

391

Advancement in the development of an Open Source Object Oriented
BPSt: development methodology

Livio Mazzarella – Politecnico di Milano – livio.mazzarella@polimi.it

Martina Pasini – Politecnico di Milano – martina.pasini@polimi.it

Abstract
In order to promote its readability, modularity and

maintainability, a new Object Oriented (OO) tool for the

simulation of buildings performance, has been developed

in the last years. The first results of a comparative

validation done on our tool, following the BESTEST

standard, have been published in the 2013 IBPSA

International Conference. The chosen development

methodology aims to achieve efficient and high quality

software development in the field of Building

Performance Simulation tools (BPSts) and is based on an

Open Source (OS) development approach. Given the

selected approach, the contribution of volunteer

developers should be encouraged and supported. To

effectively support the work of an OS community, key

aspects are tasks automation, traceability and

communication in the developing phase. The

implemented development methodology is then based

on: 1) the use of a Software Forge (SF) to promote

communication between community members and to

help in the management of the software development

life-cycle, 2) the use of UML diagrams to describe

community-agreed architectural decisions and enforce

their implementation into the project, in a way that their

implementation can be automatically checked, 3) the

ability to group single tests of different modules in one

automatic test session of validation, which also simplifies

final reporting, 4) the use of inheritance, offered by

Object Oriented Programming (OOP), to specialize

existing classes which, avoiding rewriting, partially

automate code writing. Regarding the quality of the tool,

the definition of specific standards for programming,

documenting and validating is also important. In

particular, the validation phase has to be carried out in a

well-documented pool of verifiers, and provided as an

integral part of the documentation available to the user.

1. Introduction

Some of the most important available BPSts, such

as ESP-r and EnergyPlus, have followed, even if in

different ways, the Open Source approach since the

beginning. Today, both of them have enlarged the

public availability of their source code, by exposing

their source code repository on a public web site

for developers (GitHub for ESP-r and SourceForge

for EnergyPlus). The first fundamental advantage

gained by following such an approach is related to

the possibility to find errors in a shorter time, as

Raymond’s thesis states: “given enough eyeballs,

all bugs are shallow” (Raymond, 1999).

Another tremendous advantage is the union

between users and developers, since “treating your

users as co-developers is your least-hassle route to

rapid code improvement and effective debugging”

(Raymond, 1999).

Meanwhile, in the IT field, different tools and

methodologies have been created to increase

programming efficiency, promote communication

among involved actors and improve code

readability & browsability. Some of these utilities

are even more vital when following an OS

approach, given the un-schedulable and disperse

nature of its community’s members. In fact, OS

communities need, more than others, tools to:

 provide an organic structure for all

process phases (development, validation,

testing, etc.);

 aid organizing communication between

different community’s members;

 help old and new members to understand

the project

 promote developers’ efficiency, also

through automation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55255592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Livio Mazzarella, Martina Pasini

392

In order to promote the readability, modularity

and maintainability of a BPSt, some years ago we

started the development of a new OO tool for the

simulation of buildings performance, following the

best practice of an OS approach. For practical

reasons, until the project reaches a critical

minimum size, it will not be really open to the

world. Anyhow, the design of the project structure

is following the OS approach, in order to be ready

when such a minimum size is reached.

In this paper, we describe what tools and

methodologies have been applied to the

development of our OO BPSt.

2. The software forge

In an OS project, the most important points are

source code management, software development

support and project promotion. This is usually

done through a web application, called “Software

Forge” (SF). Among other possibilities, for instance

the SourceForge web site, we have decided to

directly host on our servers an OS SF, at least for

this development phase, to avoid being linked with

any provider that might not be available in the

future. The chosen SF is Allura, hosted on an

Ubuntu server, which provides, among others, the

following important features:

 source code management systems (SVN,

Git);

 issue tracking;

 threaded discussion forums/mailing list;

wikis;

 documentation facilities.

The main goals of our forge are therefore to:

 host the source code revision’s control, the

software’s home page, installer and

documentation;

 promote communication among commu-

nity members;

 provide tools for development, planning

and managing.

2.1 Hosting the source code

Commonly, in a SF, different places, such as

branches, tags, and trunk, are devoted to host

different versions of the current project. In out SF

the “branches” are used to test critical changes

before incorporating them into the main

development branch, located in the “trunk”, while

the “tags” are used to host stable releases of the

project. Every time the repository is changed,

through a commit, a message is associated with it

to briefly explain the reason for the new commit.

Effective Graphical User Interfaces (GUIs) that

show differences in the source code between

chosen revisions are provided by Allura.

2.2 Promoting communication among
actors

An efficient communication between involved

actors is essential, not only to avoid

misunderstandings in what should be done, but

also to improve planning and strengthen the

involvement of each member. Consequently, in our

project we have tried to identify appropriate places

and tools to improve communication:

 with the user (Documentation, Download

and Install web pages);

 with the developer (development

procedure, support tools identification

and description, etc);

 between developers (dashboards to

understand who is working on what, what

is he/she doing and with which plan,

which are the unassigned activities, etc);

 between users (mailing lists and forum to

share experiences);

 between users and developers (issue

tracking for discovering bugs &

performance bottlenecks , dashboards for

suggesting innovation opportunities, or

localizing shortfalls, links with feedbacks

on addressed/solved issues, etc.);

 between building and systems component

manufactures and users (promotion of

real products in the DB or DLL of the

software).

In fact the SF should put as many stakeholders as

possible in contact with each other, starting from

the users (both at design and operation time), to

manufacturers. Linking users, developers,

industries, software models and building

Advancement in the development of an Open Source Object Oriented BPSt: development methodology

393

performance monitored data is a vital key to

improve design from the smaller scale to policy

making at the larger scale.

Consequently, when users need something to be

changed, they can start a discussion in the SF to

understand if the required change is agreed by the

community, and, after that, they can submit their

request through tickets.

Another important ingredient for the good

evolution of the project is user feedback on

addressed issues and requests. Every time a

request is made, feedback is welcomed to

strengthen the motivation and sense of belonging

to the community of each member.

On the other hand, manufacturers willing to

promote the performances of their products can

find in such an environment a third party

legitimation. In fact, manufacturers can ask their

products to be added to the project in two ways. If

they ask to add a new model, representing their

system, to the project (in case such a model has not

yet been implemented), this new model should

pass the validation procedure. Otherwise, they can

ask to add a “prefilled class” to the appropriate DB

of the project (i.e. the DB used to collect that kind

of products). In this case, the user will find in the

DB an object with “pre filled” and unable to be

modified, which identifies that particular product.

In this second case, the manufacturer will be

required to perform experimental tests and provide

their documentation to the user together with the

prefilled class. Maybe, at the beginning, more

effort will be required from the manufacturer, but

“free publicity” will be gained as a counterpart. In

the meantime, ease of use will be gained by the

user, who will be allowed to choose from a list of

“correctly” precompiled objects, existing in the real

market.

2.3 Communicating current and future
project’s state

Concerning developers, one of the most important

parts in the management of the development is

effective communication of what has already been

done, what should be done, who is doing what and

what are their plans when doing it.

The communication concerning the current and

future state of the project takes place, for our

project, inside the Integrated Development

Environment (IDE). This is due to the possibility,

provided by the used IDE, which is Visual Studio

Ultimate 2013, to use an UML diagram linked with

the source code. This opportunity improves

readability and browsability of existing code and

the communication of software decisions. This part

will be discussed in section 3.1: Modelling tools.

Inside the SF milestones and tickets are created and

managed. This second kind of objects is meant to

list current, past and future activities involved in

the development process and contains process

information such as Author/Creator,

Assignees/Owners, Priority, estimated work-effort

or time-to-complete, Dependency/Predecessor,

Tested by, Labels, related Milestone, Status, etc.

This variety of information, contained in the SF,

should be “captured” and synthetized to

community’s members to provide all the

stakeholders, in an easy-to-consume form, statistics

on the life and features of the project.

Thus, not only work progress, but also statistics

about user feedbacks, model validation results,

etc., should be reported in such “dashboards”.

Unfortunately, such an enriched dashboard still

does not exist. However, it could be easily

implemented in the future if the validation

procedure and the software structure allows it.

3. Promoting Programming Efficiency

Programming efficiency is promoted by:

 communication;

 an appropriate software structure (which

allow code reuse);

 the implementation of automatic

routines/activities.

3.1 Modelling tools

As previously said, the communication of what has

been done, which models are waiting to be

implemented and which architectural choices have

been taken, is of great importance to promote

development efficiency.

This kind of communication is implemented

Livio Mazzarella, Martina Pasini

394

through UML diagrams and has been grouped in a

Modelling Project (linked with the rest of the

source code) inside our software solution. As a

matter of fact, the selected IDE allows a full

coupling of UML diagrams and source code,

automatically writing code while visually creating

a diagram or automatically generating or

modifying diagrams when the code is changed.

The generated UML diagrams help in:

 exploring existing architectures;

 understanding activities’ dependency and

sequence;

 specifying and enforcing (with layer

diagrams) the structure or behavior of a

system;

 providing a template that guides in

constructing a system;

 documenting decisions, etc.

3.2 Software structure & features

The structure of our software has been conceived

to simplify modifications of the source code. The

OO paradigm perfectly responds to this aim by

encapsulation and inheritance.

Everything is a class with properties that exposes a

behavior and hides its implementation. In this way,

developers can easily modify and extend the

system limiting the effects on other parts and

reducing the line of written code (when inheriting

by a father class).

Besides, through reflection, the addition of a new

class inheriting by a father class, allow the

automatic list on this new item in the GUI to the

user.

The chosen programming language is C#, which

fulfills such requirements and also combines the

.NET framework portability with enough high

efficiency and a powerful Integrated Developing

Environment (Visual Studio).

The .NET Framework is a software framework

developed by Microsoft that runs primarily on

Microsoft Windows. It is open source and

Microsoft with .NET 2015 is extending it to run on

Mac OS platforms and Linux. (Microsoft, 2014a

and Microsoft, 2014b).

Before .NET 2015, the Xamarin MONO project, an

open source implementation of Microsoft's .NET

Framework, based on the ECMA standards for C#

and the Common Language Runtime, assured code

portability to Linux and Mac OS platforms, even if

with some compatibility issues.

3.3 Tasks’ Automation

The used IDE also provides tools that help to check

that architectural and programming guidelines

have been correctly implemented.

This family of tools, addressed with “profiling

tools”, measures a system’s class structure,

coupling, complexity, cohesion, memory allocation,

CPU use, resource contention, etc.

Applying such automatic testing helps find

bottlenecks or low-performing code and can be

useful for a first check of codes developed by

others.

Together with the automatic check of the

“programming quality” of the source code, other

useful tools, provided by the IDE, for task

automation are snippets and unit tests.

Snippets are code template that can be easily called

while programming to be pasted in a context. They

have been used, for example, to provide a similar

structure to different classes (such as different

code’s regions for “Constructors”, “Private Fields”,

“Public Methods”, “Virtual Methods”,

“Overridden Methods”, etc.).

Unit tests, however, have been used to explicitly

declare, given some input, the expected output of a

specific part of a program. After their

implementation, it is possible to automatically

check all the unit tests created inside the project

with only one click. This event will trigger the

execution of all the tests and the generation of a

report showing which tests are met and which are

not.

The used IDE also provides tools to scan the

percentage of coverage of the code with tests,

encouraging a development methodology where

code and tests grow in parallel to assure the quality

of the software produced in each iteration.

Advancement in the development of an Open Source Object Oriented BPSt: development methodology

395

4. Development and Validation (D&V)
procedures

The focus of D&V procedures is on

simplifying/automating these activities as much as

possible.

As procedures should be repeatable, apart from

possible bifurcations, they should be translated as

much as possible into automatic tasks or templates,

as we have seen in the previous paragraph, with

snippets, unit test checking, etc.

Even if automation is not strictly possible, having a

document that explains the commonly agreed best

way to test a module, or a spreadsheet for

comparing results, will allow for their search and

implementation to be skipped.

4.1 Development procedures

Regarding the development procedures provided

in our SF, they consist basically in programming

guidelines and explanation about which

contribution should be submitted in which context

inside the SF or IDE, as previously explained.

The programming guidelines, meant to “assure”

that each developer’s approach is consistent with

that of the others, cover a range of subjects, starting

from naming and usage conventions, arriving to

performance and security considerations.

However, having written guidelines does not

guarantee that developers will read and follow

those practices.

The desire to automate the process of evaluating

code for compliance with these guidelines led to

the creation of Code Analysis tools implemented

inside the IDEs. These tools are based on rules, also

grouped by subjects, ad-hoc defined for the project

or already implemented as a result of the

numerous years of experience of a specific

community of developers. Once enabled and

configured, code analysis will be performed at each

build and a report will be automatically generated.

Besides the standard for code writing, some

standards for the documentation of the code are

provided too.

Documentation and code writing should go hand

in hand. The documentation provided is located

inside the code, through comment and indentation,

and is created in three kinds of documents, i.e:

 the User Manual,

 the Engineering Manual

 and the Validation Reports.

In the User Manual there are also sections to

explain to users how to interact with developers

and become a vital part of the community. In this

way unforeseen problems collected by users can be

directly forwarded to developers for fast analysis

and correction.

Technical information about each implemented

model is contained in the Engineering Manual.

The detailed description of Validation Reports will

be addressed in the next section.

4.2 Validation procedures

Once a new module has been developed, before it

can be included in the “main” project, it should

pass the validation process.

To complete this process:

 the developers have to redact the

Validation Report for their module and

produce all the associated results;

 a figure belonging to the community, like

the Editor does for a scientific journal, has

to select, according to criteria of

impartiality and competence, a shortlist of

eligible validators, among community

members;

 those community members belonging to

the shortlist that will accept that specific

task will have to control and legitimize the

success of this phase.

The selected validators, as happens in peer review

processes, should be unconnected with the

developers, should have enough knowledge of the

problem addressed by the module to be validated

and preferably should be in the number of two per

each validation procedure.

Each Validation Report, related to a specific

component or part of code, contains a short

summary and a detailed description of the module

and its validation results. A template for this report

is available on the SF, partially based on the

template developed for by Nordtest Company

(Torp, 2003).

The short summary is meant to “present” the new

module. It will contain information to locate the

Livio Mazzarella, Martina Pasini

396

new module in the project, a synthetic description

of the objectives and scope of the module and its

developers’ and validators’ identification.

To locate the module, the namespace in which the

module is created (ExtendedMath, Utilities, etc.)

should be declared and pictures of class diagram

and sequence diagrams, with the new module

highlighted, should be provided. As a matter of

fact, locating the new component among the others

in “space and time/activities” is important because

it states what the “nature” of the module is.

Depending on the nature and complexity of the

physical problem implemented by a computational

model and on our knowledge of its behavior, we

can have different terminology and validation

procedures.

Following a flow chart, developer are able to

identify the types of test they have to perform to

assess the “accuracy” of the model.

A physical process modelling requires the

incremental identification of a Physical/real Model

(PM), described by a more or less simplified

Mathematical Model (MM), which can have an

analytical or numerical solution, implemented on a

Computational Model (CM).

First, the MM should be well posed or stable, i.e. it

should admit a unique solution that depends on

the continuity on the data (Quarteroni et al., 2007).

Otherwise, without doing anything else (MM

regularization) we cannot pretend that a numerical

method applied to it will solve its pathologies

(Quarteroni et al., 2007).

Secondly, the simplifications made to create the

MM should be “quantified” as much as possible.

One or more parameters should be identified to

define a range of applicability of the MM to reach

an accuracy that is adequate for the intended use.

Thus, we should define the Application Domain

(AD) for that model. This phase is sometimes

referred to as: MM Qualification and might be seen

as a quantitative evaluation of the Consistency of

the MM to the PM.

After that, when possible, the mathematical model

should be characterized by an “error”, due to the

uncertainties involved with the experimental

observations (measurements) of its input

parameters. Technologies with similar

performances might have different solution errors,

thus, such information may drive choices made

during the design of the system. If also a sensitivity

analysis is possible on the MM, it might be useful

to identify unexpected/wrong high sensitivity to

certain physical parameters of the CM.

The MM can have an analytical solution or might

need a numerical method (consistent and stable,

thus convergent) to be solved. This second case is

the most problematic, since going from a

continuum to a discrete space, some information is

lost and consequently, great care should be

devoted to the characterization of discretization’s

errors.

On the CM a validation campaign should be

performed to cover, as much as needed, the AD

identified for that model with the Validation

Domain (VD) for that CM. Vice versa, we will need

to provide supported inferences to allow this

possibility.

When trying to validate the solution of a numerical

method with “exact” or “pseudo-exact” solutions,

before continuing with the comparison,

discretization errors should be carefully removed,

for example, through Grid Convergence Index

analysis.

To evaluate the solution of the CM, we can use:

 “exact” analytical solution -generally

available only for very specific Boundary

Conditions (BCs)-;

 “pseudo-exact” experimental measures;

 the results of other tools already

validated.

Depending on the availability of analytical

solutions, or experimental measurements, or other

validated software, different precautions should be

taken during the validation.

Indeed, an analytical solution for that MM might

exist for a limited number of BCs. In this case we

will have to take care to collect BCs with “enough”

significance. For example validating a model in

steady state is a necessary but not sufficient step,

since it is not validating its dynamics (the VD will

still not span all the AD).

In case exact analytical solutions are not available,

pseudo-exact experimental “solutions” can be

recorded through monitoring. In this case we can

follow, among other methods, three steps

described in (Obercampf et al., 2002):

Advancement in the development of an Open Source Object Oriented BPSt: development methodology

397

 characterization of the uncertainty of

input parameter;

 selection of an ensemble of computations

(through statistical methods like Monte

Carlo, Latin Hypercube, etc.);

 quantification of the uncertainty of the

output.

The validation-metric success criteria chosen in this

phase is also extremely important. Mean value and

uncertainty range should be compared among

computational and experimental data, to gain a

good knowledge of the CM’s behavior.

More in general, applying these three steps will be

a way to obtain the mean value for each

simulation's result, instead of a value whose

probability is unknown. This information might,

again, drive the choice among different

technologies during the building’s design.

To incrementally increase our certainty about the

coverage of the AD by the VD, a good possibility is

offered by a continuous interaction with

monitoring activities performed at operation time.

This ongoing dialogue between prediction and

measurement may enhance the credibility of the

results of the simulation in the design phase and

improve the knowledge of the methods

implemented within the instrument, as well as of

their range of applicability.

After having validated the CM, performing a

sensitivity analysis on it can have the further

advantages to:

 control that the same behavior of the MM

is shown by the CM, if error propagation

and/or sensitivity analysis was possible on

the MM, or if experience showed a

particular behavior;

 check the sensitivity of the numerical

method to the choice of the discretization

parameters values and inform the user

about that;

 warn the user about which input he/she

should choose with more care (e.g. finding

a manufacturer that has conducted good

tests to characterize the performance of

his/her products);

 guide the user on which model should be

chosen to calculate specific input of the

current model (e.g. systems highly

sensible to the Mean Radiant Temperature

will require the coupling with the more

accurate available model for the

calculation of View Factors).

5. Conclusions

In this paper we have tried to summarize the

lessons learned during the development of our OO

BPSt, aimed at implementing an enriched

modularity (Mazzarella et al, 2009) for improving

readability, maintainability and easy of validation.

The current developing stage of our BPSt is

summarised as follows:

 SF: implemented on an Ubuntu server

thanks to the Allura Project, ready and

currently used by the internal developing

team only;

 code kernel: first parallelized (Mazzarella

et al., 2014) beta release -building

envelope only- currently under tests

(previous tests have been performed on its

sequential version and their results have

been published in: Mazzarella et al., 2013);

 Engineering Manual: currently under

development;

 Programming Standards & Developer

Manual: first release;

 Validation Reports: currently under

development/revision.

During the development of our BPSt, we have seen

the continuous evolution of exciting and promising

possibilities offered by today’s technologies.

However, homogeneity of achieved results is still

needed in order to be able to confront different

models with each other and with real systems.

In our opinion, the creation of an environment that

tries to help promote communication and

cooperation between extremely different words

(research, profession, manufacture) and that tries

to unite design and operation is the first step to

achieve a final goal.

This final goal consists in being able to assert and

show with numerous case studies that the whole

simulation, together with each implemented

model, produces results which are correct enough

for the intended use.

Livio Mazzarella, Martina Pasini

398

6. Acknowledgments

Work done under the “TRIBOULET” project,

funded by Regione Lombardia.

Thanks also to Narges Shahmandi Hoonejani, who

as contributed to the implementation of our SF.

Nomenclature

Acronyms

AD Application Domain

BCs Boundary Conditions

BPSts Building Performance Simulation

tools

CM Computational Model

DB Data Base

DLL Dynamic Link Library

D&V Development and Validation

GUIs Graphical User Interfaces

IDE Integrated Development Environment

MM Mathematical Model

OO Object Oriented

OOP Object Oriented Programming

OS Open Source

PM Physical/real Model

SF Software Forge

UML Unified Modeling Language

VD Validation Domain

References

Mazzarella L., Pasini M., 2019. Building energy

simulation and object-oriented modelling:

review and reflections upon achieved results

and further developments. Conference

 roceedings of “IB SA Building Simulation 2009”,

University of Strathclyde, Glasgow, Scotland,

27th - 30th July, (pp. 638-645).

Mazzarella L., Pasini M., 2013. Development of a

new tool for the co-simulation of multiple

autonomous object. In “Building Simulation

2013”, Proceedings of BS2013: 13th Conference of

International Building Performance Simulation

Association, Etienne Wurtz Ed., Chambéry,

France, August 26-28 2013 , (pp. 3794- 3801),

ISBN 978–2–7466–6294–0

Mazzarella L., Pasini M. and Shahmandi Hoonejani

N, 2014. Challenges, limitations, and success of

cloud computing for parallel simulation of

multiple scenario and co-simulation.

ASHRAE/IBPSA-USA, Building Simulation

Conference, Atlanta, GA, September 10-12, 2014

Microsoft, 2014a, ".NET Core is Open Source".

.NET Framework Blog. Microsoft. Retrieved 12

November 2014. Accessed November 28th 2014.

http://blogs.msdn.com/b/dotnet/archive/2014/11

/12/net-core-is-open-source.aspx

Microsoft, 2014b, Microsoft takes .NET open source

and cross-platform, adds new development

capabilities with Visual Studio 2015, .NET 2015

and Visual Studio Online. Accessed November

30th 2014. http://news.microsoft.com/2014/

11/12/microsoft-takes-net-open-source-and-

cross-platform-adds-new-development-

capabilities-with-visual-studio-2015-net-2015-

and-visual-studio-online/

Oberkampf, W. L., Trucano, T. G., & Hirsch, C.,

2004. Verification, validation, and predictive

capability in computational engineering and

physics. Applied Mechanics Reviews, 57(5), pp

345-384. doi:10.1115/1.1767847.

Quarteroni, A., Sacco, R., Saleri, F. (2nd Edition),

2007. Numerical mathematics (Vol. 37). Springer.

Raymond, E. S., 1999. The Cathedral and the

Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary. O'Reilly Media.

ISBN 1-56592-724-9. Accessed November 28th

2014.

http://www.catb.org/~esr/writings/cathedral-

bazaar/cathedral-bazaar/index.html

Torp, C.E., 2003. “Method of Software Validation

(NT TR 535 - Validation scheme)”. Accessed

November 28th 2014. http://www.nordtest.info/

index.php/technical-reports/item/method-of-

software-validation-nt-tr-535-validation-

scheme.html

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html

