
Code Transformations Based on Speculative SDC

Scheduling

Marco Lattuada and Fabrizio Ferrandi

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano - Italy

Email: marco.lattuada@polimi.it fabrizio.ferrandi@polimi.it

Abstract—Code motion and speculations are usually exploited
in the High Level Synthesis of control dominated applications to
improve the performances of the synthesized designs. Selecting
the transformations to be applied is not a trivial task: their effects
can indeed indirectly spread across the whole design, potentially
worsening the quality of the results.

In this paper we propose a code transformation flow, based
on a new extension of the System of Difference Constraints (SDC)
scheduling algorithm, which introduces a large number of trans-
formations, whose profitability is guaranteed by SDC formulation.
Experimental results show that the proposed technique in average
reduces the execution time of control dominated applications by
37% with respect to a commercial tool without increasing the
area usage.

I. INTRODUCTION

Programmable devices such as FPGAs can potentially
offer very significant computational power, but implementing
efficient solutions on them can be a hard task. One of the
main obstacles is the usage of hardware description language,
whose knowledge is usually a rare expertise. To overcome or
at least to mitigate this issue, High Level Synthesis (HLS) [1]
has been introduced. Because of the characteristics of FPGAs,
HLS can quite easily produce efficient implementations of
data dominated applications which are the most suitable to
be implemented in hardware. On the contrary, the implemen-
tations of control dominated applications can be very ineffi-
cient, especially when compared to software implementations
because of the higher frequency of general purpose processors.
Nevertheless, there can still be the needing to execute these
specifications in hardware. For example, they can be part of
larger applications or system full hardware implementations
have to be preferred to heterogeneous solutions because of the
reduced data transfers. Since the data dominated parts of the
applications can be implemented in a very efficient way, the
control dominated portions can become the bottleneck, so they
have to be optimized as well.

One of the most critical problems of optimizing a control
dominated specification is the scheduling, i.e., deciding in
which control step each operation is executed. Most of the
scheduling techniques (e.g., [2], [3]) compute the scheduling
starting from the Control-DataFlow Graph (CDFG) [4], a
graph based description which represents the control and the
data dependences of the analyzed specification. The structure
of the CDFG can heavily determine the scheduling results,
even if exact methods (e.g., [2]) are used. Indeed, scheduling
algorithms can produce very different results (better or worse)
if they start from a modified version of the CDFG, obtained

by applying code motion or speculation. Applying this type
of transformation is not a trivial task since evaluating the
overall effects of a single or of a set of transformations is not
easy. State of the art methodologies (e.g., [3], [5]) typically
exploit heuristics and consider only a limited set of possible
transformations, potentially limiting the benefits of this type
of approach.

In this paper a methodology flow based on an exact method
for explicitly transforming a CDFG to improve the scheduling
solution is proposed. The main contributions of this work are:

• it extends the SDC scheduling algorithm formulation [2]
to allow implicit global code motion;

• it exploits the results of the modified SDC scheduling
algorithm to perform explicit code motion.

The rest of this paper is organized as follows: Section II
describes the problem addressed by the proposed methodology
which is described in Section III. Section IV presents the
experimental evaluation of the proposed flow, then Section V
compares the proposed methodology with state of the art
techniques and finally Section VI draws the conclusion of this
work and presents the possible future extensions.

II. PROBLEM DEFINITION

The proposed methodology aims at modifying the CDFG
to improve the scheduling solution in terms of overall latency
of the application. CDFG is a directed graph GCDFG =
(Vop∪Vbb, Eop∪Ebb) where each vertex vop ∈ Vop corresponds
to an operation, each vertex vbb ∈ Vbb corresponds to a basic
block, each edge eop ∈ Eop represents a data dependences
between two operations and each edge ebb ∈ Ebb represents
the control dependences between two basic blocks. Figure 1b
shows an example of CDFG, extracted from the code of
Figure 1a. In the following it is assumed that there are only
two available multipliers, the division v3 takes 3 cycles, all
the other operations take 1 cycle. For the sake of simplicity
operations chaining is not considered in the presented example,
even if it is fully supported in the proposed methodology.

CDFG is modified by means of explicit code motions:
operations are moved from their current basic block to other
basic block preserving the semantic of the application. The
code motion can be applied directly on the CDFG or on the
code from which it has been generated. Not all the possible
code motions are considered: operations cannot be moved from
a loop to another one, nor can be moved from after a loop to
before a loop. The proposed methodology assumes that the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55255743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0: a_0 = in1 * in2;

1: b_1 = in3 * in4;

2: if(a_0)

3: c_3 = in5 / 5;

4: d_4 = b_1 * 3;

5: f_5 = d_4 - in1;

6: if(in1)

7: f_7 = f_5 + in1;

else

8: b_8 = in1 + in2;

9: f_9 = a_0 + 2;

10: if(f_9)

11: f_11 = foo();

12: b_12 = Φ(b_1,b_1,b_8,b_8);

13: f_13 = Φ(f_7,f_5,f_9,f_9);

14: h_14 = in1 + 3;

(a) Starting Code

0 1

2

3 4

6 5

8 9

10

7 11

12 13 14

BB1

BB2

BB4 BB5

BB3

BB6

(b) Starting CDFG

0 1

2 34

56

8

9

10

7 11

14

12

13

(c) Scheduling

BB1

BB2 BB3BB6

BB5BB4

(d) Dominators

0

2

1

4

14

9 8

53

6

7

10

11

12 13

BB1

BB2

BB4

BB3

BB5

BB6

(e) CDFG After Code Motion

0

2-10

1

4

14

9 8

53

7

12 13

11

BB1

BB2 BB5

BB6

(f) Final CDFG

0: a_0 = in1 * in2;

1: b_1 = in3 * in4;

4: d_4 = b_1 * 3;

8: b_8 = in1 + in2;

9: f_9 = a_0 + 2;

14: h_14 = in1 + 3;

2: if(a_0)

3: c_3 = in5 / 5;

5: e_5 = d_4 - in1;

7: f_7 = e_5 + in1;

10: else if(f_9)

11: f_11 = foo();

12: b_12 = Φ(b_1,b_8, b_8;

13: f_13 = Φ(in1 ? f_7 : f_5,

f_9,f_9);

(g) Final Code

Fig. 1: An example of application of the proposed methodol-
ogy.

analyzed specification is already in Static Single Assignment
form [6], condition which is already satisfied in most of the
compilers and high level synthesis tools. In this form, each
variable must be assigned exactly once, so a new version of
a variable is created for each its assignment (e.g., f_5, f_7,
f_9, f_11). Variables used in right side of statement are re-
named so that the most recent definition of a variable is used. If
multiple definitions of a same variable reach a basic block (e.g.,
f_5, f_7, f_9, f_11 reach BB6), they are merged by means
of a new artificial definition Φ, which creates a new version
of the variable (e.g., f_13 = Φ(f_7,f_5,f_9,f_9)).

Code motions can be classified in:

• Non-speculative: the operation is moved between two
basic blocks that are executed in exactly the same traces.
This transformation is always safe, but it still has to be
applied in a conservative way since it can increase the
overall latency and the area of the solution. An example
of Non-speculative code motion in example of Figure 1
is v14 to BB1

• Speculative: an operation vi of basic block BBa is moved
in a BBb that is executed in a superset of the traces
containing BBa, i.e., it is anticipated with respect to the
conditional construct which controls its execution. These
transformations can be applied only if the operation does

not modify memory status. An example of Speculative
code motion in example of Figure 1 is v4 in BB1. Use of
speculated operations instead of operations controlled by
guards like in [2] can improve performance results (they
have not to wait for the guard), but they can increase the
area usage.

In the next section how to solve the problem of identifying
only profitable transformations will be presented.

III. PROPOSED METHODOLOGY

The proposed methodology flow is composed of three
steps:

1) Speculative SDC scheduling: operations are scheduled
with SDC scheduling algorithm extended to allow code
motion.

2) Code Motion: code motions suggested by SDC scheduling
results are applied to the analyzed CDFG.

3) Transformations: CDFG is transformed by means of
heuristics to further improve overall performances.

In the following each step of the flow will be detailed.

A. Speculative SDC Scheduling

This section describes Speculative SDC scheduling, an
extension of SDC scheduling algorithm [2] aimed at supporting
code motion. Since code motion has to be allowed only intra
loops, Speculative SDC scheduling is independently applied
on each loop (the whole function is the most external loop).
Its formulation uses the following variables and functions:

• OPk: the set of operations contained in loop lk and not
contained in any loop nested in lk.

• SE: the set of operations which cannot be speculated
because of side effects (e.g., store operations) or because
they are conditional constructs (e.g., if).

• Cond(vi): the conditional construct which controls the
execution of an operation [7].

• Lvi: the cycle latency of vi.
• T : the clock period.
• D(vi, vj): estimation of the delay of the longest critical

combinational path between vi and vj . The estimations
are obtained by applying the same approach adopted in

[2] (i.e., adding the estimated delay of all the operations
and of all the interconnections of the path).

∀lk, ∀vi ∈ OPk, ∀t ∈ [0, Lvi] : svt(vi) ∈ N ∪ {0} is the
variable specifying the control step in which the stage of an
operation is scheduled. svbeg(v) and svend(v) are defined as
follows: svbeg(v) ≡ sv0(v), svend(v) ≡ svLv(v). Moreover,
for each basic block BBb an artificial node ssnk(BBb) is
added representing its ending. The constraints are:

1) ∀vi ∈ OPk|Lvi ≥ 1, ∀t ∈ [1, Lvi] : svt(vi) =
svt−1(vi)+1: consecutive stages of a multicycle operation
must be executed in consecutive control steps (e.g., the
three stages of v3 have to be executed in consecutive
control steps).

2) ∀vi ∈ OPk|vi ∈ SE ∧ Cond(vi) 6= ∅ :
svend(Cond(vi)) − svbegin(v) ≤ −1: operations which
cannot be speculated have to be scheduled after the
conditional construct which controls them (e.g., v11 must
be scheduled after v10).

3) ∀vi ∈ OPk|vi is Φ, ∀vj ∈
OPk|vj determines output of vi : svend(vj) −
svbeg(vi) ≤ 0: a Φ operation cannot be executed before
the conditional construct which controls which variable
version has to be selected (e.g., v12 and v13 cannot be
scheduled before v6 and v10).

4) ∀vi ∈ OPk : svend(vi)−svend(BBb) ≤ 0 (where BBb is
the basic block to which vi belongs): a basic block does
not end before the ending of any its operation (e.g., BB3

does not end before v8, v9 and v10 end).
5) ∀e(vi, vj) ∈ Ed : svend(vi) − svbeg(vj) ≤ 0: data

dependencies between operations must be guaranteed
(e.g., v4 cannot start before the end of v5).

6) ∀vi, vj |exists a data dependence path (vi → vj)in
CDFG : svbeg(vi)− svbeg(vj) ≤ −([D(vi, vj)/T]− 1):
a pair of operations whose longest critical combinational
path is larger than clock period cannot be chained (e.g.,
v2 cannot start in the same control step of v0).

7) resource sharing: for each execution trace inside the
CDFG and for each limited resource r, a linear order
between operations Vr mapped on resources of type r is
built. If Nr is the number of resources r, the ith and the
ith+Nr operations of the linear order cannot be executed
in the same control step: svbeg(vi)− svbeg(vi+Nr

) ≤ −1
is added to the formulation (e.g., given the linear order
of operations mapped on multiplier v0-v1-v4, since there
are only two available multipliers, v4 cannot start in the
same cycle of v0).

The last type of constraints do not avoid the simultaneous
scheduling of multiple speculated operations which can require
more resources than the available. Instead of adding a set of
linear orders between these operations, which introduce a set
of unnecessary constraints when these operations are actually
not speculated, it is admitted that the solutions produced by
SDC are actually not implementable. The following steps
of the methodology will transform these solutions so that
they will respect resource constraints. The first significant
difference with respect to [2] is the absence of ssrc nodes,
i.e., nodes that represent beginning of basic blocks, and of the
control dependence constraints, since they prevent speculation
of operations. Since speculation of SE operations has still to
be avoided, the constraints of type 2 are added. The second

Algorithm 1: Pseudo-code of Code Motion.
1: for all BBb ∈ CDFG do

2: for all vi ∈ BBb do

3: if vi is mapped on a limited resource r then

4: UsedResources[BBb][svbeg(vi)]++
5: end if

6: end for

7: end for

8: for all BBb ∈ TopologicalOrder(CDF G) do

9: for all vi ∈ TopologicalOrder(BBb) do

10: end = svend(vi)
11: curr = dest = BBb
12: while svend(ssnk(DOM(curr)) ≥ end do

13: curr = DOM(curr)
14: if vi is mapped on a limited resource r then

15: if UsedResources[curr][svbeg(vi)] ≥ Nr then

16: continue

17: end if

18: end if

19: dest = curr

20: end while

21: if dest 6= BBb then

22: Move(vi, dest)
23: if vi is mapped on a limited resource r then

24: UsedResources[destination][svbeg(vi)]++

25: UsedResources[BBb][svbeg(vi)]--
26: end if

27: end if

28: end for

29: end for

main difference is the introduction of constraints of type 3
to model the implicit dependences between a Φ operation
and the conditional constructs which determine its outcome.
Finally, the last significant difference is the objective function
used to minimize the overall latency of the solution. In [2]
the overall latency is approximated by an expression based on
the beginning and the ending of each basic block. Since the
beginning of basic blocks cannot be specified in Speculative
SDC formulation, a different objective function is adopted:

min
∑

BBi∈lk

svend(ssnk(BBi)) (1)

By minimizing this objective function, all the longest paths
from the header of the loop (its first basic block) to all its basic
blocks are minimized at the same time. On the contrary other
paths can be only partially optimized (e.g., BB1-BB3-BB6),
so also the proposed objective function is an approximation,
but differently from the one proposed in [2] does not require
path profiling information.

The Speculative SDC scheduling solution of CDFG of
Figure 1b is shown in Figure 1c.

B. Code Motion

In this step, the results of the Speculative SDC scheduling
algorithm are used to identify which operations can be moved
from a basic block to another improving the overall perfor-
mance of the scheduling solution. The basic block to which
each operation has to be moved is identified by analyzing
the dominator tree [8] built starting from the CDFG. A basic
block BBd dominates basic block BBi if every path from
the entry of CDFG to BBi go through BBd. A basic block
BBd immediately dominates BBi if dominates BBi and
there is not any BBh such that BBd dominates BBh and
BBh dominates BBi. The immediate dominator relationship
is described by dominator tree. Dominator tree of example of
Figure 1b is shown in Figure 1d. Algorithm 1 describes in
details how code motion is performed. All the operations of
the CDFG are analyzed in topological order (loops of lines
8 and 9). An operation can be moved in a dominator if it
does not end after the end of the dominator (line 12). The

algorithm goes up through the immediate dominator chain
as long as it encounters basic blocks where it can move
the operation (line 13). Figure 1e shows the CDFG after
application of code motion: black nodes are moved operations.
For example v14 is moved in BB1 (Non-speculative code
motion) since svend(v14) ≤ svend(ssnk(BB1)) (1 ≤ 2), v4 is
moved in BB1 (Speculative code motion) since svend(v4) ≤
svend(ssnk(BB1)) (2 ≤ 3), v3 cannot be moved in BB1 since
svend(v3) � svend(ssnk(BB1) (3 � 2). By considering only
dominators as possible candidate destination of code motion,
it is guaranteed that the execution of the moved operation is
not removed by any execution trace, but it can eventually be
added to further execution traces (Speculative code motion).
The check of the ending time of the destination basic block
guarantees that input data of the operation will be ready in that
basic block and that the ending of this will be not postponed
by the moved operation.

In case of operations mapped on limited resources (line
14), it has to be checked that the ending of the destination
basic block is not postponed because of resource contention
in a particular control step (line 15). To perform this check, it is
necessary to have information about the utilization of limited
resources of operations of each basic block in each control
step (lines 1-7). When the actual destination has been finally
identified, code motion can be actually performed. Since the
methodology assumes that the intermediate representation is
in SSA form, no further change (e.g., fixing of variables or of
Φ instructions) is required.

It is worth noting that SDC scheduling algorithm applied on
the transformed CDFG can produce a solution different from
Speculative SDC solution because not all the code motions
suggested by Speculative SDC can actually be applied. There
are two main reasons for which the code motion of an oper-
ation is not performed: it would violate a resource constraint
or it would require to divide a multi-cycle operation among
different basic blocks. For example v3 should be distributed
between BB1, and BB2.

C. Code Transformations

Since the CDFG produced in the previous step does not
correspond exactly to the Speculative SDC solution, there can
still be the possibility of optimizing it by applying transfor-
mations not included in the optimal solution computed by
Speculative SDC scheduling. Some of these transformations
can be applied directly on the modified CDFG by means of
heuristics, others can be applied only after that the structure
of the CDFG has been cleaned.

Algorithm 2 shows the order in which the different trans-
formations are applied on each basic block:

1) Local Code Motion (lines 2-12): each operation is ana-
lyzed checking if it can be moved in one of the dominator
of the current basic block. Profitability of a code motion
is not evaluated anymore by considering Speculative SDC
solution, but analyzing the relative scheduling of the
operations in the destination basic block: an operation vi
can be moved in dominator BBdom if its input operands
are all available during execution of BBdom and if it
does not increase the overall latency of BBdom. Indeed,
this type of increment has to be avoided since it would

Algorithm 2: Pseudo-code of Code Transformations.
1: for all BBb ∈ TopologicalOrder(CDF G) do

2: for all vi ∈ BBb do

3: dest = BBb
4: while CanBeMoved(vi,DOM(dest)) do

5: dest = DOM(dest)
6: end while

7: if BBb 6= dest then

8: LocalCodeMotion(vi, dest)
9: else

10: UpdateTiming(vi)
11: end if

12: end for

13: if IsEmpty(BBb) then

14: BBp = Predecessor(BBb)
15: BBs = Successor(BBb)
16: BasicBlockRemoval(BBb)
17: if NumberSuccessors(BBp) == 1 then

18: RemoveConditionalConstruct(pred)
19: end if

20: end if

21: if SingleCond(BBb)andNumberPredecessors(BBb) == 1 then

22: MergeConditionalConstructs(P redecessor(BBb), BBb)
23: end if

24: end for

increase the overall delay of the solution. In the CDFG
of Figure 1e v7 can be moved in BB2 since it does not
increase its latency (3). Note that this code motion is not
suggested by Speculative SDC because of the ending time
of BB2: according to Speculative SDC solution v7 should
be scheduled in 4 while the ending time of BB2 is 3, but
this can be obtained only by splitting execution of v3 on
BB1 and BB2.

2) Basic Block Removal (line 16): empty basic blocks are
removed. In example of Figure 1e, BB4 can be removed
since it becomes empty after the moving of v7.

3) Remove Conditional Construct (line 18): after removing
an empty basic block, it is possible that all the targets of
a conditional construct become the same: in this case, the
corresponding Φ instructions are fixed and then the condi-
tional construct is removed. After the removal of BB4, v6
targets only BB6, so v6 is removed and v13 is transformed
in f_13 = Φ(in1 ? f_7 : f_5, f_9, f_9).

4) Merge Conditional Constructs (line 22): if a basic block
BBb is composed only of a conditional construct and
it has only one predecessor BBp, Φ instructions of
successors of BBb are fixed, the conditional construct
of BBb is merged with the conditional construct at the
end of BBp and BBb is removed. In example of Figure
1e, BB3 is composed only of v10, so v2 and v10 can be
merged and BB3 can be removed.

Figure 1f shows the CDFG after that all the presented trans-
formations have been applied while the corresponding code is
presented in Figure 1g. In CDFG of Figure 1b four execution
paths can be identified whose delays in terms of clock cycles
are: 7,6,5,6. After that the proposed methodology is applied,
in CDFG of Figure 1f their delays become: 6,6,3,4.

D. Complexity of the proposed methodology

The complexity of solving a System of Difference Con-
straints is Θ(n · m) where n is the number of variables and
m is the number of constraints. Since the Speculative SDC
and the original formulation of SDC share all the variables
and most of the constraints (types 1,4,6,7), their complexity
is comparable. In Speculative SDC formulation there are also
constraints of type 2,3, but there are not constraints for ssrc
and the number of added constraints of type 5 is smaller
(since inter loops dependences have not to be considered). In

the worst case, both for original formulation of SDC and for
Speculative SDC, the number of variables is O(|OPk |) and
the number of constraints is O(|OPk|

2), so the complexity of
the first step of the proposed methodology is O(|OPk |

3). The
complexity of the second step is O(|OPk |) (loops of lines 8 and
9 of Algorithm 1) while the complexity of the Transformations
step corresponds to the complexity of Algorithm 2 which is
O(|BBb|). Since the two last steps have smaller complexity
than the Speculative SDC, the overall complexity of the
methodology is O(|OPk|

3).

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed methodology,
the results of four High Level Synthesis flows have been
compared:

1 Commercial Tool, which implements SDC scheduling
algorithm and which supports Xilinx FPGAs; this tool
supports code motion but only for code of pipelined loops
which are not contained in the considered benchmark
suite.

2 LegUp 3.0 [9], an open source publicly available High
Level Synthesis Tool developed at University of Toronto
which already implements SDC scheduling algorithm and
which supports Altera FPGAs.

3 PandA 0.9.3 [10], an open source, publicly available
framework for High Level Synthesis developed at Po-
litecnico di Milano, extended with the SDC scheduling
algorithm presented in [2]. In the following it will be
shown how the results obtained with this implementation
are in average quite similar to the ones produced by 1 , so
that this implementation can be considered a good golden
reference.

4 PandA 0.9.3 [10] extended with the proposed method-
ology. Intermediate representation adopted in PandA is
already in SSA form, so implementation of the proposed
methodology only requires to implement Speculative SDC
scheduling and the proposed code transformations. This
tool has been chosen as starting point since it supports
both Altera and Xilinx FPGAs allowing to verify the
effective generality of the proposed methodology.

For the sake of fairness, the comparison with [5] has not been
performed since it does not support operations chaining.

Two platforms have been considered in the experimental
evaluation:

• the Xilinx Zynq-7000 xc7z0 (not supported by LegUp)
with a target frequency of 66.66 MHz (same default
experimental setup of 1). Final synthesis is performed
by means of Xilinx Vivado [11].

• the Altera Cyclone II EP2C70F896C6 (not supported by
commercial tool) with the target frequency of 66.66MHz
(same default experimental setup of 2). Final synthesis
is performed by means of Altera Quartus II [12].

The benchmarks adopted to perform the experimental eval-
uation are the CHStone suite [13]. CHStone suite is a set
of 12 benchmarks, explicitly collected for the evaluation of
High Level Synthesis flows, which aim at representing all
the possible scenarios which have to be addressed by an
High Level Synthesis tool. In particular, this suite contains

both data dominated applications (aes, blowfish, jpeg, mpeg2,
sha) and control oriented applications (adpcm, dfadd, dfdiv,
dfmul, dfsin, gsm, mips). For the sake of brevity, their detailed
characteristics (e.g., the number of loops, the number of
conditional constructs, the number of arithmetic operations,
etc.) have not been reported, but they can been found in [13].

PandA can generate two different hardware versions of
divisor according to which division algorithm is selected. The
proposed methodology has been applied on both the implemen-
tations, so that two different sets of results are reported for 3
and 4 on the benchmarks which contain division operations
(i.e., dfdiv and dfsin).

Left part of Table I reports the synthesis time results after
place and route obtained by 1 , 3 , and 4 for Zynq-7000. The
results of 1 on blowfish and mpeg2 have not been reported
(N/A) since the cosimulations fail. SDC scheduling imple-
mentations of 1 and 3 can be considered quite equivalent,
even if there are significant differences in the results on some
benchmarks, since these are not caused by SDC scheduling
implementation. In particular 1 obtains better results on mips
thanks to the implementation of Rotation Scheduling. On the
contrary, 3 obtains better results on dfdiv and dfsin thanks to
the implementation of a better division algorithm. Speculative
SDC scheduling does not introduce significant benefits on
data dominated applications (i.e., aes, blowfish, jpeg, mpeg2,
sha) as expected. On the contrary, on most of the control
dominated applications (i.e., adpcm, dfadd, dfdiv, dfmul, dfsin,
gsm, mips) the gain is very significant (up to 39% on dfadd
when compared to 3 and up to 46% on dfmul when compared
to 1). The average gain of 4 with respect to 1 on control
dominated application is instead 37%.

Table II reports the synthesis area results after place and
route obtained by 1 , 3 , and 4 targeting Zynq-7000. The
produced solutions have similar resource usage in terms of
Slices, LUTs, and BRAMs while the number of registers used
in 3 and 4 because register allocation has not been fully
optimized as in 1 . The only significant difference in terms of
number of BRAMs is in the synthesis of adpcm benchmark
and is caused by too conservative alias analysis which prevents
the application of some memory optimizations. The number
of used DSPs is almost the same for all the benchmarks but
dfdiv(2) and dfsin(2) because of the different implemented
division algorithm. The solutions produced by 3 and 4 have
instead very similar results for all the resource usage metrics:
the obtained benefits in terms of clock cycles by exploiting
Speculative SDC scheduling have not to be paid in terms of
increment of area.

Right part of Table I reports the synthesis time results after
place and route obtained by 2 (results have been extracted
from [9]), 3 , and 4 for Cyclone II. Results in terms of
cycles obtained by 3 cannot be directly compared with other
tool since 2 uses a different memory model and implements
different optimizations with respect to 3 . The differences in
terms of clock cycles in the solutions produced by 3 and
4 are similar to the ones already analyzed for Zynq-7000. 3
and 4 produce solutions with similar clock cycles latencies for
data dominated applications (aes, blowfish, jpeg, mpeg2, sha),
while there are significant advantages in exploiting Speculative
SDC scheduling on control dominated applications (adpcm,
dfadd, dfdiv, dfmul, dfsin, gsm, mips). With respect to results

TABLE I: Synthesis time results after place and route. 1© are the results obtained with Commercial Tool, 2© are the results
obtained with LegUp, 3© and 4© are the results obtained with SDC scheduling and Speculative SDC scheduling implemented in
PandA.

Zynq-7000 Cyclone II
Clock Frequency Cycles Clock Frequency Cycles
1 3 4 1 3 4 3 - 4 2 3 4 2 3 4 3 - 4

adpcm 34.3 67.3 67.9 23,075 17,627 15,297 13% 45.7 71.1 66.6 36,795 19,727 17.347 12%
dfadd 72.0 83.9 67.2 383 355 219 39% 124.0 77.6 70.7 2,330 380 289 24%
dfdiv(1)

81.7
69.7 67.6

1,917
1,039 967 7%

74.7
73.5 73.6

2,144
1,995 1,821 9%

dfdiv(2) 68.1 64.8 762 547 16% 70.6 69.1 910 810 11%
dfmul 60.7 74.7 71.8 196 149 105 28% 85.6 80.6 76.1 347 173 141 12%
dfsin(1)

52.5
68.1 66.0

48,226
30,161 26,466 12%

62.6
71.9 70.5

67,466
56,789 47,643 16%

dfsin(2) 68.0 65.5 21,182 17,121 19% 71.0 68.5 34,658 26,079 25%
gsm 66.4 67.0 66.2 3,397 2,775 2,361 15% 58.9 69.6 69.0 6,656 2,935 2,521 14%
mips 77.6 73.0 74.7 2,489 3,413 3,040 11% 90.0 68.4 67.7 6,443 3,413 3,040 11%

aes 89.2 80.2 74.1 2,973 3,188 3,112 3% 60.7 93.1 86.4 14,022 3,332 3,256 3%
blowfish N/A 83.8 83.5 N/A 89,679 89,549 1% 65.4 73.0 77.6 209,866 108,415 108,285 0%
jpeg 69,0 67.0 66.9 468,011 471,173 465,261 1% 47.0 72.9 72.5 5,861,516 490,996 485,084 1%
mpeg2 N/A 93.8 70.4 N/A 4,221 4,214 0% 91.7 88.0 78.9 8,578 4,228 4,225 0%
sha 97.9 83.1 87.2 111,043 113,329 113,324 0% 86.9 77.2 75.8 247,738 123,611 123,606 0%

TABLE II: Synthesis area results after place and route for Zynq-7000. 1© are the results obtained with Commercial Tool, 3© and
4© are the results obtained with SDC scheduling and Speculative SDC scheduling implemented in PandA.

Slice LUTs Registers DSPs BRAMs
1 3 4 1 3 4 1 3 4 1 3 4 1 3 4

adpcm 2,773 1,820 1,810 10,358 5,399 5,268 3,488 3,920 3,533 46 44 42 13 29 29
dfadd 913 962 805 2,790 2,411 2,254 1,544 1,730 1,018 0 0 0 0 0 0
dfdiv(1)

1,288
2,372 2,334

4,074
6,858 6,779

2,726
4,815 4,526

24
18 18

0
0 0

dfdiv(2) 1,756 1,661 4,957 4,914 3,352 2,918 66 66 1 1
dfmul 729 541 466 2,433 1,540 1,341 1,143 882 632 16 10 10 0 0 0
dfsin(1)

3,428
4,680 4,785

11,491
14,782 15,545

6,041
10,801 8,549

43
41 41

4
4 4

dfsin(2) 4,249 4,229 13,044 13,813 9,352 6,863 89 89 5 5
gsm 1,307 1,441 1,416 4,569 4,004 4,099 1,391 3,221 3,226 40 31 31 9 5 5
mips 429 535 497 1,359 1,795 1,728 511 644 669 8 8 8 4 4 4

aes 1,188 1,355 1,440 3,625 4,051 4,209 1,888 2,418 2,367 6 0 0 13 10 10
blowfish N/A 876 838 N/A 2,101 2,217 N/A 2,155 2,144 N/A 0 0 N/A 22 22
jpeg 5,870 4,521 4,593 18,347 14,291 13,904 9,683 10,072 9,756 14 15 9 55 59 59
mpeg2 N/A 645 621 N/A 1,986 1,887 N/A 1,432 1,194 N/A 0 0 N/A 2 2
sha 647 735 720 2,180 2,140 2,086 1,356 2,216 2,214 0 0 0 20 12 12

TABLE III: Synthesis area results after place and route for Cyclone II. 2© are the results obtained with LegUp, 3© and 4© are
the results obtained with SDC scheduling and Speculative SDC scheduling implemented in PandA.

LEs Multibits Mults

2 3 4 2 3 4 2 3 4

adpcm 22,605 9,819 10,288 29,120 13,202 13,302 300 120 88
dfadd 8,881 6,432 5,544 17,120 10,112 10,112 0 0 0
dfdiv(1)

20,159
11,298 10,356

12,416
5,054 5,054

62
48 48

dfdiv(2) 8,096 7,858 6,352 6,352 102 102
dfmul 4,861 3,133 3,011 12,032 5,120 5,120 32 31 31
dfsin(1)

39,933
21,484 20,477

12,864
6,602 6,602

100
70 85

dfsin(2) 18,415 17,375 7,900 7,900 124 139
gsm 19,131 6,164 6,216 11,168 8,992 8,992 70 50 48
mips 4,479 2,559 2,559 4,480 4,480 4,480 8 16 16

aes 28,490 3,066 3,117 38,336 32,526 32,526 0 0 0
blowfish 15,064 3,802 3,933 150,816 150,528 150,528 0 0 0
jpeg 46,224 16,121 15,593 253,936 438,674 437,394 172 134 138
mpeg2 13,238 2,351 2,328 34,752 32,768 32,768 0 0 0
sha 12,483 3,248 3,182 134,368 117,760 117,760 0 0 0

obtained on Zynq-7000, the gain provided by Speculative SDC
scheduling is less significant. The smaller speed of Cyclone
II limits the depth of the chains of operations which can be
scheduleded in a single clock cycle and so limits the number
of profitful code motion. Moreover, results about maximum
frequency obtained by 4 show that there is always a significant
positive slack. This is caused by a conservative timing model
adopted by PandA during High Level Synthesis for Cyclone II
which prevents some feasible advantageous code motions and
does not allow to obtain the best possible results. Finally, as
in case of Zynq-7000, the area results obtained when targeting
Cyclone II, which are reported in Table III, show that the gain
in terms of cycles of SDC scheduling solutions does not imply
an increase of resource usage.

V. RELATED WORK

The algorithms which have been proposed to solve the
problem of scheduling in High Level Synthesis can be roughly
classified in two categories. The former are oriented at optimiz-
ing data dominated applications and in particular the execution
of loops, the latter, as the one presented in this paper, are
aimed at optimizing control dominated specifications. Most of
the algorithms of the second type work on CDFG, but without
performing explicit code motion. For example, SDC schedul-
ing algorithm, which has been initially proposed by Cong et
al. [2], produces the optimal scheduling of the starting CDFG,
but it only allows limited implicit code motion (execution of
consecutive basic blocks can be only partially overlapped).
Explicit code motion is instead considered in [5] where a set
of possible code transformations is proposed. Differently from
the methodology presented in this paper, the decisions about
which are the transformations to be performed are taken on the
basis of the results of an heuristic and not of an exact method.
The second main difference is that their transformations are
aimed at improving only the longest path of the specification
and not all the paths at the same time.

The combination of SDC scheduling and code motion
has been proposed in [3]. The authors proposed a scheduling
framework which performs scheduling of CDFG in two steps.
In the former SDC scheduling is used to schedule critical
operations after refinement of the CDFG. In the latter, after
that the scheduling of critical operations has been guaranteed
by the insertion of delay operations, a fast heuristic is exploited
to schedule the remaining operations allowing their implicit
code motion by relaxing conditional constraints. Usage of
an heuristic instead of SDC scheduling potentially prevents
production of the optimal solution. A quantitative comparison
with the approach proposed in this paper has not been possible:
the details about experimental setup are not reported in [3]
nor it has been possible to compile the Shang framework
to generate the data. However, since the authors of Shang
framework state that their framework is 30% faster than LegUp
on CHStone benchmarks and since the gain of the proposed
methodology with respect to LegUp is much larger (Table I),
the results of [3] are expected to be worse than the results of
Speculative SDC scheduling. Moreover, the selection of the
critical operations is demanded to the designer. Differently
from this approach, the methodology proposed in this paper
adopts SDC scheduling to compute the schedule of all the
operations, potentially allowing code motion of all of them.
Moreover, it does not require to introduce delay operations

to guarantee the constraints. Finally, SDC algorithm has been
extended also to optimize execution of loops. Modulo schedul-
ing and SDC scheduling have been integrated by extending
SDC formulation with pipeline dependent constraints and by
combining it with greedy heuristic [14] and with backtracking
algorithm [15]. In this way it is possible to optimize in an
exact way the initiation interval of the loop pipelines and so
the overall performance of the applications.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a methodology flow aimed at trans-
forming the CDFG representation of an application to reduce
its overall clock cycle latency. The methodology combines
Speculative SDC scheduling, global code motion and local
heuristics to apply all the profitable transformations. Exper-
imental results show how it is effectively able to improve the
performances of hardware implementations of control domi-
nated applications without increasing resource usage. Future
works will focus on including profiling information in the
proposed Speculative SDC formulation and in allowing code
motion inter loops.

REFERENCES

[1] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru
Zhang. High-level synthesis for fpgas: From prototyping to deployment.
TCAD, 30(4):473–491, April 2011.

[2] Jason Cong and Zhiru Zhang. An efficient and versatile scheduling
algorithm based on sdc formulation. DAC ’06, pages 433–438, New
York, NY, USA, 2006. ACM.

[3] Hongbin Zheng, Qingrui Liu, Junyi Li, Dihu Chen, and Zixin Wang.
A gradual scheduling framework for problem size reduction and cross
basic block parallelism exploitation in high-level synthesis. In ASP-

DAC 2013, Yokohama, Japan, January 22-25, 2013, pages 780–786,
2013.

[4] Daniel D. Gajski and Loganath Ramachandran. Introduction to high-
level synthesis. IEEE Des. Test, 11(4):44–54, 1994.

[5] Sumit Gupta, Nick Savoiu, Nikil Dutt, Rajesh Gupta, and Alex Nicolau.
Conditional speculation and its effects on performance and area for
high-level snthesis. ISSS ’01, pages 171–176, New York, NY, USA,
2001. ACM.

[6] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM TOPLAS, 13(4):451–490, Oct
1991.

[7] R. Cytron, J. Ferrante, and V. Sarkar. Compact representations for
control dependence. In PLDI, pages 337–351, 1990.

[8] T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in
a flowgraph. (TOPLAS), 1(1):121–141, 1979.

[9] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J.H. Anderson. Legup: An open-source high-level
synthesis tool for fpga-based processor/accelerator systems. ACM Trans.

Embed. Comput. Syst., 13(2):24:1–24:27, 2013.

[10] Politecnico di Milano. PandA framework. http://panda.dei.polimi.it,
2014.

[11] Xilinx. Vivado Design Suite. http://www.xilinx.com, 2013.

[12] Altera. Quartus II. http://www.altera.com, 2013.

[13] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada.
Proposal and quantitative analysis of the chstone benchmark program
suite for practical c-based high-level synthesis. JIP, 17:242–254, 2009.

[14] Zhiru Zhang and Bin Liu. Sdc-based modulo scheduling for pipeline
synthesis. In ICCAD, pages 211–218, Nov 2013.

[15] A. Canis, S. Brown, and J. Anderson. Modulo SDC scheduling with
recurrence minimization in high-level synthesis. In FPL, pages 1–8,
2014.

