
Modular Development of Mobile Robots with
Open Source Hardware and Software

Components

Martino Migliavacca, Andrea Bonarini, and Matteo Matteucci

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria,
Piazza Leonardo Da Vinci 32, 20133, Milano, Italy
{migliavacca,bonarini,matteucci}@polimi.it

Abstract. Prototyping and engineering robot hardware and low-level
control often require time and efforts thus subtracted to core research ac-
tivities, such as SLAM or planning algorithms development, which need
a working, reliable, platform to be evaluated in a real world scenario. In
this paper, we present Rapid Robot Prototyping (R2P), an open source,
hardware and software architecture for the rapid prototyping of robotic
applications, where off-the-shelf embedded modules (e.g., sensors, actu-
ators, and controllers) are combined together in a plug-and-play fashion,
enabling the implementation of a complex system in a simple and mod-
ular way. R2P makes people involved in robotics, from researchers and
designers to students and hobbyists, dramatically reduce the time and
efforts required to build a robot prototype.

1 Introduction

In recent years, several development frameworks [6, 4, 11, 8] have been pro-
posed to assist researchers in the design of robotic applications. While these
projects really boosted the development of high-level software, hardware de-
sign and low-level firmware development are still critical tasks. To develop a
new mobile robot, designers always face the problem of selecting hardware de-
vices, controlling them, and interfacing them with the high-level software. This
slows down the progress of robotic research, as prototyping and engineering of-
ten requires more time and resources than tasks strictly related to the target
application.

To simplify the development of new robotic applications, we developed Rapid
Robot Prototyping (R2P) [2, 1], an open source hardware and software frame-
work focused on speeding up the prototyping of robotic systems. R2P pro-
vides hardware modules that implement basic functionalities needed by common
robotic applications, and a lightweight, real-time, middleware to easily write low-
level control software. R2P targets span from mobile autonomous robots used
for research purposes to entertainment and service applications, such as games,
telepresence, and rescue. The limits of R2P, at the actual stage of development,
are only imposed by the modules already available; moreover, as R2P is an open



source, modular, framework, it can be extended by users with additional modules
to cover other application fields.

2 Modular Hardware and Software Development

When a new robotic application is investigated, the first steps involve select-
ing the hardware devices, e.g., sensor and actuators, and building the platform
needed to validate the overall idea. Looking at today’s possibilities, we can pick
devices either from the automation market or from the hobby market. Com-
ponents from automation market are often expensive and offer overkilling per-
formance with respect to the requirements of a robotic application prototype.
Moreover, automation devices often require power supplies not suitable for bat-
tery powered systems like mobile robots. On the other hand, devices from hobby
market are usually cheap, but they show poor performance, low reliability, and
no real-time capabilities making impossible any distributed control loop. Having
selected hardware devices, here it comes the problem of interfacing them with
each other, and with the high-level control software. Different manufacturers
generally use different data links and protocols, increasing wiring complexity
and requiring specialized device drivers. As a consequence, resulting platforms
are commonly based on custom setups, which are hardly reusable in different
projects. Although mobile robots have been built for decades by integrating het-
erogeneous devices, or implementing custom solutions, we firmly believe that a
modular approach based on off-the-shelf components would strongly help robot
designers in developing new applications. To the best of our knowledge, the only
available modular robotic platforms, such as the E-puck educational robot [10],
the Kephera robot [7], and a few others, are aimed at developing small mobile
robots for applications like swarm robotics and their usage is restricted to control
the platform they are designed for.

With R2P, we aim at fulfilling the lack of hardware components focused on
robot prototyping, pushing design strategies commonly exploited in software de-
velopment – such as modular, component-based, software engineering – down
to the hardware level. R2P relies on the principle that the requirements of a
generic robot application can be implemented by modules not only at software
level, as it is common in most frameworks, but also at hardware level. Basic
functionalities such as motor control, distance measurement, inertial naviga-
tion are implemented by specific, standardized hardware modules, with corre-
sponding firmware, that can be plugged on a common bus and can interact in
real-time. Firmware development tools, and a middleware to foster distributed,
reusable, software development, are provided, supporting users in writing code
on resource-constrained devices. Using R2P, robot designers can build generic
platforms by choosing the modules they need, configuring them, and easily de-
veloping the control software, implementing complex systems in a plug-and-play
fashion. Integration with high-level robotics frameworks, such as ROS [11], is
provided by a gateway module.



3 R2P: the Rapid Robot Prototyping Framework

In this section, we introduce R2P design choices and architecture. Then, a review
of some of the already available hardware modules are presented.

3.1 Power and Data Link

R2P uses a single connector to transport both power and data. Power consump-
tion is limited to 5V , 200mA, for each module, which suites the requirements
of most electronic devices, while modules needing higher power, such as mo-
tor drivers, must rely on auxiliary connections. Modules exchange data using
the CAN-Bus, which has been designed to work in harsh environments and is
available on many microcontrollers. Its maximum data rate of 1Mbps is gen-
erally enough for a distributed system of smart devices, where only high level
information needs to be sent over the network (i.e., no raw sensor data is ex-
changed), thus needing a relatively small bandwidth [3]. As part of R2P, we
developed RTCAN [9], a CAN-Bus protocol targeted at robotic applications
that supports both sporadic, event-triggered, and periodic, time-triggered com-
munication, with soft and hard real-time constraints. To reduce wires, a daisy
chain wiring schema is adopted: each module has two ports to connect to the
previous and the next component, as shown in Figure 2(a). This also supports
easy connection of new modules to an existing system.

3.2 Embedded firmware development

Writing code for resource-constrained devices, such as microcontrollers used to
interface with sensors and actuators, requires specific knowledge and compe-
tence. Most robot designers are used to write software on desktop-level com-
puter systems, and they have to spend time and efforts to start developing code
targeted to embedded devices. To reduce this effort, the use of an operating
system can significantly support software development even for small embedded
systems as it features threads, memory management, message passing primi-
tives, and other services programmers are commonly used to deal with. More-
over, an operating system with real-time capabilities is important to manage
critical, high-priority tasks, which are often involved in robotic systems, e.g., for
closed-loop control. For the mentioned reasons, R2P relies on ChibiOS/RT [12], a
real-time operating system designed for deeply embedded real time applications.
ChibiOS/RT has been preferred to other alternatives for its portability, ease of
use, rich features set, and extremely high efficiency; anyway, a review of available
embedded operating systems is out of the scope of this paper. ChibiOS/RT also
includes a Hardware Abstraction Layer (HAL), which abstracts the hardware
implementation of different low level peripherals, relieving the developer from
acquiring specific competence on each specific platform and making easier the
port of existing code to different targets.



ROS
Teleop

ROS
Gateway

/velocity_cmd

Odometry
visualizer

Proximity
visualizer

Battery
Gauge

/odometry

/proximity

/battery

Collision
avoidance

/velocity_cmd

Obstacle
detection

/proximity

/obstacle

Inverse
Kinematics

/velocity

Battery
monitor

/battery
Motor

controller 3
/speed

Motor
controller 1

/speed

Motor
controller 2

/speed

Forward
Kinematics

/encoder3

/encoder1

/encoder2

/odometry

Fig. 1. The distributed architecture of the embedded software controlling Triskar2.

3.3 Publish/Subscribe Middleware

To support the development of modular software components on embedded tar-
get, R2P features a lightweight communication middleware. R2P middleware
main goals are software reuse, real-time communication, efficient implementa-
tion, and ease of use. It follows the publish/subscribe paradigm [5]: data pro-
ducers publish messages on a topic, i.e., a communication channel, while data
consumers subscribe to the corresponding topic to receive messages. Identifying
data by its content, i.e., the topic it is published on, instead of by its producer,
also promotes loosely-coupled software design and, thus, code reuse. The middle-
ware provides concepts common to most robotics frameworks used on computer
systems, such as software nodes, topics, publishers, subscribers, and message
queues.

R2P middleware is written in a subset of C++, to take advantage of some
object-oriented programming features without compromising performance on
embedded targets. Its implementation is focused on code efficiency and mes-
saging performance. Software nodes can subscribe to both local and remote
publishers, with no difference from the user point of view. The middleware sup-
ports both periodic and sporadic publishers, which can specify real-time com-
munication constraints: update period for time-triggered messages, and delivery
deadline for event-triggered ones. Finally, a simple API, which reminds the ROS
syntax, enables developers to write embedded, distributed code as they are used
to do on computer systems, fostering code reuse through different projects.

3.4 Integration with ROS

While R2P supports rapid development of robotic systems using off-the-shelf
hardware and software components, applications involving computation-intensive
tasks such as computer vision, localization, and complex planning, must also rely
on a computer system and, eventually, a software framework. Among the many
available development frameworks for robotics software, ROS [11] is currently
the most widely adopted in academia and research laboratories, and, recently, it



(a) Daisy-chain wiring of hardware modules (b) R2P IMU (c) R2P DC motor
controller

Fig. 2. R2P hardware modules.

has been considered also by industrial developers. To natively integrate resource-
constrained devices within ROS, we developed µROSnode, a lightweight, open
source, ANSI C ROS client library. R2P provides a gateway module (see Sec-
tion 3.5), which acts as a proxy between the R2P middleware and ROS systems.
Topics published on the R2P network can be accessed from ROS nodes, and, at
the same way, R2P modules can subscribe data published by ROS software.

3.5 Off-the-Shelf Hardware Components

We have designed and built, as part of the R2P framework, a set of plug-and-
play hardware modules that implement basic functionalities required by common
robotics applications. Modules are based on STM32 Cortex-M3 microcontrollers
with 20Kb of RAM and 128Kb of Flash memory, running the ChibiOS/RT and
the R2P middleware. Each module has two RJ45 ports for daisy-chain con-
nection to the bus, a serial port to download new firmware and for debugging
purposes, and a JTAG header for advanced users who want to directly access
the microcontroller. An overview of the currently available modules follows.

PSU Module. This is the power supply unit, which powers all the modules
connected to the bus. Input voltage range is from 5.5V to 36V DC. A DC-
DC converter produces a 5V regulated output with maximum current supply of
4A and short circuit protection. Both battery voltage and current drain can be
published over the network to monitor power consumption and to estimate the
residual battery life.

DC Motor Module. This high-power motor controller board can drive DC
motors up to 36V , delivering a continuous 20A current. It features closed loop
control, with position feedback from a quadrature encoder and current mea-
surement from the on-board Hall-effect sensor. The DC motor module accepts
position, speed, and torque set points, and can publish position and speed mes-
sages, exploiting data from the encoder, and the measured current drawn.

IMU Module. A 10-DoF Inertial Measurement Unit featuring MEMS ac-
celerometer, gyroscope, magnetometer and pressure sensor. An additional serial
port to acquire GPS coordinates from an external GPS receiver is also provided



on this module. The on-board sensor fusion algorithm produces heading, atti-
tude, and position messages.

Proximity Module. A module to interface with proximity sensors such as
the Sharp IR rangers or MaxBotix ultrasonic sensors. Each module connects to
up to 4 sensors. Calibration and data filtering algorithms run on the microcon-
troller, which produces distance measurements.

Gateway Module. This is the gateway module mentioned in Section 3.4.
It features an Ethernet port and a more powerful, Ethernet-enabled, microcon-
troller to handle the TCP/IP stack. R2P messages can be forwarded from the
CAN-Bus to the IP network, and the other way around. The gateway module
runs µROSnode, which enables a direct integration of R2P modules with ROS
systems.

3.6 Open Source Development

R2P is fully open source, both hardware and software, to encourage its adoption
and to take advantage of community-driven improvements to became a mature
and widespread project. The design of the boards, the code they run and the
middleware are available on the R2P repository: http://github.com/openrobots-
dev. At the moment of writing, R2P has reached its maturity (see, e.g., the use
case in the next section), but its development is still actively progressing, thus,
the repository is frequently updated.

4 Use case: an Omnidirectional Robot

We used R2P to develop the omnidirectional wheeled robot Triskar2, shown in
Figure 3(a). The robot sports 3 R2P DC modules, a PSU module, a Proximity
module, and the Gateway module to interface with a computer running ROS.
The low-level control software embedded on the modules, which exploits the R2P
publish/subscriber middleware, is reported in Figure 3. Software components are
enclosed in R2P nodes, which implement basic functionalities, performing a spe-
cific task. Then, nodes are composed as a distributed architecture, implementing
a complex system from basic, reusable, components. This design strategy is not
innovative, being commonly used in software development; the main contribu-
tion of R2P middleware is to bring the same approach, and, thus, the same
advantages, to embedded firmware development, with the same programming
interfaces known to most robot developers.

Software nodes have been deployed on the modules as shown in Figure 3(b).
Some nodes have to run on specific boards (e.g., those that are directly con-
nected to the hardware like motor controller nodes), while others can run on
any connected module. For example, in our tests, the inverse kinematics model
to compute wheel speeds was run on the Motor 1 module, while the odometry
node was deployed on Motor 2. In this way, we can balance processor load and
reduce latency, easily moving nodes from an hardware module to another.



Fig. 3. The Triskar2 omnidirectional platform (a) and the R2P hardware modules
controlling the robot (b).

Thanks to the R2P gateway, Triskar2 can be controlled by any ROS appli-
cation publishing native ROS topics. We firstly teleoperated the robot by using
standard ROS teleop messages, then we developed a robotic game, involving the
Triskar2 robot and a quadricopter, both controlled by ROS software.

5 Conclusions

In this paper, we presented R2P, an open source hardware and software frame-
work for the rapid prototyping of robots. Bringing design strategies such as mod-
ular development, and components reuse, down to hardware level, R2P enables
robot designers to build and control a robotic platform using off-the-shelf mod-
ules. Exploiting the R2P framework, generic mobile robots can be built bottom-
up in a distributed plug-and-play fashion by simply selecting the hardware mod-
ules to satisfy the needed functional requirements and easily programming their
interaction. Integration with high-level software frameworks, e.g., ROS, allows
to develop complex application, while low-level control is implemented by means
of a modular distributed architecture, with real-time performance, without the
need for advanced domain-specific knowledge. We are exploiting R2P to design
new robots in our laboratory, as shown by the use case presented in Section 4,
and to upgrade our previous platforms, the first being a balancing wheeled robot,
a differential drive heavy-duty robot, and an autonomous wheelchair. The open
source license encourages robot designers to adopt existing R2P modules to
control their platforms, and to develop new hardware modules and software
components that implement new functionalities.

Acknowledgements

This work has been partially supported by the research grant “Robotics for the
Masses” from ST Microelectronics and Regione Lombardia, and by the Ital-
ian Ministry of University and Research (MIUR) through the PRIN 2009 grant
“ROAMFREE: Robust Odometry Applying Multi-sensor Fusion to Reduce Es-
timation Errors”.



Bibliography

[1] A. Bonarini, M. Matteucci, M. Migliavacca, and D. Rizzi. R2P: An open
source hardware and software modular approach to robot prototyping.
Robotics and Autonomous Systems.

[2] A. Bonarini, M. Matteucci, M. Migliavacca, and D. Rizzi. R2P: an open
source modular architecture for rapid prototyping of robotics applications.
In Proceedings of 1st IFAC Conference on Embedded Systems, Computa-
tional Intelligence and Telematics in Control (CESCIT’12), 2012.

[3] A. Bonarini, M. Matteucci, M. Migliavacca, R. Sannino, and D. Caltabi-
ano. Modular low-cost robotics: What communication infrastructure? In
In proceedings of 18th World Congress of the International Federation of
Automatic Control (IFAC), pages 917–922, 2011.

[4] H. Bruyninckx. Open robot control software: the OROCOS project. In
Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation, pages 2523–2528, 2001.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131, June
2003.

[6] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In In Proceedings of
the 11th International Conference on Advanced Robotics, pages 317–323,
2003.

[7] R. M. Harlan, D. B. Levine, and S. McClarigan. The khepera robot and
the krobot class: a platform for introducing robotics in the undergraduate
curriculum. In ACM SIGCSE Bulletin, volume 33, pages 105–109. ACM,
2001.

[8] A. Huang, E. Olson, and D. Moore. LCM: Lightweight communications and
marshalling. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4057–4062, 2010.

[9] M. Migliavacca, A. Bonarini, and M. Matteucci. RTCAN: a real-time CAN-
Bus protocol for robotic applications. In Informatics in Control, Automa-
tion and Robotics (ICINCO), 2013 International Conference on, 2013.

[10] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck,
a robot designed for education in engineering. In Proceedings of the 9th
conference on autonomous robot systems and competitions, volume 1, pages
59–65, 2009.

[11] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating system.
In ICRA Workshop on Open Source Software, 2009.

[12] G. D. Sirio. ChibiOS/RT real time operating system.
http://www.chibios.org.


