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Abstract

In this paper we investigate the practical and methodological use of Univer-
sal Kriging of functional data to predict unconventional shale gas production
in undrilled locations from known production data. In Universal Kriging of
functional data, two approaches are considered: 1) estimation by means of Cok-
riging of functional components (Universal Cokriging, UCok), requiring cross-
variography and 2) estimation by means of trace-variography (Universal Trace-
Kriging, UTrK), which avoids cross-variogram modeling. While theoretically,
under known variogram structures, such approaches may be quite equivalent,
their practical application implies different estimation procedures and model-
ing efforts. We investigate these differences from the methodological viewpoint
and by means of a real field application in the Barnett shale play. An exten-
sive Monte Carlo study inspired from such real field application is employed to
support our conclusions.

Keywords: Geostatistics, functional data, trace-variogram, shale gas,
unconventional resources

1. Introduction

Functional data analysis (FDA, Ramsay and Silverman, 2005) has gained
renewed attention in the modeling of phenomenon that can be regarded as sta-
tistical observations displaying systematic variation. In particular in terms of
time series, FDA has been considered as an alternative to multivariate analysis,
where in FDA the data is seen as a single functional object with an underlying
smooth dynamic that drives variation in time. While first applications have
been in bio-informatics (see Ullah and Finch, 2013, for a recent review), FDA
has been gaining attention both in the development of theory and in its appli-
cation in the Earth & Environmental Sciences, for example in climate science
(Besse et al., 2000), water resources (Josset et al., 2015; Satija and Caers, 2015),
environmental science (Henderson, 2006; Yan et al., 2015; Sancho et al., 2015),
oceanography (Nerini et al., 2010), land use (Besse et al., 2005) and geology
(Manté and Stora, 2012; Menafoglio et al., 2014, 2015).
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Particular to the application in the Earth Sciences is the spatial context
and the need for spatial models for functional data, as has historically been
developed in geostatistics (Matheron, 1969; Cressie, 1993). A recent body of
theoretical work has been published, extending Ordinary Kriging to the func-
tional case (e.g., Delicado et al., 2010; Nerini et al., 2010; Menafoglio et al.,
2014; Menafoglio and Petris, 2015, and references therein). However, in sev-
eral practical applications, there is a need to address phenomena that require
non-stationary approaches in space. To address such need, Universal Kriging of
spatial functional data has been proposed by Caballero et al. (2013); Menafoglio
et al. (2013). An alternative approach to deal with non-stationarity is proposed
by Ignaccolo et al. (2014).

In this work, we present a timely and economically important application of
functional data, namely to the modeling and forecasting in unconventional shale
resources. The term “unconventional” emanates from the way such resources
are exploited: a sand-water mixture is injected into horizontal wells, fracturing
nearly impermeable shale formations enabling production of commercially sig-
nificant hydrocarbon volumes. Shale production can be considered as one of the
driving factors for low oil/gas prices in 2015 (Manescu and Nutio, 2015) which
has put financial pressures on further resource development (“The Shale Indus-
try Could Be Swallowed By Its Own Debt”, Bloomberg news, July 18, 2015).
As a consequence, technical innovation is required for such resources to remain
competitive with conventional exploitation which tend to have lower costs. In
addition, better modeling, understanding and more optimal drilling practices
will lead to lesser environmental impact (see, e.g., Vidic et al., 2013). Part of
such technical innovation lies in understanding the impact of the geological and
hydraulic fracturing factors on production, which drives the spatial variability
of production in wells. Due to the complexity involved, statistical approaches
based on data are preferred over physical modeling approaches (Mohaghegh,
2011, 2013; Kormaksson et al., 2015; Grujic et al., 2015). Production rates in
wells start from an initial peak in production right after hydraulic fracturing
followed by a long multi-month decline. In this paper, we focus on modeling
the spatial distribution of production decline rates only. The latter are com-
monly observed at discrete time points, at which the actual data are affected
by a measurement error. In this case, a data preprocessing is required to obtain
a set of smooth production rate curves from raw observations. This situation
is quite common in FDA, and several smoothing methods are available in the
literature, such as projection over a functional basis (e.g., Fourier, B-splines) or
local polynomial smoothing (Ramsay and Silverman, 2005).

In this context, the first aim of this paper is to investigate the use of Univer-
sal Kriging of functional data to the spatial interpolation of gas production rate
curves (GPRCs) which is required to estimate production for undrilled location.
Here, we consider data from the prolific Barnett Shale and our data set contains
922 wells drilled over the basin. Such dataset consists of functional data (de-
cline rate) varying over space (geographic coordinates). Our second aim is to
compare two approaches to the problem of functional Kriging: 1) estimation by
means of Cokriging of the components over a functional basis (Universal Cok-



riging, UCok) which requires cross-variography, and 2) estimation by means of
trace-variography (Universal Trace-Kriging, UTrK), which follows the approach
of Menafoglio et al. (2013) and avoids cross-variogram modeling. The former
constitutes an original extension to the non-stationary setting of the strategy
of Nerini et al. (2010). Here, we show how to adapt the approach when rely-
ing upon a functional principal component analysis, that allows to obtain an
optimal and low dimensional basis representation of the observations. Our com-
parison is with respect to the Barnett shale data set and a Monte Carlo study
based on that dataset.

The paper structure is as follow. We first describe, in Section 2, the methods
as well as provide an overview of the theoretical and methodological implications
for comparison. Then in Section 3 we apply and evaluate both methods to the
Barnett shale and provide and in-depth Monte Carlo comparison.

2. Methodology

In this Section, we pursue the functional and geostatistical approach to the
analysis of GPRCs, and explore two alternative methods for their spatial pre-
diction.

We call (2,5, P) a probability space, 2 denoting a space of events, § a o-
algebra, and P a probability measure. We indicate by zs,, ..., s, the observed
GPRCs! (possibly smoothed) at a set of given locations sy, ..., 8, in an Euclidean
spatial domain D C R2. As in classical geostatistics, we assume the data to be
a partial observation of a random field

{Xs,s € D}, (1)

on (Q,F,P), where the index s indicates a location in D. As the observations are
curves, the random field (1) is assumed to be valued in an infinite-dimensional
(functional) space. Specifically, throughout this work we assume that, for any
location s € D, the element X, is a random element of the space L*(T) of
squared-integrable real-valued functions on the time interval T' = [1,60]. The
space L?(T) (or L? for short) is a separable Hilbert space if equipped with the
usual inner product (f, g) = [ f(t)g(t)dt and the induced norm || f|| = \/(f, f),
for f,g € L*(T).
We assume that process (1) is non-stationary, and represent its element X,
at a generic location s € D, as the sum of its mean mg, called drift, and a
zero-mean stochastic residual d5 that is stationary in the sense that is specified
below, i.e.,
Xs=mg + ds. (2)

Here, the mean ms of Xz can be defined point-wise as mg(-) = E[X(+)], and
is a non-random element of L?(T). Hereafter in this work, we assume that the

1To preserve the positivity of GPRCs, the model and the subsequent procedures can be
applied to the log-transformed GPRCs.



mean is non-constant in space, and we model its spatial variation through a
functional linear model in L?(T) of the form

L

ms(t) = Zal(t)fl(s), teT,seD, (3)

=0

where {a;,l = 0,..., L} are functional coefficients in L?(T'), independent of the
spatial location, while { f;(s),l = 0, ..., L} are known scalar regressors depending
on s € D. Finally, we assume that the residuals form a zero-mean random
field {ds,s € D} on (2,5, P), with stationary spatial covariance function. The
latter is defined as the function that maps any increment between locations in
D, (s1 — s2) € R?, into the cross-covariance operator on L?(T') between the
elements of the process at those locations:

C(s1 — 82)x = E[(ds,,7)0s,], x € L*(T). (4)

Under these assumptions, and given the random observations X, ..., X5 at
the sampled locations, we aim to predict the unobserved element X, of process
(1) at a target location sy € D.

2.1. Universal Cokriging of functional data

We here present a novel and original extension to the non-stationary setting
of the Kriging predictor for functional data proposed by Giraldo (2009) and
Nerini et al. (2010).

Throughout this Subsection, we consider an orthonormal set {eg,1 < k <
K} in L?(T), and we assume that each element of process (1) can be represented
through the expansion over this set, i.e.,

K
Xo =) &(s)er, seD, (5)
k=1

where £ (8) = (X, ex) is the projection of X on the k-th element of the basis.

Under representation (5), one can characterize process (1) through the distri-
butional properties of the K-dimensional random field of coefficients {£(s), s €
D}, with &(s) = (&1(8), ..., €k (s))T. For instance, one can define the drift mg
of the process at s in D, through the drift of the field {£(s), s € D} at the same

location, mé(s) = (m5(s), ..., m5 (s))7,
K K
ma() =D E&(s)lex(-) = Y mi(s)ex(:). (6)
k=1 k=1

Note that under model (3), the drift of the coefficients field is described by the
linear model

L
mi(s) =Y aufi(s), seD, (7)
=0



with ag; = (a, er). Indeed, one has

L
(maer) =Y _(a,ex) fis) = mi(s), (8)
=0

where the first equality follows from Eq. (3), and the second equality is obtained
by using Eq. (6). We thus represent the elements of the multivariate field
{&(s),s € D} as

&(s) = m¥(s) +e(s), (9)

where {€(s), s € D} forms a zero-mean K-dimensional random field.

If the assumption of second-order stationarity (in L?(T)) for {ds,s € D}
holds true, then also {€(s),s € D} is second-order stationary (in R¥). Indeed,
under representation (5), one has the following matrix representation of the
spatial covariance function C

K
C(s1 — s2)x ZZ 9)xjer, 81,82 €D, (10)
j=1k=1

where ka(sl — 82) = (C(s1 — s2)ej,eg). The latter quantity is equivalently
found as the covariance between the coefficients £;(s1) and & (s2):

C%.(s1— s2) = E[(&(s1) — m$ (1)) (k(s2) — mi(s52))]- (11)

As such, the cross-covariogram of &; and & is stationary for all j,k =1,..., K.

Given the observations Xg,,..., X5, , we aim to predict X, via the Best
Linear Unbiased Predictor (BLUP) in the sense of Nerini et al. (2010), that is
Xi =31 AfX,,, where A, ..., A} are the operators that solve the constrained
optimization problem

n 2 n
min E ||Xso — > AiX, X, — ZAZXSZ,] =0, (12)
=1 =1

among all the linear Hilbert-Schmidt operators A, ...,A,, on L*(T). We call
Universal Cokriging (UCok) predictor the solution X of problem (12).

Finding the UCok predictor is equivalent to determine an optimal estimate
of the coefficients vector £(sg) at the target location sg by solving the following
Cokriging problem

min E H&(so) —zn:ILiﬁ(s
i=1

s.t.

n

£(s0) — ZL‘E(&)} =0, (13)

i=1

st. E

REK

among all the matrices of weights L1, ..., L,, in RE*¥_ Similar to the stationary
setting (Nerini et al., 2010), this follows from the observation that (i) the op-
erators A;, i = 1,...,n, admit a matrix representation through L;, i = 1,...,n,



analogous to that of C in Eq. (10); (ii) by exploiting expression (5) and Parsival
identity, one has that the objective functionals in Egs. (12) and (13) coincide;
and (iii) by developing the unbiasedness constraint in Eq. (12) in the light of
Eq. (5) one gets

n
E leU - Z A X,

=1

K
=Y E lfk(s()) -

=1

Fren] o o0
i=1 k

which is the null function if and only if E[£(sg) — Y i, L;&(s;)] is the null
vector in R¥.

Therefore, the UCok predictor X} of X, can be found as X = Zle & (so)ex,
where £"(s9) = >, L¥&(s;) and the optimal matrices of weights are found by
solving the Universal Cokriging system (Chiles and Delfiner, 1999)

Cll e Cln ]Flo T ]FlL ]Ll COl

Cnl o (Cnn IF’nO o IF’nL ]Ln — COn (15)
Fio -+ Fpo O -+ 0 Zo Foo |’

Fir -+ Fpr O - 0 7y, For,

where C;; is the cross-covariance matrix between £(s;) and &€(s;), 4,5 =1,...,m;
Cip is the cross-covariance matrix between £(sg) and &(s;), i = 1,...,n; Fy =
diag(fi(8:), ..., fi(s;)) € REXK and Z;, [ = 0, ..., L are the matrices of Lagrange
multipliers.

2.2. Universal Trace-Kriging

In this Subsection, we recall an alternative approach to Kriging, which has
been proposed by Menafoglio et al. (2013). Such approach enables one to get rid
of the assumption of the basis representation (5) by defining a different measure
of spatial dependence.

Call trace-covariogram of the residual field {05, s € D}, the real-valued func-
tion Cy,. defined, for s1,s2 in D and in the previous assumptions, as

Cir(s1 — s2) = E[(ds,,0s,)]- (16)

The trace-covariogram defines a global measure of spatial dependence, in the
sense that, for any fixed increment (s; — s2) in R?, it is the trace of the corre-
sponding cross-covariance operator C(s; — 82). The trace-covariogram plays the
same role as the univariate covariogram, but in the infinite-dimensional setting.
Here, the corresponding trace-variogram is defined as

29 (81 — 82) = E[[|ds, — 05, %], (17)

and describes the expected increment in the value of the (functional) process
for a given increment in the spatial domain. On these bases, Menafoglio et al.



(2013) define and explore a global notion of stationarity for functional random
fields, weaker than that considered so far. For sake of clarity in the following
comparisons, we here keep the same stationarity assumption on the residual
field as those introduced before.

To predict the unobserved element X, given the observations Xs,, ..., X, ,
Menafoglio et al. (2013) consider a Kriging predictor in the form of a linear com-
bination of the observations. We call Universal Trace-Kriging (UTrK) predictor
the linear unbiased predictor X3 = 3" | A\*X,,, whose weights A}, ..., \; solve

2
st. E

min]E‘

Xog = > XX, Xay— > Aixsil =0, (18)
=1 i=1

over all the scalar weights A1, ..., A, in R. The authors then prove that problem
(18) is well-posed even if one relies only upon the global definitions of spa-
tial dependence introduced above. Indeed, the weights A}, ..., A} are found by
solving

Cir(0) -+ Cy(hin) fo(s1) - fr(s1) A1 Cir(h10)
Ctr (hnl) o Ctr.(o) fO (Sn) o fL (Sn) )\n _ Ctr (hnO)
fo(s1) - fo(sn) 0 0 o fo(s0)
fus) o fuls) 0 e 0 G fa(s0)

(19)

with h;; = s; — s;, and (o, ..., (z the Lagrange multipliers associated with the
(L + 1) unbiasedness constraints.

2.8. Methodological comparison

Even though the methods devised in Subsections 2.1 and 2.2 do achieve
the same purpose, namely the geostatistical prediction of functional data, they
are intrinsically different. We here compare the different perspectives they are
grounded on, to underline the methodological strengths and weaknesses of the
two approaches to deal with real studies.

Data Representation. The derivation of the UCok predictor relies upon
the assumption that the elements of the process admit expansion (5), for a
given order K and an orthonormal set {ex,1 < k < K}. In FDA, this is a
viable assumption, as analyses in this field commonly employ a preprocessing
step (or smoothing) based on an expansion over a truncated functional basis
(e.g., Fourier basis). This step enables one to smooth the actual discrete ob-
servations, by removing from the measured curves the effects that are chiefly
due to the measurement error. Non-orthonormal bases may be employed in the
smoothing procedure (e.g., B-splines). Nevertheless, one can always perform a
change of basis to map the observations on an orthonormal set, and accordingly



represent the process via expansion (5).

Data Dimensionality and Problem Complexity. Even though expan-
sion (5) does not imply a substantial loss of generality in most real studies, the
dimension of the expansion is influential indeed on the analysis. Indeed, as noted
by Menafoglio and Petris (2015) in the stationary setting, even in the ideal case
of known drift and covariance structure, the parameter K controls the dimen-
sion of system (15) (i.e., the number K (n+ L+ 1) of equations and unknowns),
hence the problem complexity. Thus, in a real case study, one may need to em-
ploy a dimensionality reduction method prior to the geostatistical analysis. For
instance, one can perform Functional Principal Component Analysis (FPCA,
Ramsay and Silverman, 2005) as detailed in the Appendix, or the Functional
Singular Value Decomposition (FSVD, Yang et al., 2011). In all these cases,
part of the information is inevitably lost as a consequence of the dimensionality
reduction, and cannot be employed for prediction purposes. This marks the first
difference between Universal Cokriging and Universal Trace-Kriging methodolo-
gies, as the latter does not require to express the observations through a basis
representation and/or reduce their dimensionality. In fact, the dimensionality
of the Trace-Kriging system does not depend on the representation of the data:
system (19) is a linear system of (n + L + 1) equations with the same number
of unknowns, independently of the possible truncated basis expansion employed
to represent the data. Notice that this is possible because of the simple form
of the UTrK predictor, as opposed to the more complex form of the UCok pre-
dictor. This is both a weakness and a strength of Trace-Kriging. On one hand,
the UCok predictor is more general and, in principle, able to achieve a better
prediction quality than the UTrK predictor. On the other hand, the simple
form of the UTrK allows to exploit the entire information embedded into the
data, without the need to reduce the dimensionality of the dataset prior to the
geostatistical analysis.

Variogram Estimation. In the context of Gaussian stationary random
fields and under the representation (5), with K < n, a formal relation be-
tween the Cokriging and the Trace-Kriging predictors has been established by
Menafoglio and Petris (2015). In this framework, the authors prove that the
Cokriging and Trace-Kriging approaches lead almost surely to the same results,
provided that the spatial covariance function C' is known. In most applications,
the spatial dependence is actually not known a priori and one needs to infer C'
from available data (or basis coefficients). To this end, different viewpoints on
the Kriging problem induce different ways to estimate the spatial covariance.
If one is willing to solve the Universal Cokriging system (15), the covariograms
and cross-covariogram of the coefficients will be the target estimates. To this
end, a Linear Model of Coregionalization (LMC) can be introduced for the vec-
tor of coefficients, and a parametric semivariogram structure can be fitted to
the empirical estimates. Note that the dimension K of the representation (5)
directly reflects on the number of variogram and cross-variogram structures that
one needs to estimate to solve Eq. (15). In contrast, to solve system (19) one



will only estimate the trace-covariogram, or the trace-variogram as usually pre-
ferred. Estimating the latter follows the same line as in finite dimension. First
an empirical estimate is computed from (estimated) residuals as

1
y(h) = ———— 8s; — 05,117, 20
™= o, 2 [ (20)
i,j)EN(h)

where h denotes the lag, N(h) the set of couples at lag h and |N(h)| the num-
ber of elements of set N(h). Second, a valid variogram model is fitted to the
empirical estimate. Here, the well-known one-dimensional parametric families,
such as spherical or Matérn, can be employed. Note that estimator (20) requires
to compute a number of integrals (recall: ||f —g||* = [.(f(t)—g(t)?dt, for f,gin
L?(T)). These can be computed in terms of basis coefficients whenever a basis
representation of the kind (5) is employed, or via quadrature schemes otherwise.

Joint Estimation of the Parameters. To estimate the drift, the resid-
uals and the variogram structure, one can employ very similar strategies in
both the discussed approaches. In this work, we estimate the drift mé via
Generalized Least Squares (GLS), and employ the classical iterative algorithm
to jointly estimate the drift via GLS and the variograms/cross-variograms of
the corresponding residuals. Similarly, we estimate via GLS the drift mg, as
follows (see Menafoglio et al., 2013). We call ¥ the global covariance matrix
¥ij = E[(ds,,0s,)], F the design matrix [F]; = fi(s;),i=1,...,n,1=0,...,L, X
the vector of functional observations X = (X, , ..., X5, )T € L? x --- x L? and
we introduce the following matrix notation: [Af]; = Z?zl A fj, for A € Rm™™,
f € L? x --- x L?. The GLS estimator of the drift at the observed locations,
m = (ms,,...,ms, )T, is (Menafoglio et al., 2013)

m=FF'S'F)"'F'e-1X. (21)

Similarly as in the classical setting, 7 can be computed by resorting to an
iterative algorithm: having initialized m (e.g., to the ordinary least square es-
timate obtained by setting ¥ to a multiple of the identity matrix in Eq. (21)),
at each step the residuals are estimated by difference from the GLS estimate of
the drift, and then the trace-variogram is estimated from the latest update of
the residuals estimate. We refer to Menafoglio et al. (2013) for the algorithmic
details.

In the next Section we compare the results of applying these different strate-
gies to the dataset of GPRCs available at the Barnett Shale field site.

3. An Application: Analysis of Gas Production Rate Curves in the
Barnett Shale

3.1. Dataset Description

In this study we use gas production rate curves (GPRC) from 922 wells
drilled in the Barnett shale, one of the most prolific and the most developed



unconventional gas reservoirs in North America. This dataset was compiled
from the “drillinginfo.com” (further DI), an online oil and gas data repository.
Amongst the data available on DI, the 922 wells used for the present analysis
were selected according to the following criteria. At the time when this dataset
was prepared, DI did not provide information about well specific hydraulic frac-
turing parameters, which would have enabled us to search for wells with similar
completions. Therefore, we decided to query for wells whose lateral length was
anywhere between 1800 and 2300 feet and were owned by the same company
(operator), with an assumption that the number of hydraulic fractures was the
same or at least very similar across all wells. We considered wells drilled after
2005, which had at least 5 years of production history (60 months), immediately
following the peak gas rate. As a part of pre-processing, all data entries preced-
ing the peak gas rates (about 3 months) were discarded. Such pre-processing
approach is very common in unconventional reservoir data analyses (see Patzek
et al., 2013), since during that time period wells mostly produce flow-back water
that comes as a consequence of hydraulic fracturing.

As a first step of the analysis we performed a data smoothing to obtain
smooth curves from raw observations. In ideal conditions?, GPRCs are smooth
and monotonically decreasing positive curves. In such setting there is a complete
absence of periodicity and B-Spline basis system comes as a natural choice for
representing the data. To honor the data positivity, we elected to perform basis
expansion on the log-transformed observations, with a smoothing penalty on
the second derivative. Preliminary data analysis revealed that most variation in
GPRCs occurred during the first 12 months of production history. Therefore, we
decided to place the knots of B-spline basis functions irregularly over analyzed
time domain (60 months), with higher placement density over the first 12 months
(Figure 1 Left). Finally, the number of basis functions for this dataset was set to
n = 10, and the best smoothing penalty on the second derivative (A = 10%) was
found with generalized cross validation (GCV, Ramsay and Silverman, 2005).
Figure 1 shows final B-spline basis system (left) with resulting smoothed GPRCs
(right).

3.2. Results

We first analyzed the smoothed dataset according to the approach devised in
Subsection 2.2. For the analyses that follow we considered the log-transformed
GPRCs (further log-GPRCs) to honor the positivity constraint. Hereafter we
display the results in the original scale to ease their interpretation.

Based on preliminary analyses at the site, we selected for the drift term the
set of linear regressors in the spatial coordinates: fo(s) = 1; f1(s) = z; fa(s) = v,
s = (x,y) denoting a location in D. Following the strategy detailed in Subsec-
tion 2.3, we jointly estimate the drift and the trace-variogram, fitting to the lat-
ter a spherical model with nugget. Figure 2 shows the empirical trace-variogram
along with the fitted model.

2Uninterrupted production with constant bottom hole or well head pressures.

10



1.0 154
081 )
2 g5
s c E 1
506 ST
e 8O
E] S s
2 3
L2044 ° =
90 S
o g g0
0.2 y o X
0.0
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time [month] time [month]

Figure 1: Left: final basis system found by the GCV on GPRCs; Right: Smoothed GPRCs.
Gas rates are given in MMCF per month.
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Figure 2: Estimated trace-variogram of log-GPRCs at the Barnett shale: empirical estimate
(symbols), calibrated model (solid line). Numbers indicate the number of couples of locations
upon which the corresponding empirical estimate is based.
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Figure 3: Prediction by UTrK of GPRCs for 20 random locations at the Barnett shale. Left:
smoothed data (grey lines) and predictions (colored lines). Right: sampled location (grey
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Figure 4: Prediction maps obtained with UTrK at the Barnett shale, for t = 1,12,24,48
months. Colors are given on a non-uniform scale. Gas rate reported on contour lines are
meant up to a factor 10°.

Based on the calibrated trace-variogram model, we performed a UTrK pre-
diction over a uniform spatial grid of 10* locations at the field site. Figure 3
reports a subsample of 20 predicted GPRCs, for a randomly selected set of 20
location of the prediction grid. Graphical inspection of Figure 3 highlights that
UTrK predictions are affected by a smoothing effect, amplified by the small size
of the selected sample. In general, a similar smoothing effect is well-documented
in the geostatistical literature on classical Kriging. Accordingly, extremes tend
to be smoothed, especially when curves at nearby locations are not representa-
tive of the same extreme behavior. A better reproduction of extreme behavior
may be attained in the presence of covariates (external drift) related to geolog-
ical/production variables.

Figure 4 reports the maps of the predicted functional field, taken for the
time instants ¢ = 1,12, 24,48 months (colors are given on a non-uniform color
scale). Note that, unlike multivariate techniques, a functional prediction allows
to obtain simultaneous Kriging maps for any instant point ¢ € [1, 60] (months).

To compare these predictions with those obtained through UCok, we per-
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Figure 5: FPCA of log-GPRCs. Upper panels: sample mean of log-GPRCs plus/minus the
first FPC (left), second FPC (center) and third FPC (right), represented in the original scale.
Lower panels: scatter plots of the scores along the first three FPCs.

formed FPCA to reduce the dimensionality of the dataset and represent the
log-GPRCs over an orthonormal system (see the Appendix for the modeling
details of FPCA). We selected the first two FPCs, which together explain 94%
of the data variability. To ease the interpretation of FPCs, Figure 5 reports, in
the original space, the sample mean of the log-GPRCs plus/minus the FPCs.
Visual inspection of Figure 5 suggests that the first FPC can be interpreted in
terms of the amplitude of the peak gas and the overall production rate, high
scores being associated with low peak gas and production rates. The second
FPC is instead interpreted in terms of a contrast between the production rate
in the first 35 months and the further production rate. Here, high scores cor-
respond to curves with early production rate lower than the mean, and further
production rate higher than the mean. For sake of completeness, we also report
the plot of the third FPC and the corresponding scores.

Based on the results of FPCA, we geostatistically analyzed the scores along
the selected components, reported in Figure 5 (bottom left panel). Consistent
with the previous assumption, we consider for the drift the set of modified linear
spatial regressors fi(s) =z — L 3" @i fo(s) =y — 2 307 v, with s = (z,y)
in D (see the appendix for the details). Variograms and cross-variograms of the
residuals — referred to the multivariate model (7) for the scores — are estimated
by fitting a LMC, based on a spherical model with nugget. Figure 6 reports
the calibrated multivariate model. On this basis, we performed the UCok of the
scores on the same spatial grid introduced before, obtaining the results displayed
in Figure 7. Here we represent the same set of curves reported in Figure 3. Note
that also in this case the results appear affected by a smoothing effect. Finally,
Figure 8 displays the maps of the predicted gas production rate, at the time
instants ¢ = 1,12, 24,48 months (colors are given on a non-uniform color scale).
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Figure 6: Estimated variograms and cross-variograms of the scores along the first two FPCs.
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Figure 7: Prediction by UCok of GPRCs for 20 random location at the Barnett shale. Left:
smoothed data (grey lines) and predictions (colored lines). Right: sampled location (grey
symbols) and target locations (colored symbol).
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Figure 8: Prediction maps obtained with UCok at the Barnett shale, for t = 1,12,24,48
months. Colors are given on a non-uniform scale. Gas rate reported on contour lines are
meant up to a factor 10°.
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The predictions obtained via UTrK and UCok appear overall consistent.
They both show increasing values of the gas production rate in direction S-W
to N-E, justifying a posteriori the introduction of the drift term. From the
application viewpoint, the results suggest the presence of a more productive
region in the North-Eastern part of the study area. From field development
perspective, this indicates “sweet spots” that would be most favourable for
future reservoir development.

Improvement of the current results are expected to be obtained with a
finer tuning of the parameters related to trace-variogram and cross-variograms.
In the present study, the entire dataset was used to estimate the empirical
variograms/cross-variograms, and a weighted least squares criterion was adopted
to fit the variogram models. In general, the optimization of predictive perfor-
mances (e.g., kriging prediction error) based on, e.g., a cross-validation analysis
would yield better parameters estimations and consequent results. The possi-
bility of employing such strategies is clearly subject to the availability of large
data sets, as the one considered in this study.

3.8. Monte Carlo Study

To assess the quality of predictions obtained through UTrK and through
UCok, we performed a Monte Carlo study based on the same dataset analyzed
before. We randomly split the dataset in (a) a training set of k% of data and
(b) a test set of (100 — k)% of data, with k = 25,50,75. For each training
set, we applied the estimation procedures as illustrated in Subsection 3.2, and
predicted the data in the test set by UTrK and UCok. To assess the quality of
the predictions, we defined the sum of squared error (SSE) of UTrK for the i-th
element g, of the test set as:

SSEUTTE) — | Xzt — g, |2 (22)

Here, X :f’” denotes the predictor of the GPRC at s;, obtained by taking the ex-
ponential of the UTrK predictor from the log-GPRCs. Analogously, we defined
the SSE related to UCok as

SSETCM = ||X7 — x4, |1, (23)

with X7 the exponential of the UCok predictor at s; from the log-GPRCs.

An overall index of prediction performance on a given test set can be then
obtained as the mean or the median of SSEi(UTTK), SSEZ»(UTTK) over the ele-
ments of the test set. To appreciate the magnitude of the error with respect
to the amplitude of the data, we normalized the SSEs by the average squared
norm of the data in the training set, as suggested by Menafoglio et al. (2013).
We refer to the normalized indices as relative SSEs (RSSEs). SSEs evaluated
on log-GPRCs are in agreement with those in the original scale and are thus
omitted from the description below.

To provide a Monte Carlo estimate of the RSSEs, we replicated the ex-
periment over 100 randomly selected training/test sets, for each value of the
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Median Mean Std. dev.

k=25 0.153 0.153 0.019
Mean RSSEWCk) =50 0.136 0.137 0.012
k=75 0.132 0.133 0.014

k=25 0.066 0.066 0.006
Median RSSEWC) k=50  0.060 0.060 0.005
k=75 0.056  0.057 0.007

k=25 0.150  0.151 0.017
Mean RSSEWTTK) =50 0.134 0.136 0.011
k=75 0.129  0.130 0.014

k=25 0.065 0.065 0.005
Median RSSEWTTK) =50  0.059  0.059 0.005
k=75 0.056  0.057 0.006

Table 1: Distribution of the RSSE indices for UCok and UTrK in the original scale, assessed
via Monte Carlo simulation.

parameter x in {25,50,75}, i.e, we repeated the experiment for 100 random
training sets with 256% (or 50% or 75%) of the data to predict the elements of
the corresponding test sets composed by the remaining 75% (or 50% or 25%
respectively) of the data.

Figure 9 reports the boxplots of the mean/median RSSEWVTK) and RSSEWUCk)
estimated via Monte Carlo simulation. To ease the comparison, Table 1 reports
the mean, median and standard deviation of the estimated indices, assessed via
Monte Carlo. Simulations show that for both UTrK and UCok the prediction
quality increases as the number of data in the training set increases. This re-
flects the fact that k is associated with the amount of information available to
perform predictions. Moreover, for any given k, UTrK and UCok performances
are almost equivalent, with slightly better results for UTrK. This is confirmed
from the graphical inspection of Figure 9.

Even though UCok could potentially provide improved results with respect
to UTrK — due to its generality — no gain seems to be obtained when increasing
the problem complexity. We recognize at least two reasons for this: (i) the
preprocessing step by FPCA and (ii) the fitting of a multivariate variogram
model to the scores. In fact, the simplicity of the UTrK predictor is likely to be
the key for its slightly better performance over the UCok predictor.

To evaluate the impact of the truncation order K on the results, we repeated
the same Monte Carlo analysis for K = 3,4. The results are listed in Table
2. Inspection of the entries of Table 2 suggests that the results for K = 3,4
are almost equivalent to those obtained with UTrK (Table 2), thus slightly
improving the results for K = 2. No significant difference appears comparing
the results corresponding to K = 3 and to K = 4, probably due to the small
portion of variability explained by the fourth FPC. Even though the choice of
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Figure 9: Boxplots of RSSE indices for UCok and UTrK.

K = 2 can be considered as a fair balance between the problem complexity
and the prediction performances, these additional results support the picture
according to which the performances of UTrK and UCok methods are quite
equivalent, provided that the retained components exhaustively represent the
data variability. As such, the modeling and computational gain of UTrK over
UCok is expected to be more relevant in the presence of data that require an
elevate number of FPCs for a precise description.

For sake of completeness, we report in Table 3 and Figure 10 the results
obtained by projecting the log-GPRCs over the basis of the first two right func-
tional singular vectors (FSVs), computed numerically. These are the equivalent,
in the functional case, of the right singular vectors obtained in the well-known
singular value decomposition (SVD) of a multivariate dataset. In this context
and unlike FPCA, the procedure detailed in Subsection 2.1 can be applied with-
out modifications, e; being represented by the k-th right FSVs.

We first notice that a significant number of upper outliers affects the results
related to the mean RSSEWC) for x = 25. This is probably caused by an
amplification of the error due to the exponential transformation, as only one out-
lier is recorded when SSE is evaluated on a log-scale. Besides this, simulations
show that UTrK outperforms UCok in all the tested scenarios under FSVD pre-
processing. In fact, marked differences are recorded between the performances
of UCok under FPCA and of UCok under FSVD preprocessing. This is likely
due to the fact that UCok under FPCA preprocessing is applied to centered
observations, i.e., those obtained by subtracting the sample mean of the dataset
from the observations (see the Appendix). In this sense, the entire information
within the sample mean is kept in UCok prediction, as the latter is added to the
UCok prediction obtained from centered data. In contrast, FSVD is applied to
non-centered observations: here the dimensionality of the non-centered obser-
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Median Mean Std. dev.

k=25 0.150 0.151 0.018
Mean RSSEWCF) =50 0.133 0.135 0.011
k=75 0.130 0.130 0.014

k=25 0.065 0.066 0.006
Median RSSEWUC) =50 0.059 0.059 0.005
k=75 0.056 0.057 0.006

k=25 0.150 0.151 0.017
Mean RSSEWC) =50 0.133 0.135 0.012
k=75 0.129 0.130 0.014

k=25 0.065 0.066 0.005
Median RSSEWUCF) k=50 0.060 0.060 0.006
k=75 0.056 0.056 0.006

Table 2: Distribution of the RSSE indices for UCok based of FPCA with K = 3,4, in the
original scale, assessed via Monte Carlo simulation.

Median Mean Std. dev.

k=25 0.170  0.528 3.198
Mean RSSEWCok) k=50 0.148  0.163 0.080
k=75 0.141  0.144 0.019

k=25 0.070 0.070 0.007
Median RSSEWC) k=50  0.063  0.063 0.006
k=75 0.060 0.060 0.009

Table 3: Distribution of the RSSE indices for UCok based of FSVD in the original scale,
assessed via Monte Carlo simulation.

vations is reduced. Intuitively, given K, FPCA exploits one dimension (that of
the sample mean) more than FSVD, at the same expense.

These results underline the fact that, whenever a dimensionality reduction
is performed prior to apply UCok, the prediction results may be influenced by
the kind of dimensionality reduction method used (e.g., FPCA or FSVD) and
the chosen dimension K. Such problem is overcome when using UTrK, as no
preprocessing is required.

4. Conclusions

In this work, we considered two approaches to the spatial prediction of gas
production rate curves (GPRCs) in unconventional reservoirs: (1) Universal
Cokriging (UCok) and (2) Universal Trace-Kriging (UTrK). We analyzed the
strengths and weaknesses of these methodologies both theoretically and from
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Figure 10: Boxplots of RSSE indices for UCok based on FSVD and UTrK.

the application viewpoint, through an extensive Monte Carlo study on field
data.

The extensiveness of the considered dataset allowed us to perform exhaus-
tive cross-validation analyses, with leave-out samples of considerable size (more
than 200 samples). Even though we did not have a synthetic reference, results
obtained from test sets of such sizes may be considered as reliable for this type
of data. In addition to this, the consideration of real-world dataset allowed us
to highlight the key points that one needs to address in a typical geostatisti-
cal analysis of GPRCs (i.e., smoothing, modeling, prediction), and the actual
potential of both methods on real data.

Our study shows that the investigated approaches lead to consistent results
on available data. Nevertheless, UTrK proved preferable in some of the scenarios
tested though Monte Carlo simulation. Here we showed that the dimensionality
reduction operated on the data prior to the geostatistical analysis with UCok
approach can be influential on the quality of the results. In this context, the
simplicity of UTrK allows to avoid such preprocessing, and seems to be the key
of its slightly better performances over UCok, obtained in some of the tested
scenarios.

Anyway, we note that the theoretical study of UCok deserves attention from
the methodological viewpoint. Indeed, UCok appears better suited than UTrK
to extensions related to the form of the drift term. Indeed, one might want to
consider a more complex functional linear model than that in Eq. (3). This
would allow to incorporate geological or production variables, possibly time-
varying (i.e., functional regressors), in the geostatistical analysis.
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Appendix: Functional Principal Component Analysis

We here consider the Functional Principal Component Analysis (FPCA
Ramsay and Silverman, 2005, Chapter 8) as a dimensionality reduction method
for GPRCs, possibly log-transformed. FPCA is a methodology aiming to iden-
tify a reduced space to optimally represent a set of observations. Given a tar-
get dimension K, FPCA determines the system of K orthonormal directions
{er,1 < k < K} that best represents the variability of the data set around its
mean.

As in the multivariate setting, the k-th Functional Principal Component
(FPC) is the eigenfunction associated with the k-th largest eigenvalue of the
(zero-lag) covariance operator C(0), that is C'(0)er, = preg, p1 > ... > p. Note
that, in the assumptions of Section 2, all the data are featured by the same
covariance operator C(0).

The proportion of the variability explained by the first K Functional Princi-
pal Components (FPCs) can be measured through the ratio between the partial
and the total sum of the eigenvalues of C(0): Zszl pr/ > pey pk- To perform
dimensionality reduction, one can then consider the projection of the data along
the first K FPCs, {e, 1 < k < K}, where K is set as to explain a given amount
of the total variability (e.g., 90% or 95%).

If spatial covariance C' is unknown, one can introduce the empirical FPCA,
that is based on the eigen-decomposition of the empirical zero-lag covariance
operator, defined for x € L*(T) as

C(0)z = > (Xa, — X.a) (X, - ), (24)

SRS

where X = Z?:l X, is the sample mean (see, e.g., Horvath and Kokoszka, 2012,
Chapter 2.17). The coefficients for the basis representation are then obtained
as Ek(si) = (X, — X,ex),i=1,...,n, k =1,..., K. Notice that, if the mean
were spatially constant, X would estimate the mean of the process, and gk(si),
i =1,...,n would be zero-mean. In the non-stationary assumptions of Section
2, £k (s;) is not zero-mean, but approximately follows a model of the form (7),
as we show below.

We call Xg,, i =1,...,n, the modified dataset obtained by centering the X,
with respect to the sample mean of the dataset, i.e., )N(s = X, — X. Under
models (3) and (5), for the modified process X, one has

B K L Lo K
Xs = ZZ% (fl(s) T Zfl(&)) + €k(5)6k—z
i=1 k=1

k=1 i=1
For a sample size sufficiently large with respect to K and a moderate spa-
tial dependence (see Horvath and Kokoszka, 2012, Chapter 18), the last term
becomes negligible, since {e;(s)} is zero-mean. By noting that, given the re-
gressors, Z?:l f1(s;) is a known constant, the following approximate model is

K

3

ex(si)ex. (25)

S|
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obtained from expression (25)

X, ~ Z Z aklﬁ(s) + Z ex(8)e. (26)

The latter term has the same form as Eq. (9), but with modified regressors.
Notice in particular that model (26) is without intercept.

Therefore, when the dimensionality reduction is performed via the empirical
FPCA, one can proceed as follows: (i) project the )Z’Si, i=1,...,n, over the first
K eigenfunctions and compute the scores gk(si), i=1,.,n, k=1,.,K; (i)
perform the geostatistical analysis/prediction of gk(sz) and obtain the UCok
prediction X';‘O at the target location s¢ as described in Subsection 2.1; (iii)
compute the final prediction by adding to X s, the sample mean X: X s =
X +X.
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