
Abstract— Mathematical modeling of tumor response 

to radiotherapy has the potential of enhancing the quality 

of the treatment plan, which can be even tailored on an 

individual basis. Lack of extensive in vivo validation has 

prevented, however, reliable clinical translation of 

modeling outcomes. Image guided radiotherapy (IGRT) is 

a consolidated treatment modality based on computed 

tomographic (CT) imaging for tumor delineation and 

volumetric cone beam CT data for periodic checks during 

treatment. In this work, a macroscopic model of tumor 

growth and radiation response is proposed, being able to 

adapt along the treatment course as volumetric tumor 

data become available. Model parameter learning was 

based on cone beam CT images in 13 uterine cervical 

cancer patients, subdivided into three groups (G1, G2, G3) 

according to tumor type and treatment. Three group-

specific parameter sets (PS1, PS2 and PS3) on one general 

parameter set (PSa) were applied. The corresponding 

average model fitting errors were 14, 18, 13 and 21%, 

respectively. The model adaptation testing was performed 

using volume data of three patients, other than the ones 

involved in the parameter learning. The extrapolation 

performance of the general model was improved, while 

comparable prediction errors were found for the group-

specific approach. This suggests that an on-line parameter 

tuning can overcome the limitations of a suboptimal 

patient stratification, which appeared otherwise a critical 

issue.  

Index Terms— Mathematical model, tumor growth, 

parameter adaptation, radiation therapy, IGRT 

I. INTRODUCTION

TERINE cervical cancer is one of the deadliest disease for

women worldwide, with about 270,000 deaths annually

[1]. The mortality rate in the United States is over 30% within 

five years from diagnosis [2]. External beam radiotherapy 

(EBRT), often administered together with adjuvant 

chemotherapy, represents a highly effective localized 

treatment for such a tumor, in which image guided 

radiotherapy (IGRT) plays a key role [3] [4]. IGRT 
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encompasses the acquisition of morphological images at each 

treatment fraction, allowing accurate patient set up and, 

potentially, treatment re-planning [5] [6]. In this perspective, 

IGRT, along with prognostic mathematical tools, discloses the 

opportunity of daily treatment adaptation according to 

measured tumor evolution (plan of the day) [4] [6] [7]. 

Cell abnormal growth, due to genetic mutations and 

deregulation of control mechanisms, and the response to 

radiation therapy, involve complex events at different spatial 

and temporal scales [8] [9] [10]. Macroscopic indices, as the 

FIGO (International Federation of Gynecology and Obstetrics) 

staging, which is mainly determined by the tumor extent, 

lymph node status and metastasis occurrence, have been 

proved to be strongly correlated with the patient prognosis [2]. 

Cell doubling time as a sign of tumor aggressiveness [8], 

volume decrease as an indicator of treatment effectiveness 

[11], and tumor oxygenation as a sign of tumor radio-

responsiveness [12], have been more recently drawing the 

attention of oncologists and radiotherapists. A more extensive 

approach, to elucidate the tumor evolution and interaction with 

the treatment, is represented by mathematical models. They 

enable the in-silico simulation of various biological processes 

underlying both cell abnormal growth, and the response to 

radio- and chemo-therapy. Complex mechanistic models, 

featuring both spatial and temporal dynamics at molecular and 

cellular scales, have been extensively investigated [13] [14] 

[15]. Despite their fine approximation to reality, such models 

have been hardly applied in clinical practice, as the detailed 

morphologic and functional patient data required for their use 

and validation is prevented mainly by the invasiveness and 

cost of the experimental procedures entailed.  

Alternatively, simpler models at the tissue scale, 

representing tumor growth under conditions of mechanical 

pressure, nutrient shortage, and therapeutic irradiation, have 

been proposed. It has been widely reported that macroscopic 

model parameters can be directly linked to actual 

measurements obtained from clinical images, such as 

computed tomography (CT) and magnetic resonance imaging 

(MRI) [16] [17] [18] [19] [20] [21] [22] [23].  

Some works have focused on numerical simulations [19], 

whereas others have proposed patient-specific data fitting and 

correlation analysis between model parameters and therapy 
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outcome [16] [18]. In a few cases, the model was trained on a 

group-specific basis to predict the tumor response during 

treatment [17] [21]. In [20], the parameters were set according 

to previous literature findings and the model was validated on 

a small dataset of patients. Our previous models [21] [22] [23] 

showed promising results with an average fitting error value 

as low as 5%, while analysis of their extrapolation abilities was 

not conclusive. On the one hand, it was acknowledged that 

parameter setting, according to literature values as well as in 

vitro studies, could lead to large prediction errors. On the other 

hand patient-specific approaches may lack of generalization 

ability [21] [22] [23] [24] [25] [26]. A challenging opportunity 

is represented by the adaptation of the model parameters at 

run-time during treatment using patient-specific 

measurements, which, in principle, could improve the model 

prediction reliability and trigger possible therapy adjustments 

in terms of fractionation and dose [5] [6].  

This study proposes a novel discrete-time mathematical 

model, accounting for the evolution of active, inactive and 

necrotic tumor volumes. It combines the accuracy of the 

patient-specific approach and the potential extrapolation 

ability of the group-specific optimization by means of an 

adaptation strategy able to refine model parameters along the 

treatment course. The validation of predictive ability is 

presented, as applied on uterine cervical cancer patients 

administered with radiation therapy. 

II. MATERIALS AND METHODS

A. Patient data

Sixteen women affected by uterine cervix cancer were 

retrospectively included in three subgroups (G1, G2 and G3) 

according to the tumor type and administered therapy; none of 

them underwent surgery as treatment option. Six older patients 

(mean age: 83) affected by squamous cell carcinoma (SCC) 

and belonging to the first group (G1), were treated by means 

of external beam radiation therapy (EBRT) using the Trilogy® 

system (VARIAN medical systems, Palo Alto, California, 

USA). The second group (G2) consisted of five patients (mean 

age: 46). affected by adenocarcinoma (ADC). Their treatment 

included concurrent EBRT and adjuvant chemotherapy. 

Finally, data from five women (mean age: 52) affected by 

squamous cell carcinoma and administered with chemo-

therapy during EBRT, were gathered in G3 (Table I). G2 and 

G3 patients received Cisplatin and Paclitaxel once a week (4-

6 cycles). After the external radiation treatment, all the patients 

underwent internal brachytherapy (4-5 sessions). All the 
patients were treated between 2010 and 2012 at the European 

Institute of Oncology (IEO, Milan - Italy). Among them, two 

died due to cancer-unrelated causes, the others survived up to 

24-months follow-up. Patients received up to 50.4 Gy in 23 to 

28 fractions with a 5-day per week schedule (Table I). The 

treatment started within two weeks from the planning CT 

acquisition, which was used to simulate the dose distribution 

(Fig.1). Patient set-up was verified and corrections were 

performed according to IEO institutional protocols, at each 

radiotherapy session. The images were acquired by means of 

a kV CBCT system featuring a voxel dimension of 

0.87×0.87×3 mm3. The gross tumor volume (GTV) was 

manually contoured on a subset of the acquired CBCT and CT 

scans by an expert radiation oncologist (Fig.1), using the 

commercial software MIMvista (MIMvista Corporation, 

Cleveland, OH, USA). The same software reconstructed 

automatically the tumor volume from the contours. The 

number of slices varied intra- and inter- patient as a function 

of the tumor size. The average volume throughout the patient 

cohort was on average 23.7cm3 (range: 12.7-44.4 cm3) at the 

beginning of radiotherapy (first CBCT) and 8.6 cm3 (range: 

3.6-17.1 cm3) at the end of radiotherapy (last CBCT), 

respectively. 

B. Mathematical model

Three different tumor dynamics were modeled throughout

discrete time (1-day resolution): 1) active volume (��),

TABLE I 

PATIENT DATA SUMMARY. RT INDICATES THE ADMINISTRATION OF 

RADIATION THERAPY ONLY, WHILE RT+CHT CORRESPONDS TO THE 

COMBINATION OF RADIOTHERAPY AND CHEMOTHERAPY. THE DOSE IS 

EXPRESSED IN GY/FRACTION AND #CBCT REPRESENTS THE AMOUNT OF 

SEGMENTED CBCTS. 

Code Group Tumor  Therapy Fractions Dose #CBCT 

P1 G1 SCC RT 25 2 8 

P2 G1 SCC RT 25 2 6 

P3 G1 SCC RT 25 1.8 7 

P4 G1 SCC RT 28 1.8 8 

P5 G1 SCC RT 28 1.8 27 

P6 G1 SCC RT 25 1.8 6 

P7 G2 ADC RT+ChT 25 2 9 

P8 G2 ADC RT+ChT 25 2 11 

P9 G2 ADC RT+ChT 25 2 10 

P10 G2 ADC RT+ChT 25 2 9 

P11 G2 ADC RT+ChT 28 1.8 12 

P12 G3 SCC RT+ChT 28 1.8 7 

P13 G3 SCC RT+ChT 23 2 7 

P14 G3 SCC RT+ChT 25 2 6 

P15 G3 SCC RT+ChT 25 2 8 

P16 G3 SCC RT+ChT 28 1.8 28 

Fig. 1.  Example of pre-treatment CT including the delineation of the gross 

tumor volume (GTV) in violet and of the clinical target volume (CTV) in 

cyan. The dose profile is defined by means of iso-dose regions. The pink 

one, were the total amount of dose is delivered, is almost superimposed 

to the planning target volume (PTV, yellow line)



featuring the growth of the undamaged tumor; 2) inactive 

volume (��), that is the fraction of the active volume impaired

by treatment; 3) necrotic volume (��), that is the inactive

volume portion permanently necrotized and undergoing 

reabsorption. The �� dynamics was driven by the surviving

fraction ��, which represents the percentage of the tumor

volume that is not irreversibly damaged by the irradiation dose 

�. The �� has been traditionally represented by the linear

quadratic (LQ) exponential model [16] [20] [22] [23] as: 

�� = 	
��
��
�� (1)

where � (Gy-1) and � (Gy-2) are cell- and radiation-specific

parameters referring to lethal (double-strand damage) and sub-

lethal (reparable or single strand damage), respectively [26]. 

In the present development, we hypothesized an explicit 

relationship between � and the oxygenation level ��� so that

eq. (1) can be rearranged as: 

�� = 	
�������
��������
�

� !
(2) 

where ��"� is equal to the irradiated dose value at the time of

irradiation and null elsewhere. The �/� ratio was set equal to

10 as suggested in the literature [16]. The repopulation was 

represented by the Gompertian function through the growth 

rate ($) and the carrying capacity (%), this last corresponding 

to the maximum active volume size [21]. Incorporating the ��
and the repopulation, �� dynamics can be finally written as:

���" + 1� = ���"� (1 + $	 log ( -
./���0122 �� (3) 

with �� =1 for null dose. The radiation therapy damage (e.g.

strand breaks) can result both in cell death or in cell inability 

to duplicate [27]. The inactivated volume, ��, represents the

cells irreversibly impaired, which do not contribute any longer 

to the tumor growth but at the same time do not undergo the 

clearance process until their cell-cycle (about 1 day) is 

completed. According to these observations, we assumed that 

the severely damaged cells turn into necrotic bulk within two 

days from irradiation. Hence, the inactivated volume dynamics 

can be written as: 

 

���" + 1� = �1 − 4����"��1 − ���  (4)

 

where the parameter 4 represents the percentage of cells that

are going to die within the first day, whereas 1-	4 is the fraction

of cells that survived from 1 up to 2 days after irradiation.  

The necrotic volume portion ��, embedding the instantaneous

cell apoptosis and the delayed death of the tumor portion 

inactivated by the dose of the previous day, was modeled 

through an exponential decay as  

���" + 1� = ���"�	−
567�2�
91/2 �"−"4� + ���"�	−

567�2�
91/2 +

+		4�:�"��1 − ���		
;<=���
>�/� (5) 

where 9?/� and "@ are the dead-cell reabsorption half-time [18]

and the time of the last irradiation prior to present day t, 

respectively. The last model dynamic equation represents the 

oxygenation update by a Gompertz law. Being ���A  the

maximum achievable level of oxygenation, we defined a time 

variant asymptotic value B = ���A (-
./���?�./�C� 2. Introducing a

constant ��� variation rate D, the dynamics can be written as:.

����" + 1� = B	567(EF��G�H 2	−D
 (6)

The radiosensitivity parameter � is eventually related to the 

oxygenation level by a linear function as: 

��"� = �I�� + ��J/K
�JLM�
���A ��2�"� (7) 

where � ranges between �I��=0.01 Gy-1 and �I�N=0.5 Gy-1,

set according to the literature [18][21]. In conclusion, the 

complete model encompasses a set of six free parameters (PS), 

namely $, %, 4, D,	����0�, 9?/�.

III. EXPERIMENTS

A. Protocol

A parameter set for each patient group (G1, G2, G3) and the

complete data cohort was defined as PS1, PS2, PS3 and PSa, 

respectively (cfr. section III.A). Among the 16 patients, one 

patient for each group was kept out from training as outlined 

in Table I and used for testing and adaptation (cfr. section 

II.B). PS1 was trained on five patients, namely P1, P2, P3, P4,

P6, while P5 was left out due to its larger dataset. PS2 and PS3

were trained on four patients each (P7, P8, P10, P11 and P12,

P13, P14, P15, respectively). P9 was randomly chosen as

testing patient for G2, whereas P16 was selected among G3

patients according to its larger amount of contoured volumes.

B. Group specific optimization (training data)

The estimation of each PS was iteratively optimized by

means of a custom genetic algorithm implemented in Matlab 

(Mathworks, USA). At time instant t=0, the algorithm started 

with a population of 300 randomly generated PS. The equation 

system was solved assuming one day as the time step. Let n 

and m be the index of the patient and the number of considered 

measured tumor volumes for that patient, respectively. The 

difference between the m-th measured volume Q̅�,I and the

corresponding predicted volume Q�,I is the fitting error 	�,I .

Considering all the measured volumes (S�) for the n-th

patient, the prediction error, can be expressed as: 

	� = T∑ VM,J�WMJ
XM 			 (8) 

The average 	� obtained on all the patients included was the

fitness corresponding to the tested PS in the optimization. 

According to the fitness, a PS subset was selected to undergo 

cross-over (rate: 0.4) and mutation (rate: 0.35), and to 



%

$

generate the PS population for the next iteration step. In order 

to have a more homogenous indicator of the model 

performance despite the differences in volume sizes across 

patients, we also computed the percentage fitting error with 

respect to the volume acquired at the first irradiation day 

(	�% = 100		�/Q�,?). The parameter learning was iterated 
until the variability of the estimated parameter values, 

computed across a short iteration span (25), was lower than 

1%. In order to avoid premature convergence, at least 200 

iterations were imposed. In order to avoid inconsistent results, 

all the free parameters were bounded appropriately. The 

carrying capacity value ( ) was limited within 100% and 
150% of the initial tumor volume as non-small tumor mass 

and proximity to maximal volume extent were assumed.  

The growth rate ( ) was allowed to span in the range (0.05, 
0.5) corresponding to a maximum 10% increase after 1 day, 

considering the average initial tumor size of 23 cm3 and 

%=1.5	��0�. The percentage of instantaneously killed cells (r)

was bounded in between 0.5, corresponding to 50% delayed 

cell death, and 1, where only instantaneous cell deaths occur, 

as in the standard LQ model. The span 0<����0�<100% was

selected to represent all the possible levels in between anoxic 

and fully oxygenated tumor whereas a 0.05<D<0.5 range was

set to cope with the large variety of mechanisms affecting the

reoxygenation process. Finally, the range (1< 9?/�<10) of the

half-time constant for the dead cell clearance was set 

according to literature [18] and our preliminary analyses [21]. 

C. Model adaptation (testing data)

The idea underlying the adaptive approach is that the group-

specific optimization allows the definition of a PS close to the 

best performing one, for all the patients featuring the same 

tumor type and treatment modalities. Therefore, the patient 

specific parameter tuning did no longer require a global 

optimization by means of an evolutionary approach (Fig. 2).  

Each PS was used as the initial guess for the adaptive model 

in order to predict the tumor volume evolution of patients P5, 

P9 and P16. The on-line adaptation was performed by 

perturbing every parameter up to Z10% of its admissible range 

around the initial guess. Five different values were allowed for 

each of the 6 parameter (-10%, -5%, 0%, +5%, +10%) given 

that the previously defined boundaries were not exceeded. 

Consequently, about 56 combinations were tested iteratively 

on the first m volumes of the analyzed patient. At each iteration 

a new volume (m+1) was taken into account. The adaptive 

algorithm is shown in Fig. 2. The first step (m=1) corresponds 

to the initialization of the model to the first acquired volume 

size (standard model testing). From m=2 on, every 

combination of perturbed parameter (PSj) was tested and the 

corresponding prediction error computed. The combination

([�\A ), leading to the smallest error [	�,]^?:I across the m

considered volumes of patient n, was selected. Finally, the

prediction error `	�,]^?:aJ of [�\A  on the complete dataset of

patient n was computed.  

IV. RESULTS

A. Group-specific optimization

The parameter training performed on a patient group basis

resulted in quite different parameter values across the three 

subgroups (G1, G2 and G3). All the three parameter sets (PS1, 

PS2 and PS3) showed similar carrying capacity close to the 

lower bound (Table II). PS1 and PS2 featured a similar $	
value, greater than about five times the value assessed in PS3. 

Apparently, G2 was more influenced by the delayed radiation 

effect (r=0.5), followed by PSa (r=0.91), whilst G1 and G3 

showed just instantaneous killing effect (r=1). Since the 

introduction of r was a novelty with respect to previous 

attempts to model the delayed response to therapy [21] [22] 

[23], we analyzed its effect independently of other parameters. 

The evolution of a 23 cm3 tumor corresponding to the 

average initial volume of the 16 patients was allowed to evolve 

using PSa setting except for the r value, which was set to each 

of its boundary values (r=0.5 and r=1). The first two weeks of 

a standard irradiation treatment, administered 5 days per week 

(dose: 2Gy/fraction), was simulated (Fig. 3). As expected, 

r=0.5 corresponded to a smoother overall volume evolution 

and a delayed shrinkage. In any case, the gap between the two 

curves (r=1 and r=0.5) was rapidly filled during the treatment 

stop of the week ends. Finally, G2 was the group with the 

lowest initial oxygenation level (23%) with respect to the two 

others, which had values close to 100%. PSa was the parameter 

combination resulting in the poorest fitting performance 

(e%>21%); conversely PS3 showed a promising average error 

Fig. 2.  Model adaptation scheme. The procedure is iterated on the 

segmented volumes of each patient (5, 9, 16) and the new parameter set 

is obtained by perturbing each of the 6 parameters (g) up to 25% of its 

range around its optimal value and testing the obtained parameter 

combination on the first m volumes. An index of the prediction quality is 

computed by comparing the predicted volumes and the CBCT 

segmentations.



(e%<14%) as summarized in Table II. 

B. Model adaptation

When the model adaptation algorithm was initialized by

means of the PS optimized on the same group of the testing 

patient, it resulted in a maximum prediction error less than 

10% for all the three patients (5, 9, and 16) already at m=1 (no 

parameter adjustment occurring). As far as the general model 

(PSa) is concerned, it resulted in a larger initial error (15-20%), 

but still comparable to the fitting errors (cfr. Table II).  

Along the adaptation process, the performance curves were 

not strictly monotone, as shown in Fig. 4. In particular, the 

error evolution for the PSa initialized adaptation tested on 

patient 16 (Fig. 4, panel c), shows two ripples causing an error 

doubling when m=2 and m=6 volumes are encompassed in the 

adaptation. Interestingly, after the inclusion of a number of 

volumes corresponding to about the first two treatment weeks 

(~10 contours), the gap between the two approaches was

significantly shortened, no more ripples were found, and the 

error was always close or below the 10% threshold. In other 

words, the PS adaptation procedure always equals or improves 

the model prediction abilities for m≥10.When all the contours

were included in the adaptation (m=Nm), the model error with 

respect to the measured volume was between 5% and 10% 

independently from the initial PS selected. Only in the case of 

patient 9, the group performance (PS2) did result in a 

significantly more accurate prediction (	%=5.5%) with

respect to the PSa (	%=7.2%). A few examples of different

volume prediction curves are shown for patient 5 in Fig. 5. It 

can be observed that while the straightforward application of 

PSa causes an overestimation of the tumor volume size, the 

tuned version of the parameter combination (m=10) is a good 

representation of patient 5 tumor progression. Conversely, PS1 

performance mimicking patient 5 volume evolution is almost 

independent from the number of volumes included in the 

adaptation.

V. DISCUSSION 

A. Major findings

In this paper, we propose a macroscopic model of tumor

growth and radiotherapy response able to predict cancer 

evolution during treatment. Model parameters were assessed 

using CBCT volume data in 16 patients, affected by uterine 

cervical cancer. In a previous work [21], we showed that 

Fig. 3.  Simulation of the effects of different r settings. The solid line 

represents overall volume shrinkage in case of 50% of cell death delayed, 

while the dotted line is obtained simulating instantaneous cell killing only. 

Crosses at the baseline indicate irradiation days in a realistic treatment 

plan: 5fraction/week, 2Gy/fraction.
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GROUP SPECIFIC OPTIMIZATION: PARAMETER VALUES AND FITTING 

PERFORMANCES ON THE TRAINING PATIENT SETS. THE RMS ERROR d IS 

EXPRESSED IN CM
3. 

e f% ghi�j� λ r kl/i d d% 

PS1 0.27 101.6 99 0.075 1.00 1 2.8 14.3 

PS2 0.21 100.1 29 0.050 0.50 1 3.9 17.7 

PS3 0.05 100.1 99 0.052 1.00 10 3.9 13.6 

PSa 0.25 100.1 53 0.050 0.91 1 4.8 21.1 

(a) 

(b) 

(c) 

Fig. 4.  Model adaptation comparison. Each panel shows the model 

adaptation performance (e%) as a function of the number of volumes (m) 

considered in the adaptation process for patient 5 (a), 9 (b) and 16 (c), 

respectively. The continuous line represent the results using PSa while the 

dashed/dotted PS1, PS2 and PS3, respectively.
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patient-specific models cannot be easily generalized to other 

patients. In our present work, we investigated whether both 

general and group-specific models have sufficient 

extrapolation ability, and proposed a novel adaptation schema 

that allows the refinement of the model parameters on an 

individual basis on-the-fly as soon as the volumetric tumor 

data are available along the treatment course. 

Preliminary results about the limited predictive ability of the 

general model PSa suggest that patient inclusion criteria play 

a key role. This was confirmed by the results of group-specific 

models (fitting errors: 13-18%, intra-group prediction 

accuracy: 90%), allowing one to reasonably argue that an 

appropriate stratification of the training patients is a key factor 

to achieve a reasonable agreement between prediction and 

experimental data.  

The parameter adaptation of the PSa model reduced the 

prediction error of about one-half with respect to its initial 

value (error range: 20-15%) reaching promising performance 

(error range: 7-10%). These results, comparable to the fitting 

performance (mean error: ~5%) of the patient-specific 
parameter optimization investigated in our previous study 

[21], suggest that this novel approach can successfully 

customize the group-specific model. Moreover, a similar error 

range (7-12%) was found when the adaptation is stopped after 

about 10 iterations, and its trend is always monotone and 

decreasing afterward. This suggests that the advantage of the 

model tuning is the increased accuracy and reliability provided 

after about two weeks from the first radiotherapy session, as 

opposed to the unreliable generalization ability of the patient-

specific approach [21]. 

Interestingly, the novel adaptive approach represents a safer 

alternative in case of uncertainties in the parameter setting, as 

shown by the PSa results, and it was developed in order to be 

easily applicable to a real clinical scenario. It was inspired by 

the IGRT paradigm, where adjustments in dose delivery are 

triggered by tumor motion and morphological changes that can 

be observed on clinical images [4] [7]. Our adaptive model, 

however, aims at predicting patient-specific variation in 

response to radiation at a macroscopic level, which could early 

provide information on the treatment outcome and, 

consequently, warning about the need for therapy adjustment 

(e.g., schedule, dose per fraction).  

A 3D model featuring fine spatial description, such as the 

one presented in [13], could be created according to the 

macroscopic prediction of our simpler system trained on actual 

clinical data, in order to provide a comparable overall tumor 

evolution. This approach has already been suggested in the 

literature comparing, for example, the performance of an 

isomorphic and a 3D statistical model adjusted to reproduce 

similar volume sizes [25]. The adaptive approach integrated 

with a morphological description of the tumor evolution could 

theoretically allow for increased accuracy of the treatment 

delivery and reduction of the healthy tissue toxicity. A reliable 

description at a more complex and detailed level would require 

the introduction of further information (e.g., PET, MRI and 

histology). 

B. Modeling issues

Despite the promising results, some issues have to be

outlined and require further discussion, namely: 1) data 

uncertainty; 2) limited patient cohort; 3) genetic algorithm 

convergence; 4) nominal dose; 5) lack of independent 

validation for the oxygenation and necrotic volume dynamics. 

We acknowledge that CBCT images feature suboptimal 

contrast enhancement for soft tissues; nevertheless, they are 

widely used in common clinical practice [28]. The objective 

evaluation of the segmentation inter-observer variability was 

beyond the scope of the present work. A preliminary test on 

patient P1 data, involved a threefold tumor segmentation, 

performed by the same expert oncologist at a time distance of 

approximately one month from one each other. The result was 

a 10% variability in the volume calculations. We plan to 

further investigate this issue by combining data deriving from 

different imaging techniques (e.g. MRI), and by involving 

more expert observers. 

Only 16 patients were included in the study and the 

subdivision into three groups, leaving three patients out for 

optimization purposes, caused PS1, PS2 and PS3 optimization 

to be based on 5, 4 and 4 patients, respectively. The limited 

data cohort is likely to have affected the parameter learning 

and prevented a more specific classification taking into 

account tumor staging along with type and treatment. 

Nevertheless, it has to be considered that, over 150 CBCT 

volumes were analyzed, and the results showed a nice 

prediction ability of the model, with the group specific 

approach outperforming the general formulation PSa.  

Another issue that might affect a reliable parameter 

estimation is the convergence stability of the custom genetic 

algorithm. We introduced a minimum number of iterations 

(200) in order to limit such inconvenient (cfr. par. III.B).

Moreover, we repeated the optimization 10 times on P5, P9

and P16, separately, and observed that different random

initialization may lead to different parameter setting.

Fig. 5.  Model adaptation comparison for patient 5. Volume evolution 

curves, predicted using PSa and PS1 before the parameter perturbation 

(m=1) and after 10 steps of the adaptation process are displayed along with 

the GTV values computed from the segmented CBCT (circles) 
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However, the maximum error variation across the 10 

optimizations was always lower than 1% (max error < 7.5%). 

In one patient (P5) the maximum error spread was limited 

within 0.02%. In light of the 10% uncertainty found in the 

CBCT data, all the combinations found may be considered as 

equally valid. Therefore, the volume segmentation variability 

remains the most limiting factor. Nevertheless, a possible 

refinement or replacement of the genetic algorithm should be 

addressed in further studies. 

The dose administered to the tumor may not correspond to 

the prescribed one due to tumor displacement and shrinkage 

along the treatment course [28]. A co-registration of CBCT 

images and the computation of the actual delivered dose is 

expected to improve the model accuracy. At present our 

assumption about the agreement between nominal and actual 

dose, relies on the fact that two extra margins were included in 

the treatment plan. The clinical target volume (CTV) aims at 

accounting for the invisible tumor micro-infiltration, while the 

planning target volume (PTV) allows for uncertainties in 

planning or treatment delivery (cfr. isodose profile, Fig. 1). 

A quite complex issue is related to the lack of independent 

validations for all the four proposed dynamics (active, 

inactive, and necrotic volumes, along with oxygen). There can 

be several parameter combinations able to explain the same 

overall tumor size evolution. For example, a slow shrinkage 

could be due both to a low radio-sensitivity (possibly related 

to hypoxia) or to a large dead cell clearance time. Therefore, 

the relative percentage of the necrotic volume and the role of 

oxygenation should be investigated further. For example, the 

inclusion of functional information such as blood-oxygen-

level dependent (BOLD) MRI or MRI-based oxygen imaging 

(MOXI) could provide quantitative or semi-quantitative 

information about tumor oxygenation, in an entirely non-

invasive way [29] [30]. Moreover, this would allow us to 

verify the hypothesized relationships among ��� level, tumor 

radio-sensitivity, and volume size. 

VI. CONCLUSION

In conclusion, this work was able to achieve the following 

outcomes: a) a novel macroscopic model able to include 

active, inactive and necrotic tumor volume evolution along 

with the oxygenation dynamics was proposed; b) the group 

specific training resulted in a fitting error within 13% and 18% 

for the three subgroups separately and 21% for the complete 

data cohort; c) their extrapolation abilities were tested and it 

was found that PS1, PS2 and PS3 reached better prediction 

performance on patient 5, 9 and 16 (about 9%, 10% and 10%, 

respectively) than PSa (about 20%, 17% and 15%, 

respectively); d) the adaptation procedure was able to 

successfully improve PSa prediction, making it comparable to 

the ones of the other subgroups, within about 10 iterations.  

We believe that, despite the limited data cohort, the 

promising results achieved by means of the adaptive approach 

represent a new step toward the translation of mathematical 

predictive models into clinical practice. The long term goal is 

the exploitation of in-silico prediction to support the decision 

making process in the treatment planning phase. Similarly, 

validated prediction models would help the physician to adapt 

the therapy administration along the course of treatment to 

patient specific response, using the available imaging data. 
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