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Introduction

As reported in the literature, the central nervous system
(CNS) shows a limited capacity to regenerate sponta-
neously. For this reason, different regenerative strate-
gies and treatment options for patients with CNS
diseases and injuries have been analyzed and
proposed. '

Anyway, as a consequence of the CNS complexity,
it is difficult to individuate successful therapeutic stra-
tegies, and the use of the common delivery methods
(i.e. intravenous and oral) is strongly restricted by the
limited diffusion of drugs and biomolecules across the
blood-brain barrier (BBB). Hydrogel-based materials
have been already proposed and widely studied in the
biomedical field.

In this context, this work will report many examples
of several strategies adopted for CNS diseases. A brief
overview of different approaches will be first presented
and then the design of injectable hydrogels for in situ
drug or cell release will be reported as a minimally
invasive and interesting solution in the development of
successful treatments for CNS neurodegenerative disor-
ders, also focusing the attention on the possibility to
properly optimize the rheological or mechanical and
functional features of such devices." '

Cell-based therapy

As reported in the literature, cell-based therapies and
delivery of bioactive molecules (i.e. small molecules,
growth factors and antibodies'"!?), also involving the
use of hydrogels and nanoparticles (NPs) as platform
for cell, growth factor or drug release, are employed for
promoting tissue regeneration after injury. Cell-based
therapies aim at replacing damaged cells and/or at
maintaining cell viability, also promoting tissue regen-
eration. Cells have to be integrated into the host tissue
in a direct way or through the secretion of factors for
neurogenesis or neuroprotection.'®> Somatic stem cells
(i.e. neural stem cell), embryonic stem cells (ESCs),
CNS progenitor cells and cells derived from induced
pluripotent stem cells (iPSs) may provide potential
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therapeutic effects.'*!> Human ESCs (hESCs) provided
a potentially endless specialized source of neural pro-
genitor cells when employed as models to study human
development.'*'® Uncontrolled growth and teratoma
formation have been often associated with platforms
based on hESCs, and consequently, prior to clinical
testing, effectiveness and safety must be demonstrated
through further studies.'*!'”'® Taking into account the
potential of generating patient-specific cells for autolo-
gous use, a great attention has been recently devoted to
iPSs, with the aim to possibly avoid the need for immu-
nosuppression.'*%** The potential risk of tumor for-
mation associated with the use of cells derived from iPS
and hESC sources strongly limits their clinical impact.

Neural stem cells as somatic stem cells also represent
tissue-specific or adult-derived stem cells. Human
neural stem cells (hNSCs), which can be isolated from
either mature or developing human brain tissue, are
able to self-renew and differentiate into oligodendro-
cytes, astrocytes and neurons. Once properly isolated
and expanded, fluorescence-activated cell-sorted
(FACS) hNSCs will be able to maintain their ability to
re-initiate neurosphere formation.'*?"*? In addition,
some studies on such obtained cells have highlighted
how they display a normal karyotype, do not require
specific factors for pre-differentiation and are able to
retain multipotentiality, without forming tumors in
vivo. Furthermore, even though safety and preclinical
testing needed for gene-modified stem cells are more
complex than for nonmodified ones, the use of neural
stem cells for gene therapy has also been proposed, and
this approach could be useful in specific disease
cases, 142227

Some studies on preclinical disease models have
highlighted that mesenchymal and umbilical cord blood
stem cells are a very promising therapeutic tool for neu-
rodegenerative or traumatic disorders affecting CNS,
even if they differ from the neural stem cells in terms of
action mechanism, cell survival and potential differen-
tiation.?® 32

It has also been analyzed the possibility to release
many different protective soluble factors produced by
mesenchymal stem cells (MSCs) from a nanostructured
hydrogel to the brain parenchyma. A tailored nanos-
tructure would play an important role in modulating
the viscoelastic properties of the materials before and
after the injection through clinical needles (see section
“Injectable hydrogels”), as well as the release kinetics
of specific biofactors, however influencing the behavior
of cells. As an example, the use of bone marrow stem
cells has provided interesting results in the brains of
Alzheimer’s disease (AD) mice, selectively producing
the chemoattractant factor CCL5 and promoting the
activation of endogenous microglia.>* Furthermore, in
vitro and in vivo studies demonstrated that human
umbilical cord blood-derived MSCs secrete a soluble
intracellular adhesion molecule-1 reducing amyloid-3
plaques.™

With regard to treatment of Parkinson’s disease
(PD), the paracrine effect of MSCs and the release of
glial-derived neurotrophic factor (GDNF) have been
studied by Whone et al.>> Such research evidenced
some beneficial effects which were probably mediated
by GDNF release, as the soluble factors produced by
native human mesenchymal stem cells (hMSCs) were
able to protect cultured monoaminergic perikarya and
monoamine neurotransmitter transporter function.

Neurotrophic factors, such as nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF),
glial cell-derived neurotrophic factor (GDNF), neuro-
trophin-3 (NT-3), ciliary neurotrophic factor (CNTF)
and leukemia inhibitory factor (LIF), as well as extra-
cellular matrix (ECM) proteins, such as fibronectin,
laminin, collagen I or III and collagen IV represent the
most widely considered factors in the clinical approach
of cell-based therapies.'*** Different studies’* per-
formed on stroke-injured brain of human patients have
shown no adverse effects concerning MSC transplanta-
tion'** or an immortalized cell line of human
teratocarcinoma-derived neurons."*' However, poor
cell survival together with uncontrolled differentiation
and ineffective integration into the host tissue has
strongly limited the efficacy of cell transplantation
techniques.

Release of bioactive molecules

Several bioactive molecules have been demonstrated to
promote tissue regeneration (i.e. neurogenesis, axonal
regeneration, plasticity and neuroprotection). As an
example, strategies based on intraventricular sequential
release of epidermal growth factor (EGF) and erythro-
poietin (EPO) into stroke-injured brains (i.e. rat model)
showed an improved migration of endogenous neural
stem or progenitor cells (NSPCs) to the injury site, pro-
moting neurogenesis and functional recovery.'** In this
field, specific growth factors**** have been shown to be
neuroprotective and promote axonal outgrowth.
However, some delivery strategies are limited because
of the low permeability of the BBB and blood—spinal
cord barrier,*> which require high systemic doses for
reaching therapeutic concentrations at the injury site,
often inducing local delivery strategies or cytotoxicity.
Moreover, systemic administration can provide unde-
sired side effects (i.e. tumor, fibrosis)*® as it also leads
to off-target distribution of therapeutic agents.

Current methods based on direct drug delivery to the
CNS involve bolus injection and continuous infusion
through a catheter or minipump system. With regard to
the bolus injection into the intrathecal space for deliv-
ery to the spinal cord, the continuous cerebrospinal
fluid flow disperses the injected drug throughout the
CNS, thus resulting in a minimization of the local
release.''*” The use of the catheter or minipump system
requires invasive surgery. Consequently, cell and tissue
death around the insertion site and a great risk of
infection from the external minipumps are usually



caused.*®** The strongly limited diffusion of therapeu-
tics from the ventricular surface into the brain parench-
yma hinders the intraventricular infusion.’’ To target
the retina, the protective ocular barriers are penetrated
by applied drops with difficulty. As a consequence,
invasive delivery techniques are normally employed
often causing retinal detachment, vitreous hemorrhage
and infection.*

NP-based drug delivery

Many efforts have been made to develop strategies for
improving drug permeability across the BBB, also
including drug delivery via NPs or liposomes.”
Basically, many techniques for the synthesis of
polymer-based NPs,*** as well as for the encapsula-
tion of several drugs and bioactive molecules, proteins,
peptides or nucleic acids, have been proposed and ana-
lyzed. Several biodegradable polymer-based NPs have
been widely considered because of some peculiar fea-
tures such as biocompatibility, subcellular size,
controlled-sustained release property, stability in the
blood, nontoxicity and nonthrombogenicity.>* >3
Different nanosystems for drug delivery through ocu-
lar, oral and nasal administration as well as several
strategies of synthesis and encapsulation of specific bio-
molecules have been also reported in the literature.”>>’
Several polymers have been considered for the NP
synthesis, taking into account degradation rates and
mechanism, according to the specific application.

It has also been suggested that polymeric NPs with-
out surface modification show a limited ability to cross
the BBB. For this reason, surface modification using
ligands or surfactants may improve receptor-mediated
endocytosis. However, the presence of positive charges
may improve adsorptive-mediated endocytosis.*

In this context, polyesters such as poly-g-caprolactone
(PCL), poly(glycolic acid) (PGA) and poly(lactic acid)
(PLA) as well as their copolymer poly(lactic-co-glycolic
acid) (PLGA) have also been investigated, considering
the interesting results obtained in the field of medi-
cine.>*%*%* It is well reported that the above-mentioned
polymers are biocompatible and biodegradable, and the
by-products degradation can be easily removed.

NPs may also be formed by chitosan, which is a bio-
compatible and biodegradable polysaccharide.®®%
With regard to the preparation of chitosan NPs, many
different methods have been described (i.e. ionotropic
gelation, emulsification solvent diffusion, microemul-
sion and polyelectrolyte complex).®® Wang et al.®” have
shown that intranasal delivery of estradiol-loaded chit-
osan NPs can lead to a significant amount of estradiol
within the CNS.

The delivery of peptides, caspase inhibitors and
dopamine to the CNS has been studied and opti-
mized.®® 7° Furthermore, to possess a variety of ligands
for BBB bypass, chitosan NPs may be suitably surface
modified.”" Nagpal et al. also demonstrated that at pH
lower than 6, the amino groups of chitosan are

protonated. Thus, it is positively charged and is an
attractive one for nucleic acid delivery.®’

Like chitosan, poly(ethylenimines) (PEIs) are catio-
nic polymers may be employed for nucleic acid deliv-
ery. For example, disulfide-linked PEI NPs have been
reported to deliver micro-RNAs to the CNS.”>"?

Even though gelatin is widely employed in food and
medical products, it is also an attractive one for drug
delivery applications as it is biodegradable, nontoxic
and bioactive. Specifically, it is a polyampholyte pos-
sessing both anionic and cationic groups along with
hydrophilic group. Its swelling behavior, thermal and
mechanical properties depend on the cross-linking
degree.>* With regard to the preparation methods, gela-
tin NPs can be produced through desolvation or coa-
cervation’* or emulsion,”® and they have been used to
encapsulate different peptide sequences to be delivered
in a diffusion-controlled manner.”®

Gelatin—siloxane (GS) NPs have been suitably modi-
fied with trans-activating transcriptor (TAT) peptide
improving plasmid DNA transfection efficiency and
the efficiency of SynB-poly(ethylene glycol) (PEG) NPs
decorated with GS (SynB-PEG-GS) was investigated
through in vitro and in vivo analyses by Tian et al.,”’
using brain capillary endothelial cells, a co-cultured
BBB model and a normal mouse model. As for SynB-
PEG-GS NPs, an efficient brain capillary endothelial
cell uptake and an improvement in the BBB were
obtained. In addition, it was demonstrated that the
modification with the SynB peptide could enhance the
efficiency of the NPs in crossing the BBB.”’
Didanosine-loaded and mannan-coated gelatin NPs
were prepared using the double desolvation technique
and then incubated with a mannan solution. Drug
release and effects on cell behavior were properly ana-
lyzed.® %0

However, gelatin microspheres were also employed
as a carrier during instrastriatal administration, provid-
ing an enhancement in the neuroprotective effects of
osteopontin. Anyway, because of their size, gelatin
microspheres have difficulties in entering the brain par-
enchyma via intranasal administration. For this reason,
the delivery of an osteopontin peptide through gelatin
NPs has been studied, especially in the case of ischemic
stroke treatment, evidencing a significant decrease in
mean infarct volume and suitably extending the thera-
peutic window of such intranasally administered pep-
tide. Thus, gelatin NPs may be considered as a
promising drug delivery system for the intranasal
ischemic stroke treatment and, eventually, other neuro-
logic disorders.*°

In general, NPs could also play a key role in MSC
tracking. A matter of great debate is represented by the
fate of injected or transplanted MSCs into the body in
animal or human models.®! The cytotoxicity of super-
paramagnetic iron oxide nanoparticles (SPIONPs)
employed as a contrast agent in magnetic resonance
imaging for tracking labeled cells after transplantation
in vivo and labeling cells in vitro, as well as the effects



on the neural differentiation of human amniotic
membrane-derived MSCs (hAM-dMSCs) have been
studied.®

In a further research, the effective concentration of
SPIONPs to track MSCs has been analyzed through
the evaluation of labeling toxicity and influence on mul-
tiple differentiated MSCs. The results demonstrated
that at low concentrations of SPIONPs, cells were effec-
tively labeled maintaining their proliferation and differ-
entiation capacity.®?

Injectable hydrogels

Biodegradable polymer-based devices have been con-
sidered as drug depots for sustained delivery.3*®
However, these devices often require invasive surgical
techniques for the implantation, and an appropriate
alternative may be represented by injectable in situ gel-
ling hydrogels. Cell-based therapy, release of bioactive
molecules and NP-based drug delivery have been
already discussed in the previous sections, and a combi-
nation of strategies involving bioactive molecules, cells
and biomaterials should represent an interesting strat-
egy to improve cell survival and integration as well as
to achieve local delivery to the brain.'"***” Advanced
delivery vehicles for therapeutic molecules should pro-
vide a sustained and tunable drug release profile, thus
avoiding multiple and high-dosage treatments.*® Such
delivery vehicles may also provide physical support for
cells. In this scenario, injectable hydrogels also loaded
with NPs (i.e. nanocomposite hydrogels) for in situ cell
or drug release may be considered a minimally invasive
solution for improving the effectiveness of potential
therapeutic strategies for the treatment of severe neuro-
degenerative disorders, such as PD and AD.**"%?

For this reason, several formulations of injectable
materials able to form gels in situ have been recently
proposed. For example, polymers such as chitosan or
alginate form gels due to ionic interactions, either
through changes in pH or addition of salts,”® whereas
other materials may gel as a consequence of tempera-
ture increase if they have a lower critical solution tem-
perature (LCST) below body temperature. A light-
induced hydrogel formation may also be obtained
through the use of an appropriate photoinitiator in the
presence of monomers.”*

Among the natural polymers, agarose, which is a
polysaccharide of p-galactose and 3,6-anhydro-L-galac-
topyranose, may gel as temperature is decreased, and it
has been widely investigated for drug delivery applica-
tions.”> Agarose gels through hydrogen bonding upon
cooling, and if unmodified, it gels very slowly at body
temperature,”® and in order to overcome this limita-
tion, an external liquid nitrogen cooling system has also
been developed, thus inducing a quick gel formation in
situ.”?

Experimental analyses on rat model with a dorsal
over-hemisection injury at T10, involving the injection
of agarose solutions with BDNF-loaded lipid

microtubules into the intrathecal space, have high-
lighted interesting results. A reduction in the astrocyte
reactivity and in the production of chondroitin sulfate
proteoglycans was achieved as a consequence of
BDNF release, however improving the number of
regenerating fibers that entered the hydrogel chondroi-
tinase ABC-loaded lipid microtubules to the injured
spinal cord.**"7

Anyway, even though there should be potential side
effects, an approach where the liquid nitrogen is also
delivered onto the gel has also been contemplated.”®*”
An intriguing strategy in the field of CNS should be
represented by the use of MSCs for designing cell or
biohybrid constructs. In this context, two strategies can
be considered for regenerative or replacement therapies,
since MSCs may be employed as a reservoir of trophic
factors or may be properly differentiated toward a neu-
ronal phenotype.

For instance, undifferentiated MSCs from the auto-
genous adipose tissues were embedded into an alginate
hydrogel. Then, the cell construct was placed into an
expanded poly(tetrafluoroethylene) tube for repairing a
facial nerve lesion.'”!°" As a result, a well-organized
neural tissue was formed within the tube-like systems
after 12 weeks. In addition, interesting results were also
obtained in terms of nerve conduction velocity, which
was greater if compared to the control group. However,
this study clearly suggests the possibility to use similar
approaches involving different biocompatible materials.

A three-dimensional (3D) device able to support
MSC proliferation or differentiation was also devel-
oped considering macroporous cellulosic hydrogels for
inducing the neuronal differentiation of hMSCs.'%> The
number of hMSCs increased by more than 14-fold after
1 week, and differentiation into neurons and glial cells
could be evident after 2 weeks. Potential functionaliza-
tion and/or nanostructuration of such hydrogels may
also improve the promising results already obtained.

Chitosan, which is a natural polysaccharide, can
also be employed to design injectable drug depot as gels
can be prepared by ionic cross-linking (i.e. sodium tri-
polyphosphate) or covalent cross-linking (i.e. glutaral-
dehyde).'%*!%*  Beta-glycerophosphate (BGP) cross-
linked chitosan was employed to deliver ellagic acid for
the treatment of brain cancer.'® With regard to the
above-mentioned materials, gelling occurred within
3min at body temperature, and they exhibited a linear
release profile for 14days. As for the preparation, a
mildly acidic aqueous solution is required, thus repre-
senting an attractive strategy for the encapsulation of
biomolecules, which are stable under the considered
conditions.

Cross-linking of thrombin-activated fibrinogen by
factor XIII in the presence of Ca® " plays an important
role in the formation of fibrin gels. Fibrin gels have been
used as tissue sealant in wound healing as well as for
drug delivery applications. In this case, drug release was
also tailored through reversible binding, when bi-domain
peptides were incorporated into the fibrin matrix.



It was also demonstrated that by properly incorpor-
ating a peptide which contained a heparin-binding
domain into the fibrin matrix, the release of a heparin-
binding protein (i.e. fibroblast growth factor) was slo-
wed down.'% % Such system may be injected and
polymerized in situ,''' and the controlled delivery of
NT-3, NGF and BDNF has also been analyzed.
Furthermore, improvements have been reported in
terms of neural fiber sprouting in rats.'"!

Considering that collagen represents the main com-
ponent of connective tissues and type I collagen as the
most abundant protein in humans,''? it has been widely
used in different applications, such as drug delivery.''?
Collagen is a great candidate for the development of in
situ gelling systems, taking into account its thermal gel-
ling properties.''* However, as collagen gels are quite
weak, many strategies have been proposed to improve
their durability (i.e. cross-linking). In this context, geni-
pin was employed to obtain collagen gels with enhanced
properties.''> An in vitro study on NSPCs has demon-
strated an improvement of survival, growth and prolif-
eration using a collagen gel were able to release
CNTF."'® For this reason, an efficient drug delivery
device may be properly designed benefiting from cross-
linking and chemical modification methods and drug
and gene release strategies.'!”

Hydrogels consisting of gelatin-hydroxyphenylpropionic
acid (Gtn-HPA) conjugate were synthesized through
specific oxidative coupling of HPA moieties, and the
stiffness of such materials could be properly tailored.''®
Experimental analyses evidenced that the rate of
hMSCs proliferation increased as the stiffness of the
hydrogels decreased. Specifically, with regard to cell
cultures after 3 weeks, much more neuronal markers
were expressed using hydrogel-based materials with the
lower stiffness in comparison to the stiffer matrices.

Amphiphilic diblock copolypeptide hydrogels con-
sisting of poly-L-lysine, poly-L-homoarginine, poly-L-
leucine and poly-L-glutamate were properly analyzed in
order to tailor also the gelation time by varying the
ratio of hydrophilic to hydrophobic residues. Similar to
injections of physiological saline solution, results from
in vivo tests on mouse forebrain demonstrated that
these materials were able to promote inflammation,
gliosis and toxicity to neurons, axons and myelin. They
also provided blood vessel and limited nerve in-growth
over time.

Self-assembling peptides (SAPs) represent a further
interesting strategy, and such molecules may form self-
assembling scaffolds as a consequence of changes in
temperature, pH or salt concentration. In rat and
mouse models of spinal cord injury (SCI), promising
results have been obtained through functionalization
with specific active sequences (i.e. Ile-Lys-Val-Ala-Val,
IKVAV). 19121

Hyaluronan (HA) is widely employed in the field of
tissue engineering, as it is present in high levels in the
ECM of epithelial, connective and neural tissues. It
plays an important role in cellular processes such as cell

proliferation, inflammation, morphogenesis and wound
repair, however interacting with cells through specific
surface receptors (i.e. CD44, receptor for HA-mediated
motility (RHAMM)).'>> Anyway, the attention has
been focused on the possibility to make HA more suit-
able for drug delivery applications'**!** as it alone does
not gel, and in the body, it is rapidly degraded by the
enzyme hyaluronidase.

The design of an injectable hydrogel for drug deliv-
ery consisting of a physical blend of HA and methylcel-
lulose (MC), known as HAMC, has also been
proposed. Both HA and MC clearly contribute to the
overall properties of HAMC, such as shear thinning
behavior, injectability, gelling temperature, biocompat-
ibility, bioresorbability and the ability to attenuate
inflammation in the CNS.!#%:126

Although HAMC alone has been used as injectable
material providing interesting results,'® it has been also
considered for designing a drug delivery device for the
release of growth factors to the stroke-injured brain
and to the injured spinal cord.'?®'?® Considering that
therapeutic agents (i.e. hydrophilic proteins) can diffuse
through the HAMC, they can be loaded into polymeric
nanospheres (i.e. PLGA) dispersed within the HAMC
to properly extend the release profile. This diffusion
strategy may also lead to a linear release profile with a
low burst release.'*

The presence of MC increases the solubilization of
hydrophobic drugs,'** allowing an extended release
profile which can be modulated by varying the size of
the drug particles. With regard to the SCI, Park et al.'*!
developed a further and complex 3D biomimetic hya-
luronic acid-based scaffold. Three components were
basically used, a matrix metalloproteinase peptide
cross-linker, BDNF and an IKVAV peptide derived
from laminin. The obtained results evidenced that hya-
luronic acid-based hydrogels containing BDNF and
IKVAV create microenvironments which promote the
differentiation of hMSCs along the neural cell lineage,
thus suggesting their use for nerve regeneration after
SCI.

Exhibiting a low viscosity at 23°C and forming a soft
gel through salt addition at 37°C, MC has also been
investigated as an injectable scaffold to repair brain
defects.'** Furthermore, it was demonstrated that the
presence of MC did not negatively affect the size and
stability of the injury cavity.

Pluronic F127 is an ABA block copolymer consisting
of poly(propylene oxide) and poly(ethylene oxide). It
exhibits inverse thermal gelling, and Pluronic gels were
employed for lentiviral delivery of the green fluorescent
protein gene to the CNS,'** also highlighting no toxic
effects in 293T cells and no decrease in transduction
efficiency when compared to traditional transduction.
Anyway, a limited biocompatibility of such material
was suggested as a result of an increase in activated
macrophages and partial tissue damage. However, with
regard to the treatment of retinal diseases, a further
study on this material has demonstrated the possibility



to locally deliver dexamethasone across the human
sclera.'*

Another interesting approach is the design of a tem-
perature responsive drug delivery system based
on poly(N-isopropylacrylamide) (PNIPAAm)."*> '3’
PNIPAAm exhibits a LCST lying between room tem-
perature and body temperature. Consequently, at room
temperature, it is soluble and gels at body temperature.
Although PNIPAAm homopolymer gels exhibit poor
elastic recovery and hold little water at physiological
temperatures, it is possible to tailor the mechanical or
viscoelastic and swelling properties combining
PNIPAAm with PEG.!*® By mixing the drug with the
PNIPAAmM-PEG at room temperature, such materials
were employed as a device to deliver BDNF for the
repair of an incomplete lesion in SCI model.'**-14°

Even though PLA is widely employed to design
microparticles or NPs for drug delivery applications, it
may also be used to develop hydrogels with specific fea-
tures. As an example, PLA-PEG-PLA triblock copoly-
mers were analyzed for the delivery of NT-3 to the
injured spinal cord in rat models. Specifically, by means
of a light source and a photoinitiator, the PLA-PEG-
PLA macromer was cured (in situ polymerization).'*!
Furthermore, it was also demonstrated that PLA-PEG-
PLA may represent an interesting platform for the
delivery of GDNF and BDNF to the brain.'*

Systems consisting of PEG hydrogels combined with
soluble factors demonstrated how neural cell composi-
tion may be influenced by the hydrogel-based environ-
ment. In this context, a range of soluble factors useful
to generate neuronal-enriched populations was prop-
erly indicated for specific hydrogel-based environ-
ments.>'* The chemical modification of synthetic
hydrogels using biologically active molecules may
clearly represent a strategic route to enhance
biomaterial-cell interactions.

As a route to modify the properties of commonly
used nonadhesive PEG-based hydrogels, the monomer
2-methacryl-oxyethyl trimethylammonium chloride
(MAETAC) was employed obtaining a tethered
neurotransmitter acetylcholine-like functionality with a
complete 2-acetoxy-N,N,N-trimethylethanaminium seg-
ment.'* The results from this research evidenced that
MAETAC in the hydrogels could promote neuronal
cell attachment and differentiation as a function of
concentration.

To develop a scaffold for the treatment of SCI made
of highly porous hydrogels, poly(2-hydroxyethyl
methacrylate) (PHEMA) suitably modified with choles-
terol was used.'® In a rat model, these PHEMA-based
hydrogels showed interesting adhesive properties in
vivo and bridged a spinal cord lesion, also supporting
adhesion and proliferation of rat MSCs in vitro. The
3D biohybrid cell-hydrogel constructs were also pro-
posed for such application, however considering inject-
able hydrogels with tailored nanostructure.'*® Primary
astrocytes, MSCs and glial populations were analyzed,
and the results demonstrated cell survival within this

hydrogel. Hejcl et al.'*” also focused the attention on

SCI repair in rat models analyzing the effect of MSC
seeding and of a functionalization with Arg-Gly-Asp
(RGD) sequences on the performances of a hydrogel
based on 2-hydroxypropyl methacrylamide in the case
of a chronic lesion. As a result, an enhancement was
observed for the rats after the implantation of the cell-
loaded hydrogels, preventing tissue atrophy; in addi-
tion, the therapeutic strategy consisting in synergistic
approaches combining appropriate hydrogels and
MSCs was supported by the obtained results. However,
from an engineering point of view, the design of inject-
able hydrogels with adequate structural or functional
properties, which should be able to maintain their char-
acteristics after the injection according to the specific
application, always represents a great challenge.

Indeed, the injection of hydrogels through clinical
needles may alter their rheological behavior and viscoe-
lastic properties (storage or elastic modulus—G’ and
viscous or loss modulus—G"). For example, a decrease
in the storage modulus (Figure 1) and a potential altera-
tion of the gel-like behavior could be caused by the
injection of the hydrogels through clinical needles as a
consequence of a total or partial disruption of the poly-
meric network.

The viscoelastic properties of acellular and cell-laden
hydrogels may be enhanced through the inclusion of
appropriate microparticles or NPs as a reinforcement
without altering the gel-like behavior."*® Even though
after the injection through clinical needles G’ and G”
may decrease, the inclusion of NPs may provide values
of the viscoelastic properties which are still suitable for
the specific application.'* '>* The amount of NPs
clearly represents a crucial factor. The storage modulus
and the viscosity usually increase up to a threshold con-
centration of NPs. If the concentration of NPs is fur-
ther increased beyond such limit, G’ dramatically
decreases and the NPs act as “weak points” instead of a
reinforcement for the composite system. However, it is
possible to predict and optimize the rheological beha-
vior of the injectable composite devices integrating

1000 ¢ m  G' Before Injection U G" Before Injection
® G' After Injection O  G" After Injection
—~ 100 =
g ; T
= lllll--..... "
: r []
O 10} ce® 000 00 o000 00 OO
- £ oo 29 U
o Jnggo'—g%ggoooo &8
[eXe)
1+
0.1l (- [T ol ' ol L]
0.001 0.01 0.1 10
Frequency (Hz)

Figure |. Storage modulus (G’) and loss modulus (G”) as a
function of frequency for a collagen-based composite hydrogel:
typical effect of the injection through a clinical needle.
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Figure 2. Viscosity as a function of shear rate for a collagen-
based composite hydrogel.

mathematical models and experimental tests.'>' The
rheological features also play an important role in the
analysis and optimization of cell-laden composite gels.
Specifically, small amplitude oscillatory shear tests may
be carried out at different time points after cell seeding
to assess the dynamic moduli (G’ and G”) over time, to
understand the effect of cell behavior on the viscoelastic
properties and to eventually optimize the cell density.'*3
It is expected that at each time point, the values of the
loss factor (G”/G') are greater than those obtained
from the corresponding acellular gels, and they increase
over time.

Steady shear measurements may be performed to
evaluate the viscosity as a function of the shear rate
and, hence, the possibility to inject the material (i.e.
shear thinning behavior; Figure 2). Anyway, the strains
and rates induced by oscillatory rheometry are usually
different than those achieved during injection-based
applications and, hence, less likely to alter the structure
of the developed devices.!3>!* For this reason, it could
be difficult to simulate shear strains and rates occurring
in the clinical practice (i.e. the materials are usually
injected using syringes with suitable needles) by simply
carrying out small amplitude oscillatory shear tests and
steady shear measurements.

Accordingly, an adequate injection-based experi-
mental setup is needed to assess the injectability proper-
ties. In particular, according to the specific application,
a syringe equipped with a needle can be filled with the
developed hydrogel and then mounted on a testing
machine. The syringe piston is driven at a constant and
fixed speed, and the material is injected into and
through the needle, thus evaluating the characteristic
load values (Figure 3). An empty syringe must be also
tested to assess the friction between the piston and the
syringe walls. An appropriate analysis clearly requires a

Load (N)

I I ]
0 5 10 15 20

Displacement (mm)

Figure 3. Typical load—displacement curve obtained from an
injectability test performed on a collagen-based composite
hydrogel.

comparison between acellular and cell-laden hydrogels
at different time points after seeding to evaluate the
effect of the cells on the flow behavior over time.

Furthermore, taking into account the principles of
the capillary extrusion rheometry, the results from the
injectability tests could be also used to obtain some
rheological or functional features. In designing multi-
functional and advanced hydrogel-based materials, a
further crucial aspect is related to their biphasic nature.
As a consequence, confined compression stress—
relaxation tests may be also carried out on both cell-
laden and acellular hydrogels, the aim being to measure
functional parameters, such as the zero-strain perme-
ability, the zero-strain compressive modulus, the non-
linear stiffening coefficient and the nonlinear
permeability coefficient which provides a measure of
the sensitivity to the deformation.

As an example, in the case of uniaxial confined com-
pression, different equations are considered, spanning
from the constitutive law for the extra-stress tensor to
the relationship between the axial deformation and the
hydraulic permeability, to obtain a nonlinear partial
differential equation.'>'*® The deformation process is
controlled by the fluid flow through the porous solid
matrix, and permeability plays a key role in terms of
transport properties.'>” "> Using a nonlinear biphasic
model, the strain-dependent permeability can be evalu-
ated by fitting the experimental data from the confined
compression tests.!>7158

Recently, collagen-PEG semi-interpenetrating poly-
mer networks were also developed for brain injection in
neurodegenerative disorders. Their viscoelastic proper-
ties, flow behavior, functional injectability and in vitro
or in vivo biological performance were strictly analyzed,
providing interesting information. The obtained results
could clearly represent an important starting point for



the design of injectable hydrogel-based tools for novel
drug or cell-based therapeutic strategies against brain-
related neurodegenerative pathologies.'®

Conclusion

Concepts such as injectable hydrogels, cell and drug
delivery systems may be properly combined to design
an appropriate therapeutic strategy for CNS discases.
At different levels, an accurate analysis on drugs or
therapeutic agents and innovative biomaterial vehicles
should provide a first crucial step toward a complex
design.

The potential to design injectable hydrogel-based
devices for in situ drug or cell release with tailored and
enhanced rheological or mechanical and functional fea-
tures, as a minimally invasive and interesting solution in
the development of successful treatments, was stressed,
without making comparisons between synthetic and
natural materials or drug delivery and tissue engineering
approaches. In particular, as in the literature, several
CNS diseases and therapeutic strategies, together with a
range of materials according to the specific disease, were
already reported; after a brief overview of different
approaches, this work aimed at summarizing the engi-
neering process and basic concepts in the design of
injectable hydrogels, focusing on the rheological and
injectability features, as well as on the importance of
other functional parameters (i.e. zero-strain permeabil-
ity, zero-strain compressive modulus, nonlinear stiffen-
ing coefficient and nonlinear permeability coefficient),
which will also influence the release kinetics of specific
biofactors and the behavior of cells. Accordingly, taking
into account the rheological, injectability and transport
properties, it is possible to develop hydrogels with opti-
mized characteristics, whose integration with biological
expertise could be fully exploited to pursue novel and
advanced CNS therapeutic strategies.
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