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Abstract

Reconstructing a free-form surface from 3-dimensional noisy measurements is a
central problem in inspection, statistical quality control, and reverse engineering. We
present a new method for the statistical reconstruction of a free-form surface patch
based on 3-dimensional point cloud data. The surface is represented parametrically,
with each of the three Cartesian coordinates (x, y, z) a function of surface coordi-
nates (u, v), a model form compatible with computer-aided-design (CAD) models.
This model form also avoids having to choose one Euclidean coordinate (say, z) as
a “response” function of the other 2 coordinate “locations” (say, x and y), as com-
monly used in previous Euclidean kriging models of manufacturing data. The (u, v)
surface coordinates are computed using parameterization algorithms from the man-
ifold learning and computer graphics literature. These are then used as locations in
a spatial Gaussian process model that considers correlations between two points on
the surface a function of their geodesic distance on the surface, rather than a func-
tion of their Euclidean distances over the xy plane. It is shown how the proposed
Geodesic Gaussian Process (GGP) approach better reconstructs the true surface, fil-
tering the measurement noise, than when using a standard Euclidean kriging model
of the ’heights’, i.e., z(x, y). The methodology is applied to simulated surface data
and to a real dataset obtained with a non-contact laser scanner.
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1 Introduction

We consider the statistical reconstruction of a surface patch S embedded in 3-dimensional

(3D) Euclidean space from noisy measurements. In applications in engineering and geo-

statistics, kriging and Gaussian processes have been used for modeling spatially distributed

data of some scalar field, e.g., temperature, under the assumption that observations z(x, y)

that occur on nearby locations (x, y) ∈ E2 (Euclidean 2D space) will tend to be alike, where

“closeness” is defined by the standard Euclidean distance on E2. Our focus is instead on

those situations where there is no such scalar field of interest: the (x, y, z) data occurs

on a non-Euclidean surface and the object of interest is the true 3 dimensional underly-

ing surface, which can only be inferred –or reconstructed–from noisy measurements in the

form of a point cloud dataset of Euclidean coordinates (x, y, z). This is an increasingly

common situation in industry given the wide availability of non-contact measuring sensors

which provide 3D point cloud data. In this paper, we adopt a geodesic hypothesis: due

to the physics involved in generating and measuring the surface, correlations between the

measured coordinates may exist, but the spatial correlation will depend on the geodesic

distance between the points located on the surface, rather than depending on the inter-

point Euclidean distances on the space the surface is embedded in. By geodesic distance

between two points on a surface we mean the minimum arc length among all possible such

arcs on the surface that join the two points, where a geodesic curve on an arbitrary sur-

face is a generalization of a straight line in Euclidean space (O’Neill, 2006, p. 346). We

focus on reconstructing a surface patch, formally defined below, where a 3D object may be

composed of a collection of such patches.

Our geodesic hypothesis is motivated on engineering/manufacturing knowledge grounds:

a machined part would tend to have correlated point coordinates not depending on the Eu-

clidean distance between the points (since there might be “empty space” between two

points on a curved surface) but along distances as measured on the surfaces (geodesic

distances), since typically the manufacturing process will have an effect on the shape –

the exterior surface– of the object, which is what a sensor measures. Specific instances of

manufacturing processes where the geodesic hypothesis is plausible include free-form sheet-

metal forming, where local similarity (e.g., mechanical properties) are maintained along

geodesics, i.e, the path on the surface, and phenomena such as shrinkage and springback

are observed depending on the local curvature; free-form surfaces obtained by milling (e.g.,

metal dies), where nearby points on the final surface correspond to points machined in

similar conditions, and free-form surfaces obtained by casting where points close on the

final surface follow a similar solidification and cooling history. Some empirical evidence in

favor of the geodesical assumption is given in later sections of this paper.
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There are two main applications that motivated our work. First, in industrial quality

control, measurements (x, y, z) on the surface of a free-form manufactured part are taken

by definition on a non-Euclidean 2-manifold with the purpose of inspecting the part by

comparing it to some ideal geometry. Here it is relevant to model and filter –as much as

possible– the measurement error, which occurs in all 3 spatial coordinates. Furthermore,

correlations will likely occur as a function of distance on the surface. Data obtained with

non-contact sensors (laser scanners) from machined surfaces have been reported to be

Gaussian-like and strongly spatially correlated (Sun, Rosin, Martin, and Langbein, 2008),

although empirical investigations have only considered planar surfaces. Besides inspection,

engineers may wish to perform statistical process control on surface data, and Gaussian

Process (GP) models of point cloud surface data can be used for this purpose (Colosimo,

Pacella, Vlaco and Cicorella, 2013b). A second motivation for the present work is in the

area of “reverse engineering” in manufacturing, where one measures some complex surface

of a product in order to build a model of it, usually with the final purpose of copying it.

It is then necessary to reconstruct the surface from unorganized point cloud data, in order

to create a Computer Aided Design (CAD) file.

The proposed Geodesic Gaussian Process (GGP) approach uses a parametric represen-

tation of a surface patch where each of the three coordinates is modeled via a Gaussian

process on the parametric space defined by surface coordinates (u, v), i.e., GGP produces

models x̂(u, v), ŷ(u, v) and ẑ(u, v), where the (u, v) coordinates need to be computed first.

We choose a parametric surface model form as it is the preferred representation of surfaces

in CAD (e.g see Patrikalakis and Maekawa, 2002) and CAD file standards (e.g., IGES)

and this facilitates tolerancing and reverse engineering applications of the GGP model.

Our approach solves a dilemma faced by prior authors who used GP’s for manufacturing

metrology data: it is not clear why one should consider one of the 3 coordinates the ‘re-

sponse’ and the other two the ‘locations’ when working with point cloud data obtained by

a non-contact scanner.

The type of applications we focus on can be better seen by considering a point cloud

data set acquired with a structured light scanner first studied by Cavallaro, Moroni and

Petro (2010) and further analyzed by Colosimo and Pacella (2011) and Colosimo, Pacella,

and Senin (2013a), displayed in Figure 8 below. A structured light scanner yields a large

set of points arranged in a regular grid which are characterized by their high density and

low precision. The low precision (relative to a contact sensor) implies that a method to

reconstruct the true underlying surface by “filtering” the measurement noise as much as

possible would be desirable. We return to the analysis of this data set in section 6.2.

The rest of this paper is organized as follows. Section 2 reviews related prior work
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on Gaussian process modeling and point cloud data. Section 3 introduces the main GGP

model assumptions as well as the differential geometry notions that will be used later on.

Section 4 discusses the computation of a near isometric parameterization of a 3D surface

(and therefore, computation of geodesic distances), a problem intensively studied in recent

years in the fields of computer graphics and manifold learning. Section 5 describes how

to fit the GPP model. Section 6 presents examples of surface reconstruction using the

GGP model, including simulated examples and the aforementioned real data set obtained

with a laser scanner. The paper concludes with some general discussion and suggestions

for further research. Supplementary materials includes an additional parameterization

example of a surface, discussion about how to reduce the impact of noisy observations,

differential-geometric analysis details of a GGP-fitted surface and computational and soft-

ware implementation details of our method.

2 Related prior work

Gaussian processes have been used to model metrology data obtained via a coordinate

measurement machine (CMM) by Xia, Ding, and Wang (2008) and by Xia, Ding and

Mallick (2011). Rather than using a GP model for each measured coordinate in m =

(mx,my,mx)
′ as we do here, they consider modeling the projection of m on the direction

of approach of the CMM probe, which results in a scalar that is then modeled with a GP.

While this approach is useful for CMM data, it cannot be applied for modeling surface

data obtained by other means (e.g., non-contact sensors). Colosimo et al. (2013b) use GP

models for process monitoring of manufactured surfaces.

There exists also considerable related work on non-isotropic covariance spatial models.

A standard approach in the earth sciences to model anisotropic spatial covariance whose

contours are elliptical is to use Mahalanobis distances between two points wi and wj,

rather than their Euclidean distance, i.e., the covariance function is C(Ah) instead of

C(h), where h = wi − wj and A is some invertible n × n matrix (Schabenberger and

Gotway, 2005). This, however, will not be adequate when there is local anisotropy, a term

used in geostatistics to describe the changing direction behavior of deposits on a region

subdivided in cells, a situation that can be due to the data originating from deposits

forming a non-Euclidean manifold (Boisvert and Deutsch, 2011). As discussed by Curriero

(2007), covariance functions that are known to be valid (positive definite) in Euclidean

space are not necessarily valid on non-Euclidean space.

Using a Mahalanobis distance is an instance of so-called space deformation methods.

These suggest transforming the non-Euclidean space into an Euclidean space, a line of work
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that originated with Sampson and Guttorp (1992). Their procedure requires repeated mea-

surements at a set of 2-dimensional space locations {wi = (x, y)i} (the process is assumed

time stationary), and applies multidimensional scaling (MDS) on the variances computed

from the replicates to obtain locations {w∗
i = (x∗, y∗)i} on a transformed, Euclidean space,

where a standard variogram or covariance model can then be estimated (and its validity

be assured). Finally, using thin plane splines, they fit a function f : E2 → E2 (note this is

a function from 2D to 2D) such that an isometry is found, i.e., f(w) = w∗. This function

then allows the extension of the mapping from the observed points to any other new point

w at which it is desired to predict the response of interest.

Other work that follows a space transformation strategy is by Schmidt and O’Hagan

(2003), who present a Bayesian approach to find a transformation f : E2 → E2. They set

the prior of f as a GP and use MCMC techniques for posterior inference. Kim, Mallick

and Holmes (2005) focus on modeling sharp transitions in the covariance function, which

they argue cannot be modeled with the type of smooth splines used by Sampson-Guttorp

approaches. They also consider finding a transformation f : E2 → E2 but their approach is

based on partitioning the domain D, assuming each subregion is homogeneous and hence

adequately modeled by a standard stationary kriging or GP. In contrast with these proce-

dures, our GGP model finds a 2D to 3D parameterization since it models all 3 measured

coordinates and does not require replicated observations at the same locations or extra

surface parameters. Furthermore, it allows inferences in the true underlying surface in the

presence of noise, a modeling aspect recently emphasized by Cressie and Wikle (2011, p.

136).

Some recent work in machine learning on graphs is also related to our approach. Sollich,

Urry and Coti (2009, see also Jakab, 2011) use a GP to approximate a function f defined on

the nodes i of a given graph. The covariance kernel of the GP is a function of the shortest

distances between nodes on the graph. For point cloud data, such a graph can easily be

constructed (e.g., with a triangulation) and then one would fit GP models to x(i), y(i) and

z(i). Although such approach would model correlations among approximate geodesics,

we do not pursue this approach as this does not provide a parametric surface model.

Advantages of a parametric surface model are its compatibility with CAD representations,

the possibility of providing continuous interpolations on the surface and the easiness of

performing Differential Geometry computations on the fitted model (e.g., computations of

curves and areas on the surface, see supplementary material section E).
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3 Model assumptions

The spatial statistical modeling of data obtained on a surface requires appropriate definition

of the ‘locations’ at which the data are observed. In the same way that a curve C embedded

in a 2D space can be described by a single (scalar) parameter t, i.e., by points p(t) =

(x(t), y(t)) ∈ C ⊂ E2 such that t ∈ D ⊂ E, a surface S embedded in 3D space can be

described by two parameters, i.e., by points p(u, v) such that

p(u, v) ≡ p(w) =

 x(u, v)
y(u, v)
z(u, v)

 , w = (u, v) ∈ D ⊂ E2, p(w) ∈ S ⊂ E3 (1)

thus p : D ⊂ E2 → S ⊂ E3 is said to be a parameterization (see, e.g., O’Neill, 2006) from

the space D of surface coordinates or parameters (u, v) to a 3-dimensional point p(u, v) on

the surface S (see Figure 1). Since we wish to model the uncertainty on all 3 coordinates,

we decompose p(u, v) in its three parametric component surfaces (Figure 2).

We assume points p(w) lie on a 2-dimensional manifold that forms a surface patch

embedded in E3. This means that p is a one-to-one differentiable function (so its inverse

exists, see Figure 1) and its Jacobian J = (∂p/∂w) has rank 2 (see O’Neill, 2006). This

regularity condition guarantees any 2 of the 3 inverse functions can be solved to “extend”

the mapping (see Kreyszig, 1991) to a new location (u0, v0) on D (e.g., once the models are

fit, we can solve, e.g., p̂x(u0, v0) = x0 and p̂y(u0, v0) = y0 for u0 and v0). In practice this

implies a patch does not bend or curve on itself. The parametric surface representation (1)

is the preferred approach to model a surface in CAD as it is used by Non-Uniform-Rational

B-spline Surface models (NURBS) (Patrikalakis and Maekawa, 2002). We assume points

p(w) on the true underlying surface are not directly observable, but are observed only in

the presence of measurement error (Cressie and Wikle, 2011, p.136), thus we observe:

m(w) =

 mx(w)
my(w)
mz(w)

 = p(w) + ε(w), w ∈ D (2)

where ε(w) ∼ N (0,Σε) denotes a non-smooth i.i.d. measurement error process defined

on D with Σε containing the “nuggets” τ 2
i , i ∈ {x, y, z}. It is further assumed the true

underlying surface is a smooth, non-stationary spatial GP, which makes up the “state”

equation

p(w) = µ(w) + δ(w), w ∈ D (3)

where

µ(w) =

 β′
xfx(w)

β′
yf y(w)

β′
zf z(w)
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3D (x,y,z) measurements on 
original non-euclidean surface

Near-isometric 
parameterization 
mapping

(u,v) parameterization 
on euclidean space

p−1(x , y , z )=(u , v )

[ x (u , v)y (u , v )
z (u , v )]= p (u , v)= p (w )

p :D⊂E 2→ S⊂E 3

D

S

(u1, v1)=w1

(u 2,v2)=w2

p(w1)= p(u1, v1)

p (w 2)= p (u2,v2)

∣w 1−w2∣≈d s( p(w1) , p (w2))≥∣p (w1)− p (w 2)∣

Figure 1: An isometric parameterization is a mapping p : D ⊂ E2 → S ⊂ E3 such that distances on the
non-Euclidean surface ds(p(w1),p(w1)) equal the Euclidean distances between the corresponding points
w1 = (u1, v1) and w2 = (u2, v2) in the parameterized space, obtained by “flattening” the surface S.

models long-range (systematic) variation and δ(w) is a zero-mean, smooth (no-nugget),

3-dimensional vector stationary GP with covariance functions Cx(h), Cy(h), and Cz(h),

respectively, where h = wi − wj. Reconstructing S implies making inferences about the

state (the underlying surface) p(w), not about m(w) (the observed surface). The func-

tions f •(w) are vector functions of the w = (u, v) surface coordinates and the vectors

β• are the corresponding regression parameters. In most cases, a linear or an interaction

model in (u, v) suffices for x(u, v) and y(u, v), as can be seen in Figure 2. In applications

in manufacturing metrology, the state equation (3) can represent the deviation surface

from a nominal geometry T (w), usually specified by a NURBS patch in CAD systems. In

such an application, our model allows the deviation surface to have systematic (β′
•f •(w))

and random (δ•(w)) components, which would vary depending on the state of the man-

ufacturing process, a matter that has implications for process monitoring, a topic we do

not discuss herein. If no CAD model is available (e.g., in a reverse engineering situation)

then (3) models directly the manufactured surface S. Hereafter, we refer to (1-2) as the

GGP model. The main steps of this modeling methodology are shown diagrammatically

in Figure 3.

Our GGP method will be contrasted to the most common alternative used in manu-

facturing practice for modeling a surface using a GP. This consists in using what is called

a Monge patch (Kreyszig, 1991) in Differential Geometry, resulting in the Euclidean GP
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p (u , v)= p (w)=[ x (u , v)y (u , v )
z (u , v )]

x (u , v)=x (w)

y (u , v)= y (w )

z (u , v)=z (w)

Figure 2: With a parametric representation, a surface in E3 is decomposed into its three Euclidean co-
ordinate functions x(u, v), y(u, v) and z(u, v) (right 3 graphs), each described over the same space of
coordinates (u, v), shown as a plane of darker points in the graphs on the right.

model:

m(x, y) =

 x
y

pz(x, y)

 +

 0
0

εz(x, y)

 and p(x, y) =

 0
0

µz(x, y)

 +

 0
0

δz(x, y)

 ,

(4)

where (x, y) ∈ E2. In simpler words, (4) models only the ‘heights’ (z) of the surface patch

as a function of the other 2 Euclidean coordinates, i.e., z(x, y). In such a model, spatial

correlation is a function of Euclidean distances in the xy space, and not a function of

distances on the surface space S as model (1) assumes. In this case, p(x, y) is a trivial

parameterization of the surface. Depending on the application, selecting one of the three

coordinates to be the (univariate) ‘response’ and to assume the remaining two coordinates

to be noise-free ‘locations’ may be arbitrary and not justifiable in general. If spatial corre-

lation is a function of geodesic distances on S, this model will result in biased predictions.

We discuss further the issue of considering the errors in the locations in the supplementary

material.

4 Finding an E2 → E3 surface parameterization

A key step in the proposed surface reconstruction method is finding a parameterization

p(u, v), for (u, v) ∈ D (Figure 1). Since the parametric coordinate space D is Euclidean,

once a parameterization is available we can use any standard valid spatial covariance models

on this space (Curreiro, 2007). Given observed coordinates (mxi
,myi

,mzi
)n
i=1, we wish to

find the corresponding surface coordinates (ui, vi)
n
i=1. There exist several techniques to do
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Near-isometric
parameterization algorithm

 (E2 → E3 mapping and its inverse)

GP parametric 
surface fitting (REML)

Reconstruction of surface

(mxi ,m y i
,mzi)i=1

n

(u i , vi )i=1
n

b̂ , Ŝ e , Ŝ d

[ x̂ (u , v)ŷ (u , v )
ẑ (u , v )]= p̂ (u , v)= p̂ (w )

Systematic variation
model forms

m (u , v )

Procrustes alignment

aligned (u i , v i)i=1
n

Figure 3: Main steps of the proposed GGP surface reconstruction method.

this task. These include algorithms from the area of manifold learning, such as the Isomap

method (Tenenbaum, de Silva, and Langford 2000) and the LLE method (Roweis and Saul,

2000). Manifold learning methods, extensively studied in the last decade, attempt to solve

the more general problem of dimensionality reduction from El2 to El1 , where l2 ≫ l1. In

the field of CAD and computer graphics there exists another very large thread of literature

on methods to solve the more specific l1 = 2, l2 = 3 parameterization problem. The CAD

literature is naturally concerned with the surface parameterization problem, given the use of

NURBS models in CAD software systems. Some of the earlier parameterization methods

in CAD were described by Ma and Kruth (1996). Weiss, Andor, Renner and Varady

(2002) review other parameterization techniques used by CAD systems, and suggested

using algorithms from the computer graphics literature for this task.

There are different ways to define what a good parameterization is. The ideal case

is to find an isometry, a mapping that preserves distances between corresponding points.

Formally (O’Neill, 2006, p. 265), if p : D ⊂ E2 → S ⊂ E3 is an isometry, then

dD(w1,w2) = dS(p(w1),p(w2)) ∀ w1,w2 ∈ D (5)

where in our case dD(w1,w2) = |w1−w2|, the Euclidean distance on D ⊂ E2. An isometric

mapping can be thought of as a transformation that bends the surface S into a different
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p−1(x , y , z )=(u , v )

[ x (u , v)y (u , v )
z (u , v )]= p(u , v)= p (w )

p−1(x , y , z )=(u , v )

[ x (u , v)y (u , v )
z (u , v )]= p(u , v)= p (w )

D

D

S

S

Figure 4: Parameterization examples obtained using the ARAP algorithm (Liu et al., 2008). Cylindrical
(400 points) and sinusoidal (900 points) patches. The distances between pairs of points on the uv plane
D on the right are approximately equal to the geodesic distances between the corresponding points p(wi)
and p(w2) on the patches S on the left.

shape without changing the intrinsic distances between points on S. Hence, it can be

shown that an isometry also preserves areas on S and angles between curves on S (i.e.,

it is a conformal mapping). An isometric mapping is also a geodesic mapping, in which

geodesic distances between points in one space (dD) map into geodesic distances dS on

the image space (Kreyszig, 1991, Theorem 94.2). But as it is well-known in cartography,

finding a perfectly isometric mapping is possible only if the surface is developable, i.e., if

the surface has a Gaussian curvature of zero everywhere (Kreyszig, 1991, p. 181).

Some popular parameterization algorithms in the computer graphics literature find a

conformal mapping, which has nice mathematical properties (Floater and Hormann, 2005)

but result in pronounced area deformations. Extensive work on the surface parameteri-

zation problem over the past decade has resulted in algorithms that instead attempt to

preserve areas, or that minimize a weighted sum of distortions due to differences in angles

and due to differences in areas, achieving in this way an “as isometric as possible” mapping

(e.g., Liu, Zhang, Gotsman and Gortler, 2008, Sorkine and Alexa, 2007, Deneger, Meseth

and Klein, 2003). This type of parameterization methods are particularly useful for our

approach, since we assume correlations are a function of the geodesic distances on the

surface, and these are provided by an isometric mapping. Figure 4 shows two instances of

surface patches, observed with noise, and their near-isometric parameterization.
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Figure 5 shows scatter plots of the exact geodesic distances between points p(u, v)i and

p(u, v)j on a cylindrical patch plotted against the Euclidean distance between the corre-

sponding (ui, vi) and (uj, vj) points (for 400 points there are 79800 such pairs) obtained

with two parameterization algorithms, Isomap (Tenenbaum et al., 2000) and the “As-

Rigid-As-Possible” (ARAP) method (Liu et al., 2008) that we describe more fully below

and in the supplementary materials. As it can be seen, both methods are near isome-

tries, since the scatters are close to a 45o line (in view of (5), the correlation coefficient

of the scatters is a measure of near-isometry) with the estimated correlations exceeding

0.995 for each method. Table 1 shows the estimated correlation coefficients of similar scat-

ter plots (not depicted) obtained with other algorithms used for the parameterization step,

applied to 400 noisy observations taken from a half cylinder (here we added noise generated

with a geodesic Gaussian process with an exponential correlated function with parameters

ϕ• = 1, σ2 = τ 2 = 0.0001 to the true points on the cylinder, see next section for a descrip-

tion of the covariance model used). Note that if noise is added, the measured observations

no longer form a developable surface, so one should not expect a perfect rectangle on the uv

plane. The first 2 algorithms are from the computer graphics literature, while the bottom

4 are from the manifold learning literature. Although the correlations shown are only point

estimates, the overall conclusion is clear: among the tested parameterization algorithms,

only Isomap and ARAP are able to find a near isometry in the case of a cylinder. If an

algorithm is unable to “unfold” this particularly simple, developable surface, it will typ-

ically be unable to unfold near isometrically more complicated, non-developable surfaces.

In particular, the first algorithm on the table (Least Squares Conformal Map or LSCM,

Levy, Petitjean, Ray and Maillot, 2002) shows how conformal parameterization algorithms

from the computer graphics field are not useful for our purposes, since they severely distort

distances. A complete survey of parameterization methods from the manifold learning lit-

erature up to 2009 is given by van der Mateen, Postma, and van der Herik (2009). These

authors also provide a very useful library of Matlab programs some of which were used to

prepare Table 1. For our purposes, all that is necessary is to find a reliable near-isometric

parameterization method, perhaps one that is fast to compute for large point clouds, and

both Isomap and ARAP have these properties. Although we suggest using either method,

it is important to point out their weaknesses: as it can be seen in Figure 5, ARAP typically

distorts the boundaries of the object (this is also a problem, but of lesser magnitude, for

Isomap). Likewise, (see Figure 6) Isomap distorts a surface near a “hole” (ISOMAP proof

of asymptotic convergence to a near isometry rests on the assumption observations lie on

a geodesically convex manifold, see main theorem in Bernstein, da Silva, Langford, and

Tenenbaum (2000), an assumption that is false if the surface has holes). ARAP scales
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Figure 5: Parameterization of a cylinder patch (400 points, top) using the Isomap (middle) and ARAP
(bottom) algorithms. The scatter plots show the exact geodesic distance on the true underlying surface be-
tween all 79800 pairs of points plotted against the Euclidean distance between the corresponding estimated
(u, v) points provided by each method.

better with the number of points than Isomap, which needs to be modified for large data

sets (see Appendices A.1 and A.2).

Estimated correlation (ρ̂)
Algorithm Reference(s) No measurement error With measurement error

LSCM Levy et al., 2008 0.9291 0.8784
ARAP Liu et al., 2008 0.9976 0.9953
LLE Roweis et al., 2000 0.9420 0.8998

HLLE Donoho et al., 2005 0.9442 0.9434
KPCA Shölkopf et al., 1998 0.9557 0.9557
Isomap Tenenbaum et al., 2000 0.9995 0.9984

Table 1: Correlation coefficients between Euclidean and geodesic distances obtained with different pa-
rameterization algorithms applied to the 79800 pairs of points from a grid of 400 noise-free observations
generated on a half cylindrical patch.

Surfaces with holes might be a common situation in a metrology situation: some regions

of the object might have no measurements due to the pose of the object relative to a non-

contact scanner, and this results in gaps in the measured surface. Therefore, we look at

this issue in more detail in example 4 (supplementary material).
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ARAP (u,v) 
parameterization x̂(u , v) ŷ (u , v)

ẑ (u , v)
ISOMAP (u,v) 
parameterization

Figure 6: Parameterization of the bilinear NURBS surface patch of figures 1–2 with a rectangular hole.
Whereas the ARAP parameterization preserves the geometry of the hole, the ISOMAP algorithm does not
retain the rectangular features of the surface hole.

5 Model fitting

Given the coordinates on the surface {ui, vi}n
i=1 that correspond to the n measurements

{m(ui, vi)}n
i=1 (collected in the n × 3 design matrix M), the next step (see Figure 3)

is to fit GP models to the x(u, v), y(u, v), and z(u, v) surfaces. In principle, one could

model the three parametric surface components with a multivariate GP. Such model would

require specification of the spatial cross-covariance matrix C(w, w′) ∈ E3×3, (where recall

w = (u, v)) which equals:

Cov(p(w),p(w′)) =

 cov(x(w), x(w′)) cov(x(w), y(w′)) cov(x(w), z(w′))
cov(y(w), x(w′)) cov(y(w), y(w′)) cov(y(w), z(w′))
cov(z(w), x(w′)) cov(z(w), y(w′)) cov(z(w), z(w′))


for w ̸= w′, which as emphasized by Cressie and Wikle (2011) needs not be symmetric

(note that the within-location variance-covariance matrix C(w, w) = Cov(p(w),p(w)) =

Var(p(w)) ∈ E3×3 is symmetric). Specifying a non-symmetric cross-covariance has proved

difficult (Gneiting et al., 2010) because of the positive definitiveness constraint. Simplifying

assumptions are usually made, such as adopting a “separable” correlation matrix (Banerjee,

Carlin, and Gelfand, 2004), C(w,w′) = ρ(w, w′) · T , where T models within-location

correlations and ρ(w,w′) models spatial correlation between locations, assumed the same

for all responses (clearly inadequate for our case). Furthermore, this results in a symmetric

cross-covariance. Other methods that require symmetry are a multivariate Matern model
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by Gneiting et al. (2010) and Corregionalization (see Banerjee et al., 2004), although

Kleijnen and Mehdad (2012) indicate that Corregionalization usually does not outperform

separate kriging predictions of each response. As discussed by Cressie and Wikle (2011), the

symmetry assumption is very strong, and this is particularly true for our surface modeling

application.

For these reasons, we proceed to fit each parametric surface model independently, as-

suming Σε = diag(τ 2
x , τ 2

y , τ 2
z ) in (2) and C(w, w′) = diag(Cx(h), Cy(h), Cz(h)) in (3) where

h = w − w′ (see conclusions section for more on this).

For each component δ• in (3), we use a powered exponential spatial covariance model

(Banerjee et al., 2004) such that the n × n covariance matrix of each surface component

x(wi), y(wi) and z(wi) over all measurements can be written as

Σ• = σ2
• exp(−ϕ•Dw)p• + τ 2

•In, • ∈ {x, y, z} (6)

where Dw is an n×n Euclidean distance matrix on the D space. Therefore, the covariance

parameters for each surface component model are θ• = {ϕ•, σ
2
•, τ

2
• , p•}. These parameters

and β• (equation 2) are estimated using restricted maximum likelihood (REML, see Santner

et al., 2003). For each parametric surface model, the REML estimator minimizes

(n − k•) log(σ2
m(θ•)) + log(|R(θ•)|) + log(|F ′

•R(θ•)
−1F •|)

where σ2
m(θ•) is the variance C•(0) expressed as a function of its covariance parameters,

F • is the n × p matrix which expands the set of uv locations M according to the terms

in the mean model form f•(w) in (3), R(θ) is the n× n correlation matrix between the n

points computed from (6) and k• is the number of parameters estimated in each parametric

surface model. The REML objective has several minima, and therefore we use a simulated

annealing (SA) global optimization routine (MATLAB, 2011) started from a set of well-

dispersed initial points for its minimization. At each point returned by the SA routine,

we ran the fmincon interior point nonlinear minimization routine in MATLAB. In this

paper, when n ≤ 1600 we used the full n × n matrix and followed the recommendations

in Lophaven, Nielsen and Sondergaard (2002) for dealing with numerical issues related to

the computations of the inverses and determinants in the likelihood function. For larger n,

we use a sparsification approach due to Sang and Huang (2012) used in the laser scanner

example of section 6.2 and further explained in the supplementary materials. Given the

minimizing parameters θ•, we estimate β• from its generalized least squares estimator

(Santner, Williams and Notz, 2003). This procedure is then repeated for each parametric

surface, giving the parameter estimates θ̂• and β̂•, for • = {x, y, z}.
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Given the surface coordinates (u0, v0) where a prediction is desired, minimum mean

square (MSE) prediction follows the usual approach in GP’s (Santner et al., 2003). The

prediction equation for each true underlying surface component in p(u0, v0) is given by:

p̂•(u0, v0) = f(u0, v0)
′β̂• + c′

p•Σ
−1
• (M• − F •β̂•), • = {x, y, z} (7)

where M• are all the measurements of each coordinate • = {x, y, z} across the n observa-

tions in (2). To predict all three surface components p̂(u0, v0) we now only need to evaluate

all three of them at (u0, v0).

An important detail in expression (7) is that the vector cp• is equal to

cp• ≡ Cov(p•(u0, v0),M•) =


cp•(w0 − w1)
cp•(w0 − w2)

...
cp•(w0 − wn)


which are the covariances between the true underlying surface component p• in (3) and the

observed coordinate M• in (2), where • = {x, y, z}. Cressie and Winkle (2011) emphasize

how these covariances should not contain the nuggets (τ 2
• ), since we are predicting the true

underlying surface (p(u0, v0)), not the observed one (m(u0, v0)).

6 Examples of surface reconstruction using a GGP

6.1 Examples with simulated surface data

In the simulations shown in this section, we first generated a grid of points over the true

underlying surface (in most cases below, a NURBS surface) to which we added geodesically

correlated Gaussian errors (in the supplementary material we also considers the case of no

spatial correlation present). To do this, we computed the (u, v) parameterization of the

noise-free points using either the ARAP or Isomap method and then added to these spa-

tially correlated normal noise generated using a powered exponential correlation function,

where euclidian distances (in the D space) were used, as these correspond closely to the

geodesic distances on S (this provided the p(ui, vi) points shown in the formulae below).

The GGP model fitting and prediction methods shown in the previous section were then

applied to these simulated data sets. To evaluate the surface reconstruction performance

of the GGP and the more common Euclidean Gaussian process (Section 2), we simply

predict the surface at the simulated points with each method and compute the Euclidean

distance between the predicted 3D points and the corresponding true surface points, since

these are available. We then report the mean squared prediction error per point. For the

GGP model this is:

MSPGGP =

√∑n
i=1 |p̂(ui, vi) − p(ui, vi)|2

n
(8)

15



where p̂(ui, vi) = (x̂(u, v), ŷ(u, v), ẑ(u, v))′ and | · | denotes Euclidean distance. For the

Euclidean GP model the mean prediction error is:

MSPz(x,y) =

√√√√√√√∑n
i=1

∣∣∣∣∣∣
 mxi

myi

ẑ(xi, yi)

 − p(ui, vi)

∣∣∣∣∣∣
2

n
(9)

where the first two coordinates are not predicted and the z coordinate is predicted as a

function of the Euclidean coordinates (x, y) instead. Since we are simulating data from

known surfaces to which we add noise, in all of these expressions above we are comparing

the predicted 3D points against the true underlying 3D Cartesian coordinates at each

point (ui, vi) on the surface (p(ui, vi)). In simulated cases (where the true surface points

are available), the mean square prediction error statistics above can be compared to the

simulated mean square error:

MSE3D =

√∑n
i=1 |m(ui, vi) − p(ui, vi)|2

n
=

√∑n
i=1 |ε(ui, vi)|2

n

which is a measure of the mean “noise” added to all 3D points on the surface. If in a

simulation it turns out that MSPGGP < MSE3D this means the GGP model is able to filter

the measurement error enough to get predictions that on average are closer to the true

surface than what the observed measurements are.

Example 1.- a cylindrical surface patch.- Table 2 shows the performance metrics of a

series of simulations taking the cylindrical patch of Figure 5 as the true underlying surface.

Geodesically correlated Gaussian noise was added to a grid of points on the surface, as

described before, with correlation function parameters ϕ• = 1, σ2
• = τ 2

• = 0.00001. An

interaction model (in (u, v)) was fit to the mean of x(u, v), while a quadratic model was

fit to the mean of y(u, v), z(u, v), and z(x, y). We studied the performance of the GGP

methodology compared to the alternative Euclidean GP predictions (see section 2) for

different number of points. The statistics are averages and standard deviations from 30

independent simulations and model fits (same data used across methods). Fitting both

the GGP and the Euclidean GP models required inversions of n × n matrices, with the

total computing time of 30 model fits exceeding 12 hr., hence the apparently small sample

size (see supplementary materials section D for more details about how to fit the GGP

model for large n). Despite this, the standard errors of the mean squared prediction

errors are relatively small, and the results allow us to make some general observations.

As it can be seen from the table, in some cases, the mean square error of the simulated

points MSE3D is higher than that of the GGP predictions (MSPGGP ). This means that

16



in such cases, the GGP predictions p̂(w) are closer to the true unknown surface p(w)

than what the true surface is with respect to the simulated (noisy) surface points m(w).

This happens because the kriging predictor is smoothing the data, i.e., the reconstruction

is not an exact interpolation, and because in these cases the prediction bias is low. When

MSE3D >MSPGGP , the proposed approach is effectively filtering the observational noise in

the state-space model (2-3). In contrast, the Euclidean GP approach (z(x, y)) incurs in

considerable higher prediction errors (around 50% compared to the GGP predictions; all

differences in MSP between the GGP and the z(x, y) models have p-values for the t-test

of equality < 0.0001).

n MSE3D MSPGGP MSPz(x,y)

400 0.00756 0.00773 0.01178
(0.00006) (0.00108) (0.00091)

900 0.00798 0.00796 0.01188
(0.00109) (0.00108) (0.00099)

1600 0.00771 0.00764 0.01192
(0.00098) (0.00099) (0.00094)

Table 2: Prediction results for cylindrical patch, 30 simulations, mean and standard deviations (in paren-
thesis) of performance statistics. MSPGGP is the per observation mean square 3D prediction error using
the proposed GGP model (8), MPSz(x,y) is the corresponding error if the Euclidean GP (9) is used .
MSE3D is the simulated mean square error of the 3D points.

Example 2.- a sinusoidal surface patch.- In this case the true surface is z(u, v) =

0.1 sin(u), depicted in Figure 4. This is a type of surface patch reported to be useful as

a model in high precision micro machining (Zhang et al., 2009). The same noise values

as in the cylindrical patch case were added to a grid of points generated on this surface.

An interaction model (in (u, v)) was fit to the mean of x(u, v), and to the mean of y(u, v),

while a constant (intercept only) model mean was used for z(u, v), and z(x, y).

n MSE3D MSPGGP MSPz(x,y)

400 0.00761 0.02435 0.04552
(0.00089) (0.00693) (0.00187)

900 0.00785 0.01284 0.02946
(0.00132) (0.00284) (0.00148)

1600 0.00752 0.00954 0.01957
(0.00099) (0.00123) (0.00112)

Table 3: Results for sinusoidal patch, 30 simulations, mean and standard deviations (in parenthesis) of
performance statistics. MSPGGP is the per observation mean square 3D prediction error using the proposed
GGP model (8), MPSz(x,y) is the corresponding error if the Euclidean GP (9) is used . MSE3D is the
simulated mean square error of the 3D points.

The Euclidean GP approach (z(x, y)) incurs in worse prediction errors compared to the
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Figure 7: Left: Sinusoidal patch observed points (light dots) and GGP predictions p̂(u, v) (darkest dots),
n = 400 points. The plane of dots are the parameters (u, v). Right: side view, showing the Euclidean GP
predictions ẑ(x, y) (lighter squares), which fail to reconstruct the full depth of peaks and troughs.

parametric 3D predictions (Table 3; all MSP differences between the GGP and the z(x, y)

have p-values < 0.0001 for an equality of means test). While the underlying surface is

developable (Gaussian curvature is zero) the measured points are not, so the uv surface

will not be a perfect rectangle even if a perfect isometry were to be found. This surface

has strong curvature, so modeling the heights as a function of 2D Euclidean spaces badly

estimates the distances, and hence the correlations, between points on the surface, resulting

in an underestimation of the peaks and troughs of the function (see Figure 8). This

curvature also makes the GP predictions worse relative to those in the cylindrical patch

example. By strong curvature we are referring to large values of the principal curvatures at

some points, not to the Gaussian curvature values, which for a near-developable surface will

be near zero. As the density of points increases, all models fit better. Still, for n = 1600 the

GGP achieves a MSP error of less than half that of the Euclidean GP model, approaching

the level of the simulated noise.

Example 3. Non-smooth surfaces. The simulated surfaces in previous examples are

considerably smooth, typical of many manufacturing process (e.g., manufacturing of “free

form” surfaces by milling, forming or casting). There might be other manufacturing appli-

cations, especially in micro-manufacturing, where the surfaces may be less smooth. “Non-

smooth” does not refer to surfaces that have sharp edges, which would require a segmenta-

tion procedure to model the surface into smaller patches, a problem not discussed in this

paper (see conclusions). By smoothness we mean the degree or order of mean square differ-

entiability of the GP surface realizations. If the surfaces one wishes to model are smooth, a

Gaussian spatial covariance function (p = 2 in the power exponential function) could suffice
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σ2
• τ 2

• MSE3D MSPGGP MSPz(x,y)

0.01 0.0001 0.17423 0.17094 0.17107
(0.01181) (0.01208) (0.01170)

0.0001 0.01 0.17424 0.16522 0.16361
(0.00291) (0.00274) (0.00348)

0.0001 0.001 0.05746 0.05505 0.05922
(0.00133) (0.00134) (0.00189)

0.001 0.0001 0.05761 0.05699 0.06061
(0.00336) (0.00342) (0.00323)

Table 4: Results for non-smooth cylindrical surface patches. ϕ = 5.0 for all 3 coordinates, n = 400.

for modeling δ(w). However, as it is well-known (e.g., Santner et al., 2003) the Gaussian

covariance function represents an extreme case of smoothness since it is “infinitely smooth”

(i.e., it is mean square differentiable of any order). Instead of using a Gaussian covariance

function, we have taken a more conservative approach by using p = 1 (exponential spatial

covariance function) which, strictly speaking, results in non-differentiable surface realiza-

tions. If the noise levels were high, this model could result in very non-smooth surfaces

p(w). In addition, we included a “nugget” term in (2) which by definition is non-smooth.

Furthermore, if the ϕ parameter increases, the range of the spatial correlation decreases

and this will make surface realizations more “wiggled”. Hence for all these reasons the ob-

served surface m(w) could be quite non-smooth under the assumed model. The observed

smoothness depends on the noise levels; even when a non-smooth covariance function is

used, if the noise levels are very low the sample realizations will appear smooth due to the

existing trend.

It may be recalled, however, that the parameterization procedure assumes the 2-manifold

p(w) is differentiable, so when using a non-smooth covariance function, such as the power

exponential with p = 1, if the noise level σ2 + τ 2 is large compared to the trend, the pa-

rameterization algorithms may work badly, and this will be reflected in poor predictions.

We illustrate this effect in Table 4 which shows additional simulations for the cylindrical

surface patch shown earlier under higher noise levels (and larger value of ϕ). The noise

levels in the table result in dramatically non-cylindrical surfaces, not typical of free-form

manufactured parts we focus on in this paper but that may be more typical in other types

of manufacturing (e.g., micro-manufacturing).

Sample realizations of this “cylinder” for the lowest set of noise levels indicate these

surfaces are extremely non-smooth. It is therefore somewhat reassuring to see that for the

last 2 cases in the table the GGP method results in significantly better predictions than a
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regular Euclidean GP model (p-value of t-test comparison of the MSP’s is < 0.0001); for

the first case in Table 4 there is no significant difference (p-value = 0.9675) and only for the

second case in the table the Euclidean GP model predicts slightly better (p-value=0.0513).

As the smoothness or the curvature increases, the GGP predictions will reconstruct a

surface patch increasingly better than the Euclidean GP model.

6.2 Reconstruction from real surface data: laser scanner data

In this section we reconstruct the surface briefly discussed in the introduction and displayed

in Figure 8. We contrast the performance of the proposed approach in modeling this sur-

face via cross-validation, fitting the different models in a subset of data and predicting a

different subset of points, given that contrary to the previous simulated examples, there

is no “known underlying surface” available. Hence, we estimate the mean square predic-

tion errors substituting the true surface points (p(ui, vi)) with the observed measurements

(m(ui, vi)) at which we are predicting (different to the points at which we fit the model),

so n is substituted in (8-9) by npredict, the number of points at which we are predicting,

not the points used to fit the model as in the previous section.

The original dataset consists of 9635 points from a free form surface (see Figure 8)

of base size 100 mm. × 100 mm., acquired with a scanner system. We fit the GGP and

Euclidean GP models to 9000 (= nfit) randomly sampled observations, using the remaining

635 (= npredict) for cross-validation. We also fit preliminary models for smaller number of

points (nfit = 402, obtained by selecting every 24th point and nfit = 964, obtained from

selecting every 10th point). The preliminary fits from the smaller datasets are useful to

select mean models to use in the full dataset, given the computational effort to fit the

models when nfit is large. Just as for a standard Euclidean GP model, when nfit is large,

fitting the GGP model requires sparse matrix techniques for handling the inverse and

determinant operations needed in the REML routine (see supplementary materials section

D for computational details). The ARAP algorithm was used for the parameterization.

Table 5 shows mean square prediction errors obtained by cross-validation. The cross

validation was done at npredict different points than the original ones, for which the (ui, vi)

parameters were computed first (i.e., the parameterization mapping was extended) and

then the predictions for these points were computed using the GGP models fitted with the

original data. Finally, we compute the mean square error of the predictions generated by

GGP (MSPGGP ) and also by the Euclidean GP method (MSPz(x,y), see Section 2).

We tried different mean models for x(u, v), y(u, v), z(u, v) and z(x, y). From the mean

square errors per point of the cross-validated predictions, the best mean models are an inter-

action model for x(u, v) and y(u, v) and either a constant (intercept) or a quadratic model
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Figure 8: Laser scan data. From left to right: original artifact, full dataset (n = 9635), a decimated data
set (n = 964), and on the right the (u, v) parameterization of the decimated 3-dimensional data using the
ARAP algorithm.

for z(u, v) and z(x, y), which were about the same. We compared the GGP predictions

to the Euclidean GP method (i.e., only predicting the heights z as function of Euclidean

coordinates (x, y)). The mean square errors of doing this in the best fitting models are con-

siderably higher than assuming correlations along geodesic distances. Note how MSPz(x,y)

is computing squared errors only on the heights z, whereas MSPGGP computes squared er-

rors on all 3 coordinates. Thus, it is notable how in every case MSPGGP < MSPz(x,y). If we

consider only the GGP prediction errors along the z(u, v) coordinate response (column la-

beled (MSPz(u,v))), the table shows how these are about half of what a standard Euclidean

GP model fit to z(x, y) would provide, regardless of the number of points used to fit the

model nfit. Hence, these statistics provide evidence that the data set contains correlations

that are better modeled along the surface rather than in Euclidean space, and that the

GGP model is predicting this surface substantially better than a standard universal kriging

model fitted in Euclidean space to z(x, y). In practice, differences in prediction errors of

the magnitudes shown in Table 5 may likely result in a part, whose surface has been mod-

eled in the two different ways described in this paper, be accepted or not when performing

tolerancing. Alternatively, in a reverse engineering situation, the differences may imply the

possibility to successfully develop (or not) a part with precision levels similar than those

from a part produced by a competing manufacturer.

7 Discussion and conclusions

A new parametric approach for the statistical reconstruction of a surface patch embedded

in 3-dimensional space based on point cloud data. The Geodesic Gaussian Process (GGP)

method first finds a parameterization on the surface patch under study and then fits spatial

GP models on each of the three Cartesian coordinates as a function of the two surface

coordinates. This avoids the problem of having to select one coordinate as the “response”

(usually z is chosen) and using the other two coordinates as the (noise free) “locations”
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nfit npredict Mean models for (x, y, z) MSPGGP (MSPz(u,v)) MSPz(x,y)

402 401 interaction, interaction, intercept 0.0160 (0.0103) 0.0230
964 963 interaction, interaction, intercept 0.0140 (0.0104) 0.0195
402 401 interaction, interaction, quadratic 0.0165 (0.0110) 0.0257
964 963 interaction, interaction, quadratic 0.0129 (0.0088) 0.0181
9000 635 interaction, interaction, quadratic 0.0112 (0.0077) 0.0157

Table 5: Cross-validation results for Laser scanner data. The estimated mean square prediction errors per
observation are shown. The error of the GGP in predicting only coordinate z(u, v) is shown in parenthesis.
MSPz(u,v) is consistently about half of MSPz(x,y), regardless of the number of points used to fit the model.

(usually, (x, y)) that one faces when using a standard kriging model for surface data. The

parametric surface form of the model is compatible with CAD models, and this facilitates its

application in tolerancing, quality control, and reverse engineering. It was shown how the

GGP approach reconstructs surfaces better than the usual kriging/GP modeling approach

found in the literature which assumes correlations occur over an Euclidean space and

only the “heights” z(x, y) are modeled. If the correlation occurs as a function of geodesic

distance between points on the surface or when there is no spatial correlation, Euclidean

spatial models resulted in considerable inferior predictions, giving mean square prediction

errors that on average were around twice those given by the GGP model for the laser

scanner data set in section 6.2. We have confirmed in a real laser scanner data set how the

assumed “geodesic hypothesis” holds, i.e., we determined how the spatial correlation can

be better modeled geodesically than over Euclidean distances. This hypothesis was found

also true in a CMM dataset of the artifact depicted in Figure 8, and we have confirmed this

with another real scanner dataset (Colosimo et al., 2013c). However, for a full application

in industry of the GGP model, it is of interest to determine if for more real-life free-form

scanned surfaces the “geodesic hypothesis” holds.

The parameterization approaches used (ARAP and Isomap) may find difficulties if the

surface has severe curvature or sharp edges, inevitable problems common to all parame-

terization algorithms. A way to handle severe curvature is to segment a complicated 3D

object that perhaps closes into itself (so it is not a surface patch) and partition it in such

a way that we get a series of patches each easier to parameterize. There is a number of

segmentation algorithms in the computer graphics literature, and we plan to study the

problem of how to fit an overall GGP model to the collection of patches.

Supplementary material

Additional results: A further parameterization example, reducing the measurement noise,
parameterization methods used, software implementation and differential-geometrical analysis of
fitted surfaces (pdf file). Code and data: Matlab code and scanner dataset (zip file).
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