
Tekhnê
July - December 2021, Vol. 18, No. 2, pp. 25 – 36

© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

Swarm behavior simulator with bacterial Quorum Sensing

Simulador de comportamiento de enjambre con Quorum Sensing bacteriano

Eyder A. Rodríguez C.1 and Daniel M. Romero S.2
1Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

earodriguezc@correo.udistrital.edu.co
2Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

dmromeros@correo.udistrital.edu.co

One of the most useful tools in the design of path-planning solutions is simulators. Thanks
to them, it is possible to predict the performance of certain control strategies. In this paper,
a simulator is presented that implements a swarm of automatons, which perform a wild
motion in a user-selected environment. The robots will have the quality to avoid collisions
with different obstacles that affect their mobility since they are equipped with proximity
sensors. The interface of this simulator was designed entirely with the Qt Designer software.
Successful configurations that replicate the performance of the real prototype are presented.

Keywords: Path-planning, quorum sensing, simulator, software, swarm

Una de las herramientas más útiles en el diseño de soluciones de planificación de trayectorias
son los simuladores. Gracias a ellos, es posible predecir el rendimiento de determinadas
estrategias de control. En este trabajo se presenta un simulador que implementa un enjambre
de autómatas que realizan un movimiento salvaje en un entorno seleccionado por el usuario.
Los robots tendrán la cualidad de evitar colisiones con diferentes obstáculos que afecten a su
movilidad ya que están equipados con sensores de proximidad. La interfaz de este simulador
se ha diseñado íntegramente con el software Qt Designer. Se presentan configuraciones
exitosas que replican el desempeño del prototipo real.

Palabras clave: Enjambre, Planificación de rutas, quorum sensing, simulador, software

Article typology: Research

Received: June 25, 2021
Accepted: November 11, 2021

Research funded by: Universidad Distrital Francisco José de Caldas (Colombia).

How to cite: Rodríguez, E., and Romero, D. (2021). Swarm behavior simulator with bacterial Quorum Sensing.
Tekhnê, 18(2), 25 -36.

26 RODRÍGUEZ, ROMERO

Introduction

Motion planning is a critical aspect of programming
an automaton, or a robot (Ichter et al., 2018; Mohanan
& Salgoankar, 2018). It allows the robot to interact
efficiently with its environment and enables it to move
around dynamically, rather than being limited to its visible
range. To address this need, motion planning simulation
software can be developed. This software can be designed
with certain basic functionalities and rules (Patle et al.,
2019).

The motion planning simulation software in question
implements a swarm of automatons that move around in a
user-defined environment. These robots are equipped with
proximity sensors, which allow them to avoid collisions with
various obstacles that may affect their mobility. When the
sensor detects the presence of an obstacle, the robot will
randomly change direction to continue moving around in a
wild, unpredictable manner (Bobadilla et al., 2012).

The user can choose the dimensions of the environment in
which the automatons will be moving (Martínez et al., 2012).
This environment is divided into a grid, which defines the
regions where the automatons will be able to move. These
regions are assigned weight values, which determine where
the robots will tend to converge to reach the quorum, which
is also defined by the user. The quorum is achieved when
the automatons compare the weight values and the number
of automatons present in each region.

The process of designing and programming this
simulation software involves several steps, starting with
the interface design and ending with the display of the
quorum results (Khan et al., 2017). The interface is designed
using the Qt Designer software, which makes it easy to
position and size all the elements. The design is also focused
on making it easy for the user to interact with the simulator.
The final result of the interface design will be discussed in
more detail later.

Literature review

(Huang et al., 1995) discuss the design and
implementation of the simulator PowerMill, a novel
transistor level simulator for the simulation of current
and power behavior in vlsi circuits. They can form
robust interspecies networks - bacterial communities -
via sophisticated communication protocols. (Flikkema
& Leid, 2005) assert that the improved understanding of
these communities in the last decade provides a new model
for swarm intelligence with distinct advantages, including
ease of laboratory experimentation, explicit coupling
of communication and behavior, and intergenerational
dynamics. (Hsieh et al., 2008) present a biologically inspired
approach to the dynamic assignment and reassignment of
a homogeneous swarm of robots to multiple locations,

which is relevant to applications like search and rescue,
environmental monitoring, and task allocation. This paper
studies self-organized flocking in a swarm of mobile robots.
(Ferrante et al., 2012) present Kobot, a mobile robot platform
developed specifically for swarm robotic studies, briefly
describing its sensing and communication abilities. (Korani,
2008) present a new algorithm for PID controller tuning
based on a combination of the foraging behavior of E coli
bacteria foraging and Particle Swarm Optimization (PSO).
This paper describes some of the results obtained after the
design and implementation of a discrete cellular automata
simulating the generation, degradation and diffusion of
particles in a two dimensional grid where different colonies
of bacteria coexist and interact. This lattice-based simulator
use a random walk-based algorithm to diffuse particles
in a 2D discrete lattice (Gómez & Rodríguez, 2011). To
keep the level of quorum sensing molecules below the
activation threshold (Lo et al., 2015) propose a biological
controller that can generate different concentration levels
of inhibitors under different environment conditions. An
existing quorum sensing strategy enables a swarm to alter
collective behavior after a decision, but has not been
evaluated under local communication restrictions. (Cody &
Adams, 2017) combine these strategies to enable a swarm
to detect when a majority of agents support a site and cease
deliberation in order to rapidly build a consensus. One of
the subject of (Roozbahani & Handroos, 2019) is that the
proposed control method combines a directed random search
method and real-time simulation to develop an intelligent
controller in which each generation of parameters is tested
on-line by the real-time simulator before being applied to
the real process. (Martínez et al., 2020) propose a strategy
for the coordination of a swarm of robots in an unknown
environment.

Problem statement

Designing and programming a motion planning
simulation software that allows for the implementation
of a swarm of automatons that can perform wild movement
in a user-selected environment. These automatons should be
equipped with proximity sensors that allow them to detect
and avoid collisions with obstacles that may affect their
mobility. Additionally, the environment should have a grid
system that defines regions for the automatons to move
in, with each region being assigned a weight value. The
automatons should be able to compare the weight values
and number of automatons present in each region in order
to reach a quorum, which is also defined by the user. The
software should have a user-friendly interface that allows
for easy interaction with the simulator, and should provide a
detailed explanation of the design and programming process.

The motion planning simulation software should be able
to handle dynamic and constantly changing environments,

SWARM BEHAVIOR SIMULATOR 27

as this is an important aspect of modern automation. The
automatons should be able to move randomly while avoiding
obstacles, and should be able to converge on a specific
region based on the weight values and number of automatons
present in that region. The user should be able to adjust the
dimensions of the environment, as well as the weight values
and quorum requirements. The interface should be designed
using the Qt Designer software, and should prioritize ease of
use for the user.

The final result of the simulation software should include
a detailed explanation of the design and programming
process, including the steps involved and the methods
used to achieve user interaction. The software should
also display the quorum results, allowing the user to see
how the automatons have converged on specific regions
based on the weight values and number of automatons
present. Overall, the motion planning simulation software
should provide a flexible and user-friendly platform for
programming and interacting with a swarm of automatons
in dynamic environments.

Methods

In terms of the programming process, the first step is
to define the functionalities and rules that the simulation
software will follow. This may include the algorithms that
the automatons will use to avoid collisions, the criteria
for determining the quorum, and the rules for how the
automatons will move around in the environment. Once
these details have been ironed out, the next step is to
implement the code that will bring the simulation to life. This
may involve using programming languages such as C++ or
Python to create the automatons, the environment, and the
various algorithms and rules that will govern their behavior.

Once the code has been written, the next step is to test the
simulation to ensure that it is working as intended. This may
involve simulating different configurations, such as different
numbers of automatons or different environments, to see how
the automatons behave in each case. This testing process will
help to identify any bugs or issues that need to be addressed
before the simulation is ready for use.

Once the simulation is working as intended, the final step
is to create the user interface that will allow the user to
interact with the simulation. This may involve designing and
building a graphical user interface (GUI) using a tool such
as Qt Designer or using a command-line interface (CLI) that
allows the user to input commands and see the simulation
results in a text-based format.

Overall, the process of designing and programming
a motion planning simulation software involves some
steps, including defining the functionalities and rules,
implementing the code, testing the simulation, and creating
the user interface. By following these steps, it is possible to
create a software tool that can be used to simulate the motion

and behavior of automatons in a user-defined environment
(Fig. 1).

The first step to performing the simulation is to load the
environment in which the robots interact (Figs. 2 and 3). In
this configuration the simulator will give the option to load
an environment that can be any file in JPG or PNG format
that has a white background and no borders. Click on load
environment, and it will direct it to the D:/ directory of the
computer to select the desired environment.

The loaded environments will be located in the simulator
executable folder, more specifically in the maps folder. These
loaded environments, found in the maps folder, will enable
a user to experience their custom simulations within the
simulator executable (Fig. 4).

When selecting the environment the software will give the
option of a treatment to include in the simulation. Thanks
to the OpenCV library any loaded environment will change
to a composition of white and black pixels, creating a new
explorable environment for the robots which is named "1",
clarifying as an explorable environment the white pixels
and as obstacles the black pixels. This means that the
environment can be changed, adapted, and customized to
the robot’s needs, making it a very versatile tool in terms
of simulation possibilities (Fig. 5).

Once the environment is loaded, the size of the
environment is defined based on the size of the image, which
is 800 × 600. The next step is to define the parameters
of the robot, such as the number of robots and their speed
(Fig. 6). The default size is given by the robot belonging to
the ARMOS research group, which has dimensions of 0.61
cm × 0.61 cm. To ensure that the environment is accurate,
it is important to properly set the parameters of the robot.
Therefore, it is important to select the proper number of
robots and adjust their speed to ensure that they move at a
suitable rate.

The number of robots defining the Quorum Sensing
must be adjusted in coherence with the total population
size. For the number of robots, the maximum is defined
as corresponding to 4% occupancy, as it is considered the
right number for a relevant threshold performing a task; the
minimum number is defined at the user’s discretion (Fig. 7).
The speed will depend on the physical construction of the
robot we want to simulate, this will be reflected in the scan
time and the percentage of occupation of our robot in the
loaded environment. To define the quorum threshold, the
user is free to decide the number of robots needed to meet it.
Therefore, the number of robots within the Quorum Sensing
needs to be adjusted according to population size, with a
minimum and maximum number defined.

To define the place where the quorum will occur,
the regions in the environment must be defined with a
corresponding performance value, which is assigned using
weight values or landmarks, which will give information to

28 RODRÍGUEZ, ROMERO

Figure 1

Path planning simulator interface.

Figure 2

Environment configuration.

the robots about the importance of that region and the higher
this value is, the more attractive it will be for the robots
(Fig. 8). The value of each landmark will be a maximum
of 10. Each region will be measured about the others, based
on the criteria assigned to each of them so that a single region
with a higher value is more likely to be chosen than several
regions with lower values. Thus, the value assigned to each

region will provide information about how attractive it is for
the quorum.

Here the user will enter the weight values he wants for the
regions of the environment and on the right side he will have
a preview of the previously loaded environment. Once the
basic values for the simulation are obtained the user will click
on save, this will generate the values in the program base
and then run the simulator in the Python Pygame platform.
The simulator will process the user’s weight values, which it
reads from the program base, and then apply them to generate
an environment on the Python Pygame platform.

Results

We will now review each of the functionalities offered by
the program and its great versatility in representing different
types of scenarios as required by the researcher. One of
the possible variables when simulating is the size of the
environment, to give context an environment of 100 m × 50
m and another of 75 m × 20 m will be simulated as shown
in Fig. 9 and Fig. 10 respectively. These scenarios will be
compared to one another, taking into account the difference
in size and its effect on the results obtained.

As can be seen in the figures above, the environment
did not change in size or shape, as it remains constant
regardless of the size of the environment. However, the

SWARM BEHAVIOR SIMULATOR 29

Figure 3

Environment selection directory for the simulator.

Figure 4

Pre-loaded environments for the simulator with their respective locations.

30 RODRÍGUEZ, ROMERO

Figure 5

Environment modified and saved by the simulator.

Figure 6

Configuration of robot parameters.

robots changed as the size of the environment changed,
by having a larger area in the environment the robots
look smaller in comparison, this means that the true size
of the robots remains constant regardless of the size of
the environment. The scale of the environment changes
according to the simulation need, but the space used on the
screen is optimized. The optimized size of the environment

Figure 7

Setting the quorum threshold value.

provides users with an improved visual representation that is
easy to interact with.

To simulate various types of scenarios, our program
allows loading different types of environments in .jpg or png
format as shown in Fig. 11 and Fig. 12. The user can use
the drop-down menu to select one of the many pre-existing
environments or load a new environment of their own.

SWARM BEHAVIOR SIMULATOR 31

Figure 8

Assignment of landmarks to the simulator as a preview of the
loaded environment.

In a navigation environment, it is important to define the
number of robots that will perform the search task. With this
objective in mind, the program allows the implementation
of several robots that do not exceed 4% of the area of the
environment. In this case, 35 robots were implemented in
an obstacle-free environment of 75 m × 20 m as shown in
Fig. 13.

To implement Quorum Sensing the robots will move using
wild movement. Through the initial interface a certain
quorum threshold is determined in a cell chosen by the user
and weight is given to this zone, depending on this weight
stipulated by the user, the robots that exceed the quorum
threshold in a zone will wait a time directly proportional to
the weight of the zone. Fig. 14 shows how several red robots
are concentrated in different zones of interest, blue robots are
waiting for more robots to complete the quorum and green
robots are scanning the environment in search of a zone of
interest. The robots’ movements are chaotic, but the Quorum
Sensing algorithm helps to control their overall behavior by
determining the necessary quorum for a given region. In this
way, the robots can efficiently explore a given area and detect
regions of interest.

Once the user wishes to finish the simulation, he/she
can click on the Finish button to enter the results screen,
where he/she will find data of interest such as the number
of robots used, the environment, and its divisions, the total
simulation time, the time it took to reach quorum in any
zone and the concentration of robots per zone of interest, this
concentration of robots is given with a color palette explained
in the upper left part of the results screen as shown in Fig. 15.
On this results screen, the user can analyze the performance
of the robots in the environment by checking how much time

they needed to reach a quorum, or how many robots were
used.

Despite the efforts made to create a simulation that
matches real life, it was not possible to achieve accurate
collisions between robots and environments due to the
limitations of Pygame. Although the collisions work well
most of the time, sometimes the robots can overlap with
the objects and get trapped inside them, however, this
problem could be solved by using environments included
in the program by implementing fixed and well-determined
hitboxes; when a user loads his environment it is not possible
to accurately determine these hitboxes, so this kind of
problems can occur. Thus, the only way to guarantee a more
accurate collision between the robots and their environment
is to create a simulation using different programming
languages or libraries which are designed specifically for
game development and animation, as these provide greater
control over the physics of collisions. Therefore, while
Pygame provided a useful framework to create a simulation
and enable the robots to move realistically, the limitations of
this program meant that it was not possible to guarantee an
accurate collision between robots and their environment.

Conclusion

The use of Python as design software for the code
used facilitated the process in the generation of both
the robot and its interaction with the environment since
thanks to its object-based programming it is possible to
add qualities that in other software may take a longer
process. This object-based programming made it easier to
implement changes to the robot’s behavior, without having
to completely re-program it.

The versatility of the software to perform the simulation
on environments established by the user generates endless
possibilities; having only as a restriction that the environment
is not with margin since it is one of the limitations of the
software. This capability, along with the other features of the
software, allows users to craft a wide range of simulations,
limited only by their imaginations and the capabilities of the
software.

The software gives positive results when performing the
navigation simulation for a group of autonomous robots
through the movement strategy formulated and applied by
the research group. This strategy derives its working
principle from a simplified model of bacterial interaction;
these results are shown in the quorum values reached by
the software and previously introduced by the user; these
values have a direct interaction with the environment as
well as the other values defined by the user. The software
produces robust results, with the quorum values closely
mirroring those which have been defined by the user.
This is a testament to the effectiveness of the software,
as it can accurately calculate the interactions between

32 RODRÍGUEZ, ROMERO

Figure 9

100 m × 50 m navigation environment.

Figure 10

75 m × 20 m navigation environment.

SWARM BEHAVIOR SIMULATOR 33

Figure 11

Loading of different environments (1).

Figure 12

Loading of different environments (2).

34 RODRÍGUEZ, ROMERO

Figure 13

Loading 35 robots in a simulation.

various parameters, and generate robust results following the
previously defined values.

References

Bobadilla, L., Martinez, F., Gobst, E., Gossman, K., &
LaValle, S. M. (2012). Controlling wild mobile
robots using virtual gates and discrete transitions.
2012 American Control Conference (ACC). https :
//doi.org/10.1109/acc.2012.6315569

Cody, J. R., & Adams, J. A. (2017). An evaluation of quorum
sensing mechanisms in collective value-sensitive
site selection. 2017 International Symposium on
Multi-Robot and Multi-Agent Systems (MRS). https:
//doi.org/10.1109/mrs.2017.8250929

Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli,
C., & Dorigo, M. (2012). Self-organized flocking
with a mobile robot swarm: A novel motion control
method. Adaptive Behavior, 20(6), 460–477. https:
//doi.org/10.1177/1059712312462248

Flikkema, P., & Leid, J. (2005). Bacterial communities:
A microbiological model for swarm intelligence.
Proceedings 2005 IEEE Swarm Intelligence
Symposium, 2005. SIS 2005. https : / /doi . org /10 .
1109/sis.2005.1501655

Gómez, P., & Rodríguez, A. (2011). Simulating a
rock-scissors-paper bacterial game with a

discrete cellular automaton. In New challenges on
bioinspired applications (pp. 363–370). Springer
Berlin Heidelberg. https://doi.org/10.1007\/978-3-
642-21326-7_39

Hsieh, M. A., Halász, Á., Berman, S., & Kumar, V. (2008).
Biologically inspired redistribution of a swarm of
robots among multiple sites. Swarm Intelligence,
2(2-4), 121–141. https://doi.org/10.1007/s11721-
008-0019-z

Huang, C. X., Zhang, B., Deng, A.-C., & Swirski, B. (1995).
The design and implementation of PowerMill.
Proceedings of the 1995 international symposium
on Low power design - ISLPED ’95. https://doi.org/
10.1145/224081.224100

Ichter, B., Harrison, J., & Pavone, M. (2018). Learning
sampling distributions for robot motion planning.
2018 IEEE International Conference on Robotics
and Automation (ICRA). https://doi.org/10.1109/
icra.2018.8460730

Khan, A., Noreen, I., & Habib, Z. (2017). On
complete coverage path planning algorithms
for non-holonomic mobile robots: Survey and
challenges. Journal of Information Science &
Engineering, 33(1), 101–121.

Korani, W. M. (2008). Bacterial foraging oriented
by particle swarm optimization strategy for

https://doi.org/10.1109/acc.2012.6315569
https://doi.org/10.1109/acc.2012.6315569
https://doi.org/10.1109/mrs.2017.8250929
https://doi.org/10.1109/mrs.2017.8250929
https://doi.org/10.1177/1059712312462248
https://doi.org/10.1177/1059712312462248
https://doi.org/10.1109/sis.2005.1501655
https://doi.org/10.1109/sis.2005.1501655
https://doi.org/10.1007\/978-3-642-21326-7_39
https://doi.org/10.1007\/978-3-642-21326-7_39
https://doi.org/10.1007/s11721-008-0019-z
https://doi.org/10.1007/s11721-008-0019-z
https://doi.org/10.1145/224081.224100
https://doi.org/10.1145/224081.224100
https://doi.org/10.1109/icra.2018.8460730
https://doi.org/10.1109/icra.2018.8460730

SWARM BEHAVIOR SIMULATOR 35

Figure 14

Robots exploring an environment.

Figure 15

Results screen.

36 RODRÍGUEZ, ROMERO

PID tuning. Proceedings of the 2008 GECCO
conference companion on Genetic and evolutionary
computation - GECCO ’08. https : / / doi . org / 10 .
1145/1388969.1388980

Lo, C., Wei, G., & Marculescu, R. (2015). Towards
autonomous control of molecular communication in
populations of bacteria. Proceedings of the Second
Annual International Conference on Nanoscale
Computing and Communication. https : / /doi . org /
10.1145/2800795.2800822

Martínez, F., Jacinto, E., & Hernández, C. (2012). Particle
diffusion model applied to the swarm robots
navigation. Tecnura, 16(2012), 34–43.

Martínez, F., Martínez, F., & Montiel, H. (2020). Bacterial
quorum sensing applied to the coordination of
autonomous robot swarms. Bulletin of Electrical
Engineering and Informatics, 9(1), 67–74. https://
doi.org/10.11591/eei.v9i1.1538

Mohanan, M., & Salgoankar, A. (2018). A survey of
robotic motion planning in dynamic environments.
Robotics and Autonomous Systems, 100(2018),
171–185. https : / /doi .org /10.1016 / j . robot .2017 .
10.011

Patle, B., L, G. B., Pandey, A., Parhi, D., & Jagadeesh, A.
(2019). A review: On path planning strategies for
navigation of mobile robot. Defence Technology,
15(4), 582–606. https://doi.org/10.1016/j.dt.2019.
04.011

Roozbahani, H., & Handroos, H. (2019). A novel
haptic interface and universal control strategy
for international thermonuclear experimental
reactor (ITER) welding/machining assembly robot.
Robotics and Computer-Integrated Manufacturing,
57, 255–270. https://doi.org/10.1016/j.rcim.2018.
12.011

36

https://doi.org/10.1145/1388969.1388980
https://doi.org/10.1145/1388969.1388980
https://doi.org/10.1145/2800795.2800822
https://doi.org/10.1145/2800795.2800822
https://doi.org/10.11591/eei.v9i1.1538
https://doi.org/10.11591/eei.v9i1.1538
https://doi.org/10.1016/j.robot.2017.10.011
https://doi.org/10.1016/j.robot.2017.10.011
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/j.rcim.2018.12.011
https://doi.org/10.1016/j.rcim.2018.12.011

	Introduction
	Literature review
	Problem statement
	Methods
	Results
	Conclusion

