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Self-organization in developing living organisms relies on the capability of

cells to duplicate and perform a collective motion inside the surrounding

environment. Chemical and mechanical interactions coordinate such a

cooperative behaviour, driving the dynamical evolution of the macroscopic

system. In this work, we perform an analytical and computational analysis

to study pattern formation during the spreading of an initially circular

bacterial colony on a Petri dish. The continuous mathematical model addresses

the growth and the chemotactic migration of the living monolayer, together

with the diffusion and consumption of nutrients in the agar. The governing

equations contain four dimensionless parameters, accounting for the interplay

among the chemotactic response, the bacteria–substrate interaction and the

experimental geometry. The spreading colony is found to be always linearly

unstable to perturbations of the interface, whereas branching instability

arises in finite-element numerical simulations. The typical length scales of

such fingers, which align in the radial direction and later undergo further

branching, are controlled by the size parameters of the problem, whereas the

emergence of branching is favoured if the diffusion is dominant on the chemo-

taxis. The model is able to predict the experimental morphologies, confirming

that compact (resp. branched) patterns arise for fast (resp. slow) expanding

colonies. Such results, while providing new insights into pattern selection

in bacterial colonies, may finally have important applications for designing

controlled patterns.
1. Introduction
The collective motion rather than the migration of single individuals is known to

drive the macroscopic evolution of many biological processes, such as wound heal-

ing [1,2], biofilm formation [3], tumour growth [1,4–6] and morphogenetic

processes [1,7–9]. In fact, living cells and bacteria tend to form closely packed clus-

ters (e.g. the columnar structures emerging in expanding living colonies) in which

microscopic self-interactions result in cooperative migration [7,10]. Although each

individual in a population can determine its own fate, recent findings high-

lighted that single behaviours and abilities are adjusted, thanks to stochastic

differentiation, in order to fit the needs of the population as a whole [11,12].

In order to coordinate such cooperative activities, the chemical and the mech-

anical interactions both among individual entities and with the extracellular

environment are of paramount importance. Chemical communication relies

either on the capability of the cells to secrete chemicals (in cell-to-cell chemical sig-

nalling) or on the ability to sense an external chemical field, by binding specific

signal molecules through their membrane receptors [13]. The chemical interaction

can not only occur between adjacent cells, but can also act over long distances,

through complex intracellular mechanisms involving signal transduction

networks and gene network dynamics [14]. Nevertheless, living matter is not

only responding to soluble biochemical signals, but also to physical factors, e.g.

through surface cell receptors such as integrins and focal adhesion proteins, estab-

lishing a mechanical feedback of fundamental importance in both physiological

and pathological conditions [15,16]. Thus, endogenous and exogenous physical
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Figure 1. Comparison between some bacterial morphologies observed in biological experiments (a – c, reproduced with permission from references [24,23,13], respectively)
and the results obtained through the numerical simulations of the proposed mechanical model (d – f ). The numerical simulations are obtained setting (d ) R�0 ¼ 31,
Rout ¼ 155, b ¼ 160 and s ¼ 0.003, (e) R�0 ¼ 70, Rout¼ 350, b ¼ 8.5 and s ¼ 0.007, ( f ) R�0 ¼ 100, Rout ¼ 500, b ¼ 1 and s ¼ 0.007.
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forces act as key regulators of important intracellular signals

that drive the dynamical evolution of living organisms through

mechanotransduction [17].

In particular, we focus here on pattern formation in

expanding bacterial clusters, studying the influence of the

chemotactic motility of the colony, the interaction between

the bacteria and the substrate as well as the size effects in exper-

iments. A bacterial colony is an excellent biological system

model to study general principles of collective motion and

pattern formation in complex living organisms [10]. Further-

more, the study of cooperative migration and the onset of

branched morphologies in bacterial colonies is an extremely

multidisciplinary field of research, combining biological infor-

mation with the mathematical theories of nonlinear dynamics

and the physics and mechanics of non-equilibrium processes.

Thus, bacterial capability to develop elaborate branched

patterns, even starting from an initially homogeneous

microbial monolayer, has been intensively studied from the

biological point of view, plating different bacterial colonies

on a Petri dish covered with agar, under different environ-

mental conditions [18–23]. Some of the observed patterns

are reported in figure 1a–c, ranging from a disc-like colony

(figure 1a) to a densely branched morphology (figure 1c).

These biological observations highlight that nutrient

diffusion and the interaction with the substrate, together

with the cellular capability to proliferate and move either in

a random-walk-like fashion or in response to external

chemical signals (i.e. chemotaxis), are the key ingredients in

the progression of front instabilities.

Indeed, both random and biased flagellation-based, run-

and-tumble bacterial motions, in conjunction with collective

lubrication by secretion of surfactants, enable rapid colony

expansion (i.e. up to centimetres per hour [25]), as extensively

studied for many bacterial species. However, we remark for

sake of completeness that some bacteria also possess other

motility mechanisms for colonization. For example, recent

studies on Paenibacillus dendritiformis [25] and on myxobacteria

[26] have shown that very long bacterial cells do not swarm
with the standard dynamic patterns of whirls and jets, but

they rather form long tracks in which each individual bacter-

ium periodically reverses its direction, moving back and

forth along moderately curved lines. The short time between

this direction switching was found to be independent of

the number of neighbours and the environmental factors,

suggesting the existence of an extraordinary robust internal

clock for reversal events in bacteria. Although the evolutionary

advantages of such a reversible motion remain unclear and

deserve further studies [26], we focus in the following only

on the standard run-and-tumble colony expansion.

Many in silico mathematical models have been proposed to

reproduce the spontaneous onset of the complex patterns

observed during microbial growth. The theoretical approaches

can be divided into two main categories: hybrid and continuous

models. In hybrid models [18,27–30], the microorganisms are

represented as discrete, moving entities, whereas the time evol-

ution of the chemicals is described by reaction–diffusion

equations. In continuous models [19,22,29,31–34], the bacteria

as well as the nutrients and all the other possible factors

involved in the process are represented via their density per

unit surface. The most popular models of bacterial growth are

systems of reaction–diffusion equations [22,23,31–35], allow-

ing the description of colony patterns, including not only

spreading disc-like patterns, which was found to be consistent

with the solution of a two-dimensional Fisher equation for the

bacterial cell density [23,35], but also branched and fractal

ones [32,33]. Because bacteria expansion is modelled only by

diffusion (i.e. without allowance for chemotaxis), instabilities

arise either because of a nonlinear (e.g. density-dependent) dif-

fusion coefficient [22,33] or thanks to the introduction of a

bacterial transition from the active-motile and proliferative

state to a passive one [31]. Furthermore, the observed bran-

ched patterns have been recovered using the assumption of a

nutrition-limited process [19,22,24,33,36] or by combining sig-

nalling from a chemorepellent and a chemoattractant coupled

with a proper dynamic for the colony, e.g. derived from the

classical Keller–Segel model [37].
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All of these studies have focused on diffusing chemicals as

the major driving factors of the process, neglecting any mech-

anical balance laws. Some efforts to include the mechanical

considerations in the modelling of bacterial expansion during

the colony expansion have been done in hybrid models [28],

having the major drawback of the small number of individuals

that can be simulated numerically.

Moreover, the modelling of the viscous interaction

between the colony and the substrate has been recently pro-

posed in a continuous model of biofilm formation [3],

proving the instability of a bacterial biofilm with planar

front whose expansion relies on a nutrient-driven volumetric

mass source without any chemotactic motion.

In this work, we investigate the growth and chemotactic

mobility of a biological colony, coupled with the diffusion and

consumption of nutrients provided by the agar, using a conti-

nuum mechanical model at the macroscopic scale. Because

bacteria maintain contact with their neighbours and no gaps

appear during culture expansion, the continuum assumption

is effectively formulated. Moreover, bacterial growth within a

Petri dish is described as a free-boundary two-dimensional pro-

blem. In the following, we first present the mathematical model

based on thermomechanical considerations for describing the

expansion of a circular bacterial colony. We later perform the

linear stability analysis for the resulting diffusive circular

growth, and we study the dynamics of pattern formation in

the nonlinear regime using numerical simulations.
2. Mathematical model
A bacterial colony can be modelled as a two-dimensional

continuum body occupying a region denoted by V2, with a

moving boundary @V2 (figure 1d ). The bacteria are

immersed into a spatial outer domain, Vþ, with boundary

@Vþ that stands for the border of the Petri dish with radius

Rout. The domain Vþ represents the lubricant fluid on the

top of the agar, which seems to be collectively produced by

the bacteria themselves, although it could also be drawn

from the agar during colony expansion [18,19,24].

The mathematical model takes into account the diffusion

of the nutrients in the fluid on the top of the agar, the chemo-

tactic mobility of the bacteria and the mechanical interactions

with the substrate. Here, we consider a single nutrient species

with volume concentration n(x,t), e.g. peptone, diffusing

from the outer boundary @Vþ, with diffusion coefficient Dn

and consumed, with an uptake rate gn, only in the region

occupied by the living material, such that

_n(x, t) ¼ Dnr2n(x, t)� gnn(x, t) inV�,
Dnr2n(x, t) inVþ:

�
(2:1)

Considering that the living material can be macroscopi-

cally described by a Newtonian fluid moving at low

Reynolds numbers [38–40], the classical Darcy’s law gives

the velocity of the living colony, v ¼ 2Kprp, where Kp is

the permeability coefficient describing the friction properties

with the substrate and p is the pressure.

Then, assuming that the colony grows, thanks to a non-

convective mass flux m, without any significant volumetric

mass source, the standard mass balance for the bacterial spatial

density r reads @r=@tþr � (rv) ¼ r �m. Being bacteria mostly

composed by water, the incompressibility constraint leads to

rr � v ¼ r �m:
Biological evidence suggests that bacteria are able to

implement directional movements, by decreasing the tumbling

frequency of their flagella, when they move up the gradient of

the chemoattractant [41]. Thus, by neglecting the random

motion of bacteria with respect to the directional one, we can

assume that the non-convective mass flux vector is direc-

ted along the gradient of the chemical concentration, such

that m ¼ xrrn, where x is the chemotactic coefficient [37].

Substituting Darcy’s law in the mass balance equation for a

homogeneous microbial colony gives the following relation

between the pressure p and the nutrient concentration

r2p ¼ � x

Kp
r2n inV�: (2:2)

In order to solve the system of partial differential

equations (2.1)–(2.2), boundary conditions are to be pro-

vided. In particular, on @V2, we apply the Young–Laplace

equation for the pressure, the compatibility condition for

the moving interface and the classical continuity conditions

for the nutrient concentration and its normal derivative

p ¼ p0 � sbC,
dx@V�

dt
� n ¼ v@V� � n (2:3)

and

[[n]]j@V� ¼ 0, [[rn � n]]j@V� ¼ 0, (2:4)

where C is the local curvature of the free boundary,sb is the sur-

face tension of the interface, p0 is the constant outer pressure and

n is the outward normal vector at the boundary. It is worth

noting that the surface tension of the bacterial colony results

from the collective interaction with the biopolymers forming

the surrounding liquid environment [42].

In the following, we apply this model to a initially circular

bacterial colony of radius R0
* ¼ R*(t ¼ 0), deriving the

non-dimensional system of governing equations for the dimen-

sionless chemical concentration, �n, and the dimensionless

pressure, �p

_�n ¼ r2�n� �n inV�

r2�n inVþ

�
(2:5)

and

r2�p ¼ �br2�n inV�, (2:6)

using the following characteristic time tc, length lc, velocity vc,

pressure pc and chemical concentration nc: tc ¼ g�1
n ,

lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dng�1

n

p
, vc ¼

ffiffiffiffiffiffiffiffiffiffiffi
Dngn

p
, pc ¼ DnK�1

p , nc ¼ njRout
, where

njRout
is the fixed concentration at the outer border of the Petri

dish. The dimensionless boundary conditions for the pressure,

the chemical concentration of the nutrients and the velocity, on

the colony front @V2, read

�p ¼ �p0 � �s�C (2:7)

[[�n]]j@V� ¼ 0, [[r�n � n]]j@V� ¼ 0 (2:8)

and
d�x@V�

dt
� n ¼ �v@V� � n : (2:9)

On the other hand, the boundary condition on the nutrient con-

centration on @Vþ is given by �n(t, Rout) ¼ 1. For the sake of

simplicity, we omit in the following the barred notation to

denote dimensionless quantities.

The non-dimensionalization procedure leads to the defi-

nition of four dimensionless parameters: two of them,

b :¼ xnc=Dn and s :¼ sbKpg
1=2
n D�3=2

n are related to the che-

motactic response and the bacteria–substrate interaction

http://rsif.royalsocietypublishing.org/
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Figure 2. Dispersion diagrams, varying (a,c) s and (b,d) b, for a colony of radius R* ¼ 31 in a Petri dish of radius Rout ¼ 155 in (a,b) and a colony of radius R* ¼

70 in a Petri dish of radius Rout ¼ 350 in (c,d ). For the sake of graphic clarity, the solid lines are obtained by interpolating the discrete values of l obtained from
the numerical solution of the dispersion equations (3.1) for the integer values of k[Nþ. (Online version in colour.)
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(motility parameters), whereas the other two, R�0 (i.e. dimen-

sionless initial radius of the circular colony) and Rout

(i.e. the dimensionless outer radius of the Petri dish) define

the geometrical properties of the system with respect to the

diffusive length, lc (size parameters). In particular, the dimen-

sionless parameter b represents the ratio between the energy

required for the chemotactic expansion of the colony and the

energy provided by the diffusive nutrients, whereas consider-

ing that Kp can be related to the friction between the colony and

the substrate, z, through Kp ¼ lc/z, the dimensionless par-

ameter s becomes the ratio between the surface tension of

the bacterial colony and the product of the colony–substrate

friction and the diffusion coefficient, i.e. s ¼ sb/(Dnz).
3. Results
3.1. Linear stability analysis
The linear stability analysis for standard problems with a

moving interface is usually performed by perturbing a steady

state or a steady wave profile in a comoving frame, such as tra-

velling wave solutions for infinite rectilinear fronts. Because the

governing equations for the finite bacterial domain do not admit

such kinds of solution for a circular front, let us consider the

quasi-stationary expansion of a circular bacterial colony of

radius R*(t), assuming that the diffusive process is much faster

than the border expansion, so that the time-derivative term in

(2.5) can be neglected. The quasi-stationary velocity of the circu-

lar front has only a radial component, i.e. v� ¼ v�r er, with

v�r ¼ bn0I1(R�)=I0(R�), where Ij(r) is the modified Bessel

function of the first kind of order j, evaluated in r, and

n0 ¼ (1þ I1(R�)=I0(R�)R� log (Rout=R�))�1 is the nutrient con-

centration at the free boundary, in the quasi-stationary state.

Further details on the derivation of the quasi-stationary solution

are presented in the electronic supplementary material.

Considering a perturbation of the moving interface given

by R(u, t) ¼ R*(t) þ 1eltþiku, it is possible to find the dis-

persion equation relating the time growth rate l to the

integer wavenumber k in an implicit way, as a function of

the four dimensionless parameters b, s, R* and Rout

l ¼ � s

R�3
(k3 � k)þ bAl

ffiffiffiffiffiffiffiffiffiffiffi
lþ 1
p

Ikþ1

ffiffiffiffiffiffiffiffiffiffiffi
lþ 1
p

R�
� �

� bn0 (1þ k)
I1(R�)

R�I0(R�)
� 1

� �
, (3:1)

for l= 21. More information on the procedure used to obtain

the dispersion relations and the determination of the coefficient

Al can be found in the electronic supplementary material.
Interestingly, equation (3.1) shows that the amplification

rate of the perturbation over time depends on the radius of

the colony, R*. The dispersion diagrams presented in figure 2,

obtained solving iteratively the dispersion equation (3.1)

through the secant method, demonstrate that the colony bound-

ary is always linearly unstable for large wavelengths. The

resulting dispersion curves show a stabilization of the front at

short-wavelengths, which is also typically found in some classi-

cal fluid instabilities [43]. Indeed, the governing equations

closely resemble those driving the Saffman–Taylor instability

in a Hele–Shaw cell, where s has the same physical meaning

of the capillary number, introducing a correction in the dis-

persion relation proportional to (k 2 k3) [44]. Such a

regularizing effect is even enforced in our model by the pres-

ence of the Laplacian operator at the right-hand side of

equation (2.2), corresponding to a mass source term which is

not considered in viscous instabilities. While for a planar

front, one would expect to find l ¼ 0 for k ¼ 0 for translational

symmetry, we note that for the circular front we consider

k [ Nþ, because k ¼ 0 would correspond to the quasi-static

expansion of the circular front. Furthermore, even if b some-

what physically corresponds to the influx volume flow rate in

an initially circular front, the velocity of the quasi-stationary

front depends in this problem on the initial radius R*, while it

is often taken as a constant in viscous fingering problems [45],

thus introducing a marked size-dependence in the resulting

dispersion equation. In both cases, the linear stability analysis

can identify the finite critical (or characteristic) wavelength

with the most unstable growth rate, which increases for increas-

ing b. Nonetheless, even if such linear stability curves are

indicative of unstable front dynamics, suggesting the nonlinear

formation of dendritic patterns [46], we also expect to find

differences in the fully nonlinear dynamics owing to the more

complex functional dependence on the growth and geometri-

cal parameters in this problem. Furthermore, the maximum

time growth rate increases as far as b increases, as shown in

figure 2b,d. Comparing the dispersion curves for different

dimensionless radii of the colony, while maintaining the ratio

between R* and Rout as a constant (which corresponds to a vari-

ation of the diffusive length), it is possible to note that increasing

such a size parameter increases the range of unstable wavenum-

bers and the characteristic wavenumber, but it decreases the

value of the fastest growth rate (figure 2b versus d).

3.2. Numerical simulations
Because the linear analysis indicates the occurrence of a

front instability with a finite characteristic wavenumber, we

investigate the nonlinear pattern formation of the bacterial

http://rsif.royalsocietypublishing.org/
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Figure 3. Morphological diagram of the expanding bacterial colony for different values of b and Rout in the numerical simulations, setting s ¼ 0.007 and
Rout/R0

* ¼ 5 fixed. (a) The contour of the colony is plotted at different instants of time. The top-right charts report the area/perimeter ratio of the bacterial
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colony using a finite-element code implemented in FreeFemþþ
(http://www.freefem.org). The equations (2.5)–(2.6)

are solved on an adaptively refined triangular grid, fitting

the moving interface. Given the concentration of nutrients at

time ti, we first compute the pressure pi, through equation

(2.6) and then the velocity field, using Darcy’s law. We

are yet able to explicitly move the boundary and solve (2.5)

for the concentration at time tiþ 1, using an implicit-Euler

scheme.

The numerical results are reported in figure 3a showing the

emerging patterns versus the two dimensionless parameters b

and Rout, at fixed Rout=R�0 and s.

In particular, it is found that the branching of the colony

is strongly favoured by smaller values of the motility

parameter b. Because b drives the velocity of the quasi-

stationary front, we find that the instability of the contour is

enhanced by a low expanding velocity, which is a common fea-

ture of growing biological systems in a diffusion-dominated

regime [5]. In fact, small values of b correspond to situations

in which the diffusion of chemicals is dominant on the

chemotactic mobility of the colony.

Furthermore, figure 3a points out the existence of a size

effect in pattern formation, showing that the size parameter

Rout determines the characteristic wavelength of the branching

process. In fact, keeping the aspect ratio Rout=R�0 constant, a

larger Petri dish Rout, with respect to the diffusive length lc,
determines branched patterns characterized by a smaller

wavenumber.

The morphological diagram in figure 3a also reveals that

the number of emerging fingers perfectly corresponds to the

critical wavenumbers predicted by the linear stability analysis.

Indeed, for the particular case b ¼ 1, R�0 ¼ 31 and Rout ¼ 155,

the blue dispersion curves in figure 2a,b predict the fastest lin-

early unstable mode with kc ¼ 10, whereas in the numerical

simulations (figure 3a top-right), 10 branches can be observed.
Moreover, for b ¼ 1, R�0 ¼ 70 and Rout ¼ 350, the analytical

characteristic wavenumber (see the blue dispersion curves

in figure 2c,d) is kc ¼ 19, which is confirmed by the numeri-

cal simulation in figure 3a bottom-right, where 19 totally

developed branches appear. Considering b ¼ 4.25, the maxi-

mum in the red dispersion curve in figure 2d shifts to kc ¼ 22,

which is in agreement with the 22 fingers depicted in

figure 3a bottom-centre, where the same parameters are con-

sidered. The agreement between numerical and analytical

results is good whenever the velocity of the front is slow

enough to satisfy the quasi-stationary hypothesis, suggesting

that in this regime the nonlinear effects fix the linearly unstable

pattern. Conversely, the nonlinearities have a much stronger

stabilizing effect on the colony profile when considering

initially fast front dynamics, corresponding to high values of

the parameter b. This fully nonlinear behaviour is strikingly

similar to the diffusion-dominated instability in other bio-

logical systems, where rounder patterns are observed for

increasingly faster initial fronts [5].

The morphological diagram in figure 3a also highlights

that the occurrence of branching can be detected when the

ratio between the area of the colony and its perimeter over

time (square markers) deviates from half of the average

radius of the colony (dashed lines).

Another important parameter in the definition of

branched patterns is the roughness of the profile, measured

as the root of the mean square deviation of points on the

front from the average radius of the colony [29]. Either plot-

ting this parameter as a function of time (figure 3a) or as a

function of the averaged radius of the colony, �R, normalized

with respect to the initial radius, R�0 (figure 3b), it is possible

to observe that the interface roughness continuously

increases for branched patterns, whereas it later saturates to

an almost constant value only in compact colonies, in agree-

ment with the experimental measurements performed in

http://www.freefem.org
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the motion of the free boundary. The simulations were obtained imposing Rout ¼ 155, R�0 ¼ 31 and b ¼ 1. The dynamic plots of the contours are reported in the
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reference [47]. In summary, it is found that the motility par-

ameter b defines the occurrence of the branching regime,

whereas the size parameter Rout determines the characteristic

wavelength of the branching process.

Furthermore, numerical simulations agree with the theory

in predicting that an increase of the surface tension s has a

stabilizing effect also in the nonlinear regime (figure 4a and

the electronic supplementary material, movies S3–S5).

Another important parameter in the model is the initial size

of the colony R�0, with respect to the diffusive length. In

order to assess the influence of this parameter on the onset

of branches, we have run a set of simulations keeping Rout,

s and b fixed and letting R�0 vary. The resulting morphologi-

cal diagram is reported in figure 4b, showing that more

fingers develop as the initial radius of the colony increases.

Let us now briefly discuss the characteristics of the

branching process in the expanding colony. Once branching

has been triggered, all developing fingers elongate in the

radial direction. Further branching can occur, even though

some of the second-generation fingers remain very short

because of the geometrical constraints imposed by their

neighbours. In figure 5, the geometrical characteristics of

the fingers are plotted versus time. We define the finger

base, B, as the distance between two subsequent points of

local maximum for the curvature of the moving front. The

amplitude of the finger, A, is defined as the maximum distance

between the points belonging to the finger contour and the cor-

responding finger base segment. The numerical results in

figure 5 correspond to the simulation on the upper left of

figure 3. It is observed that at an early stage (up to t ¼ 1650)

both the amplitude and the base strongly increase for each of

the five evolving fingers. As soon as second-generation fingers

appear (from t ¼ 1650 on), the amplitude of the new ones
strongly increases, whereas the base remains almost constant

in time. We report in the table within figure 5 the parameters

of the power-law curve, c . ta, which best fits the numerical

data for the base and the amplitude of the fingers. Interestingly,

at the early stage, the best-fitting exponent for the ratio ampli-

tude/base of the fingers is �0.45, which is very close to

the expected square root growth over time exponent in a

diffusion-driven instability [43].

Let us now return to the dimensional physical quantities in

order to discuss the results of the numerical simulations with

respect to the biological data. Available data in experimen-

tal literature for expanding colonies are shown in table 1. In

particular, in the following, we compare the results of the simu-

lated patterns of our model, reported in figure 1d–f, with their

corresponding experimental counterparts in figure 1a–c. In all

cases, the Petri dishes in the experiments have the standard

radius of 44 mm.

As shown in figure 1d, the evolution of the disc-like

colony observed in reference [24] can be reproduced by

taking a diffusion coefficient Dn ¼ 3 � 10211 m2 s21, and a

small uptake rate, g ¼ 3.7 � 1024 s21, giving a characteristic

length lc � 285 mm, corresponding to a dimensionless external

radius of Rout � 155. Fixing b ¼ 8.5, we obtain an average

velocity of the front equal to �3.2 mm h21, which is in the

order of magnitude of the values found in literature for round

and compact colonies, such as the one in figure 1a (table 1).

Considering the characteristic concentration cn ¼ 0.1 mM, as

the one used in reference [48], the parameter b ¼ 8.5 describes

a chemotactic coefficient x � 48� 1025 cm2/(s mM), which is

also in the biological range (table 1).

Thus, disc-like patterns are found to arise in situations in

which the chemicals have an intermediate diffusion rate

and are consumed by bacteria at a slow rate. Moreover, an

http://rsif.royalsocietypublishing.org/
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Figure 5. Fingers’ base and amplitude in the case b ¼ 1, Rout ¼ 155, R�0 ¼ 31, s ¼ 0.007. (a) Base and amplitude of fingers (circles): up to time t ¼ 1650,
five principal fingers develop, then tip-splitting occurs and 14 fingers emerge. (b) Numbering of the fingers considered in the simulation. (c) Table reporting the
fitting parameters of the data with a power-law curve of the kind cta (solid lines). (Online version in colour.)

Table 1. Biologically meaningful ranges for the parameters of the model.

values refs

Dn 10211 – 1029 m2s21 [3,24,48,49]

gn 1024 – 1023 s21 [50]

vcolony 60 – 400 mm h21 (finger);

60 – 300 mm h21 (Eden);

4 – 18 mm h21 (disc)

[13,22]

[22,31]

sb 0.07 nN mm21 [51]

z 1 – 102 nNs/(mm3) [52]

x 3.75 – 188 � 1025cm2/(s mM) [48,53]
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Eden-like pattern (i.e. a clusters whose inner structure is almost

completely compact but whose surface is comparatively rough

[23]) is observed considering a smaller diffusion coefficient

Dn ¼ 10211 m2 s21 [24] and an uptake rate g ¼ 6.5 � 1024 s21

(i.e. lc � 124 mm and vc � 290 mm h21, Rout � 350) as depicted

in figure 1e. Keeping b ¼ 8.5, the resulting mean front velocity

is equal to 136 mm h21, which is in agreement with the reported

velocities for such patterns (table 1). In this case, under the same

assumptions used above, we obtain a consistent chemotactic

coefficient of about x � 0.85 � 1025 cm2/(s mM). Therefore,

our model predicts that Eden-like structures can be obtai-

ned in the range of relatively small diffusion coefficients of

the nutrients, intermediate uptake rates and small chemotactic

behaviour. Although reproducing the typical macroscopic

roughness of a compact colony, we have to remark that our con-

tinuous model is not able to capture the observed microscopic

roughness [31], which would require a discrete approach at a

cellular scale.

Furthermore, we have found that branched structures

arise in simulations with high values of the dimensionless

external radius Rout and small values of the motility par-

ameter b, physically corresponding to high values of both

nutrient diffusion and uptake rate, coupled with a low
concentration of nutrients in the agar. Indeed, the develop-

ment and evolution of the fingers reported in reference [13]

are reproduced by our simulations in figure 1f, considering

g ¼ 0.11 s21 and Dn ¼ 10210 m2 s21, so that lc � 30 mm and

tc � 9 s. Accordingly, the observed displacement of about

2.4 mm in the first 22 h, for an initial colony with a dia-

meter of about 6 mm [13], perfectly corresponds to the

displacement of the front recorded in this simulation

(i.e. 82.lc at T ¼ 9000, for a colony with R0* ¼ 100). In this

case, we fix b ¼ 1, corresponding to a chemotactic coefficient

x � 1025 cm2/(s mM), which is slightly below the typical

values reported in reference [48].

In summary, our model is able to predict the observed

experimental morphologies, reproducing that higher vel-

ocities of the front, which are linked to a stronger response

of bacteria to the external chemical field (i.e. high x), corre-

spond to more rounded profiles, in accordance with

biological observations [22,31].

Let us finally add a few considerations about the role of

surface tension for pattern formation. Considering a friction

coefficient z ¼ 1 nNs/(mm) (compatible with the values

reported in table 1), the surface tension for the three simulations

results in the range sb � 0.0920.7 nN mm21, which is slightly

higher than the values found for cell clusters (table 1). Accord-

ingly, although we find that disc-like colonies can also be

numerically obtained by increasing the dimensionless motility

parameter s (figure 4), this would correspond to much higher

values of the surface tension than the biological range. In con-

clusion, we argue that the compact expansion of the bacterial

front likely relies more on the capability of bacteria to actively

move and consume nutrients and on the diffusive properties

of the chemicals in the agar, rather than on the surface tension

and the adhesive properties of the colony.
4. Discussion
In this work, we have presented an analytical and compu-

tational analysis of a continuum model for studying pattern

http://rsif.royalsocietypublishing.org/
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formation during the spreading of an initially circular bac-

terial colony on a Petri dish. The proposed model differs

from previous ones [3,23,33] by taking into account both

the chemical effects, dictated by the diffusion of nutrients

and the chemotactic response of bacteria, and the mechan-

ical/viscous interaction between the colony and the

substrate. In particular, four dimensionless parameters are

found to characterize the model dynamics: two of them

describe the factors that drive the motility of the colony, i.e.

b represents the competition between chemotactic and

diffusive effects, whereas s is the ratio between the surface

tension of the colony and the friction with the substrate,

whereas the initial dimensionless radius of the colony, R0*,

and the dimensionless radius of the Petri dish, Rout, account

for size effects.

The linear stability analysis has evidenced that an initially

circular colony is always linearly unstable to perturbations of

the interface, having the typical dispersion curves found for

fluid instabilities, such as viscous fingering. The numerical

simulations of bacterial spreading in the fully nonlinear

regime have confirmed the development of undulated

finger-like structures, which align in the radial direction

and later undergo further branching, and the existence of a

characteristic wavenumber, as predicted by the linear stab-

ility analysis. While the finger dynamical behaviour shows

the occurrence of the typical shielding and tip-splitting

found in Saffman–Taylor instability [44], we find here a

more complex dependence of the characteristic length scales

of such fingers on the size parameters of the problem, with

more branched patterns appearing with larger Petri dishes,

whereas the emergence of branching is driven by the motility

parameters, being especially favoured by small values of s

and b, which also correspond to slow moving fronts. How-

ever, through comparison of the model parameters with

real biological data, we argue that the selection mechanism

of branched patterns likely relies on the motility parameter

b, i.e. on the interplay between diffusion and chemotaxis,

rather than on s. In particular, in such a range, the aspect

ratio of the fingers is found to scale to approximately the

square root of the time. Because b drives the velocity of the

colony interface, the model also confirms the experimental

observations that compact (resp. branched) patterns arise

for fast (resp. slow) expanding colonies [22,31]. Furthermore,

the scaling laws for the roughness coefficient of the interface

in numerical simulations are consistent with the ones

reported in the biological investigations [35].

Interestingly, the modelling of the branching structures

does not require neither the introduction of a nonlinear

(e.g. density-dependent) diffusion coefficient, as in references

[22,33,54], nor the transition from the active-motile and prolif-

erative state of bacteria to a passive state, as in reference [31].

The experimental morphologies reported in references

[13,23,24] (figure 1a–c) are also compared with the patterns

resulting from the numerical simulations of the proposed
model (figure 1d–f ), where the relevant biological parameters

in each experimental setting are used as input. A striking

similarity has been found between experiments and model

simulations either on the emerging disc-like, Eden-like and

branched structures, or on the pattern dynamics during the

expansion process.

It is worth noting that the proposed model is not able to

reproduce the evolution of colonies in which fractal patterns

or microscopic roughness appear, because other effects

should be taken in account at scales where a continuous rep-

resentation of the colony is no longer a valid assumption.

Alternatively, highly fractal patterns can be reproduced by

using either reaction–diffusion models with nonlinear

terms [24,32,33] or discrete/hybrid models [18,29].

In conclusion, the results of this study suggest that the

pattern selection and evolution in expanding bacterial colo-

nies is driven by a complex interplay of the chemotactic

response, the substrate–bacteria interaction and the size

effects. Furthermore, the present study highlights the neces-

sity to perform new experimental tests with a better

quantitative characterization of both the chemical response

and the mechanical forces involved during the bacterial

expansion, as done for eukaryotic cells [55,56]. Indeed, even

if the formation of spatial patterns in growing bacterial

colonies has been intensely studied during the last years,

further progress in the field has been hindered by the lack

of detailed experimental data [10]. Such a combined

approach has the potential to foster our understanding of

pattern selection and dynamics in bacterial colonies, with

important applications for designing and engineering

controlled patterns.

Future works will be focused on the refinement of the

proposed model, simulating more realistic initial and bound-

ary conditions, possibly supported by novel biological

experiments and coupled with a more complex represen-

tation for the living material (e.g. including viscoelasticity

[57]). Further developments should also include the active

motility and the chemomechanical interactions occurring at

the microscopic scale inside the colony, which are of funda-

mental importance in the appearance and evolution of

patterns in some bacterial strains [10,25,26].

Finally, future applications of this model shall concern

free-boundary problems in other biological systems (e.g.

wound healing), aiming at giving insights on the role

played by physical forces in directing self-organization

during the development of living organisms.
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