, up to a complete delamination215

along most of the interface length. The tangential gap increases monotonically

up to t = 257µs, i.e. the instant of crack penetration into the second bulk.

Then, a partial elastic recovery is obtained. Besides the time delay in the crack

propagation, the interplay between crack propagation in the bulk and interface

delamination described above leads to a dynamic crack branching in the second220

bulk. The origin for such a behaviour lies in the fact that during the interface

delamination energy continues to be accumulated up to the point where the

crack initiates penetrating into the second layer. Hence, the crack enters the

second bulk with a high acceleration and it branches as soon as its velocity

approaches the limiting speed of 0.7cR.225

Figure 9: Evolution of the crack path and time elapsed during the delamination events at the

thick interface.
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Figure 10: Stress - elongation curves for thick interface, quasi-static and dynamic loading

conditions.

Signi�cant di�erences are also obtained on the stress-displacement behaviour.

The curves related to the quasi-static and dynamic cases with a thick interface

are shown in Fig. 10. The quasi-static behaviour is coincident with that of the

thin interface shown in Fig. 7. On the contrary, the dynamic behaviour is very

di�erent. Quasi-static and dynamic curves are coincident up to the �rst peak,230

when interface delamination initiates in the dynamic case. Then, a hardening

branch occurs in dynamic loading conditions, whereas a softening post-peak be-

haviour is obtained in quasi-static loading. Crack penetrates in the second bulk

at the end of the hardening phase. The maximum load in dynamics is about

twice the peak load measured in the quasi-static case. Such a large increase is235

due to the fact that the interface acts as a shield against crack propagation. In

case of a thick interface, in fact, the second bulk is only slightly a�ected by the

stress concentration ahead of the crack tip.

The obtained numerical predictions are in qualitatively agreement with the

results of experimental tests available in the literature such as, for instance, those240

carried out by Xu and Rosakis [28] and by Parab and Chen [29]. Xu and Rosakis

studied the dynamic failure in two- and three-layer bonded Homalite specimens

featuring di�erent bonding strengths. The crack patterns obtained for an impact
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Figure 11: Experimental evidences of the e�ect of the interface strength on the dynamic crack

propagation through layered materials (adapted from [28]).

speed of 21 m/s, shown in Fig. 11, are highly dependent on the bonding strength,

with the appearance of interfacial debonding in case of intermediate and weak245

bonding that shield, partially or totally, the second layer from crack penetration.

Parab and Chen studied the dynamic crack propagation across an adhesive

interface in borosilicate glass. Three di�erent interface thicknesses were studied,

namely h = 0.2, 1.0 and 2.7 mm. The crack patterns obtained for h = 0.2 and

1.0 mm are shown in Fig. 12. Two main di�erences were observed by increasing250

the interface thickness: the occurrence of crack branching in the second plate

and an increase of the delay in the crack propagation across the interface (8.2µs

for h = 0.2 mm compared to 60.4µs for h = 1.0 mm).
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Figure 12: Experimental evidences of the e�ect of the interface thickness on the dynamic

crack propagation through layered materials (adapted from [29]).

4. Parametric study

A parametric study has been carried out to analyse the e�ect of the prop-255

erties of the interface on the dynamic failure of layered materials, with special

regard to the competition between interface debonding, crack penetration and

branching. A total of eleven di�erent cohesive constitutive laws were consid-

ered: �ve for the thick interface, h = 1.0 mm, and six for the thin interface,

h = 0.2 mm. The set of material properties are reported in Table 3, while a260

simpli�ed graphical representation of the corresponding pure Mode II is shown

in Fig. 13. The reference case for h = 1.0 mm is Case 1, which has the same

properties of the constitutive law adopted in the previous section for the same

interface. In Cases 2 and 3 the interface sti�ness was changed to 3000 and 140

N/mm3, respectively, while the fracture energy was kept constant. In Cases 4265

and 5 the fracture energy was changed to 820 and 205 J/m, respectively, while

the interface sti�ness was kept constant. In all the cases, the other two param-

eters, namely critical stress and critical gap, have been computed through Eqs.

14 and 15 for Mode I and Eqs. 18 and 19 for Mode II. Starting from Case 6,

which is the reference case for the interface 0.2 mm thick, the interface sti�ness270

was varied in Cases 7 and 8, whereas the fracture energy was varied in Cases

9, 10 and 11. Again, the critical stress and the critical gap were computed
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accordingly.

Id. code h [mm] kn,t [N/mm3] Gic [J/m2] σic [MPa] gc [µm]

1 1.0 700 410 24.0 34.2

2 1.0 3000 410 49.6 16.5

3 1.0 140 410 10.8 75.9

4 1.0 700 820 33.9 48.4

5 1.0 700 205 16.9 24.3

6 0.2 3500 410 53.6 15.3

7 0.2 15000 410 110.9 7.4

8 0.2 700 410 24.0 34.2

9 0.2 3500 820 75.8 21.6

10 0.2 3500 205 37.9 10.8

11 0.2 3500 102 26.8 7.6

Table 3: Set of material properties of the eleven interfaces considered in the parametric study.

The numerical simulations con�rms the two main behaviours observed in

Section 3: the dynamic propagation of a single crack through the two bodies275

without any delay in crossing the interface is predicted in Cases 2, 4, 6, 7, 9 and

10, whereas a delay in the crack propagation between the �rst and the second

body and a crack branching are predicted in Cases 1, 3, 5, 8 and 11. All the

cases characterised by a single straight crack present features for what concerns

crack propagation timing, distribution of gaps along the interface and stress280

vs. elongation overall response very similar to the reference case, presented in

Section 3. On the other hand, more interesting results were obtained with the

cases characterised by time delay and crack branching. In particular, Cases 3

and 8 behaves as Case 1, whereas Cases 5 and 11 present the following di�erences

with respect to Case 1: time delay in crossing the interface of 110µs instead of285

157µs, crack branching at about 8 mm behind the interface instead of just after

the interface, complete failure of the specimen after 250µs instead of 282µs, and

peak stress in the stress vs. elongation diagram slightly lower than the reference
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Figure 13: Representation of the eleven cohesive constitutive laws whose parameters are

reported in Table 3. The values of the fracture energy and interface sti�ness are also reported.

case. The shorter time delay in crossing the interface leads to a reduced amount

of energy stored in the second bulk and, therefore, a translation of the branching290

point. The �nal crack patterns for Cases 5 and 11 are shown in Fig. 14, while

the stress vs. elongation curves for all the specimens are depicted in Fig. 15. By

analysing the constitutive laws shown in Fig. 13 it emerges that all the specimens

exhibiting delay in the crack propagation and crack branching are characterised

by an interface having a low value of critical stress, independently of the other295

parameters. However, also the critical gap and, therefore, the fracture energy,

play a role in the dynamic fracture (see, for instance, specimens 5 and 11, which

have low values of both critical stress and critical gap).

Finally, the e�ect of the loading rate was investigated with the two reference

Cases 1 and 6, by increasing the strain rate to ε̇y = 1000 s−1. In the specimen300

with the thick interface, crack initiates to propagate at t = 50µs, impinges on

the interface at t = 80µs and penetrates in the second layer without any delay. It

branches at t = 84µs. The high energy accumulated determines the appearance

of a multiple branching just behind the interface (see Fig. 16a). The absence

of time delay is consistent with the interface debonding, that is greatly reduced305
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(a) (b)

Figure 14: Crack patterns obtained for: (a) Case 5 and (b) Case 11.

compared to the reference Case 1 (see Fig. 16b). When the crack penetrates in

the second layer, only a little portion of interface is debonded. The behaviour of

the specimen with the thin interface subjected to the strain rate ε̇y = 1000 s−1

is completely di�erent from the reference Cases 1 and 6. In this case, two main

crack branching events occur, one in the �rst layer, at t = 74µs, and another just310

behind the interface, at t = 78µs (see Fig. 17a). The diagrams of the tangential

gaps along the interface at di�erent time steps shown in Fig. 17b prove that

the interface does not fail, since the gap is always below the critical value. No

time delay has been observed. Concerning the obtained crack patterns, it is

to be noticed that the increase in strain rate makes more evident the boundary315

e�ects, that manifest through the appearance of two cracks initiated at the right

edge (see Figs. 16a and 17a).

5. Conclusions

In this study, a consistent extension to the dynamic regime of the PF model

for triggering fracture events in heterogeneous media including �nite thickness320

cohesive interfaces proposed in [18] has been carried out. The current formu-

lation endowed a simple treatment of the presence of �nite thickness interfaces

through their consideration via a cohesive-like crack representation.
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(a)

(b)

Figure 15: Stress-elongation curves for: (a) Cases 1 to 5 and (b) Cases 6 to 11.

Through the use of the present approach, we have analysed di�erent scenar-

ios of primary cracks impinging on interfaces with di�erent thickness. Current325

results exhibited signi�cant di�erences depending upon the interface thickness,

sti�ness and strength in terms of crack propagation delay and secondary branch-

ing into the adjoining bulk. These predictions were in good agreement with

respect to available experimental data [28, 29], pinpointing the potential appli-

cability of the developed formulations.330

Future research directions will be oriented in order to tackle the following

aspects: (i) a more comprehensive analysis of time-step and mesh size depen-

dence in the dynamic regime, considering also di�erent type of time integrators,
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(a) (b)

Figure 16: Case 1 subjected to a strain rate of 1000 s−1: (a) crack pattern; (b) tangential

gaps along the interface for di�erent time steps.

(a) (b)

Figure 17: Case 6 subjected to a strain rate of 1000 s−1: (a) crack pattern; (b) tangential

gaps along the interface for di�erent time steps.

(ii) the consideration of more elaborated cohesive constitutive laws that account

for gradual deterioration upon failure, (iii) extension to di�erent interface thick-335

ness values and loading rates, (iv) conduction of experimental tests in order to

provide a more thorough understanding of cracking behaviour of heterogeneous

systems.
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