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Impact of Self Noise on Tracking Performance of
Non-Data-Aided Digital Timing Recovery

Federica Scardoni, Maurizio Magarini,Member, IEEE, and Arnaldo Spalvieri.

Abstract—Non-data-aided feedforward timing recovery is pre-
ferred to non-data aided feedback timing recovery in digital
receivers because it does not suffer of delay in the loop. However,
while feedback timing recovery with optimized pre-detection filter
is not affected by self noise, in this paper it is pointed out for
the first time that, even if an optimized pre-detection filter is
adopted, feedforward timing recovery is. The paper proposes
an approximation to the power spectral density of self noise
that leads to analytical performance evaluation, the accuracy
of the approximation being confirmed by simulation results.
Also, a comparative study of feedforward and feedback timing
recovery is presented. The result of the comparison is that,for
signal-to-noise ratio lower than 50 dB and realistic spectra of
phase noise affecting the timing wave to be tracked, despiteself
noise, feedforward timing recovery outperforms feedback timing
recovery.

Index Terms—Clock recovery, synchronization, timing jitter,
self noise, phase noise.

I. I NTRODUCTION

Non-data aided (NDA) digital timing recovery is a classical
topic in communication theory that is receiving renewed
interest in the framework of coherent optical communications,
see e.g. [1]–[7]. The most popular digital NDA feedforward
timing recovery scheme for Quadrature Amplitude Modulation
(QAM) and Phase Shift Keying (PSK) modulation formats
has been proposed by Oerder and Meyr in [8] where the
timing detector makes use of the samples of the received
signal at four times the symbol frequency. The four samples
per symbol interval can be obtained either by sampling the
time-continuous signal at four times the symbol frequency or
by interpolating the samples taken at two times the symbol
frequency as in [7], [9]–[12]. Timing detection with half-
baud spaced samples is performed also in the scheme due to
Gardner [13], which is based on the Phase-Locked Loop (PLL)
principle. Compared to the feedforward scheme, the feedback
scheme suffers from delay in the feedback loop, which can
be large in optical systems when digital signal processing is
implemented in FPGA, compromising the performance of the
PLL when it has large loop bandwidth [2], [7]. The need of
large bandwidth arises when timing recovery has to track local
oscillators affected by large phase noise, as the paper [4] has
put in light in the context of feedforward timing recovery.
More generally, the issue of delay in the loop is common to
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all the synchronization schemes based on the PLL principle,
the impact of delay on system’s performance being analyzed
in [14] for PLL of first and second order.

In this paper we analyze the jitter performance of feedback
and feedforward timing recovery in the presence of phase
noise affecting the incoming timing wave and Additive White
Gaussian Noise (AWGN). The main novelty of the paper is
the evaluation by analytical means of the impact of self noise
on the tracking performance, the analysis being validated by
simulation results. The results of this paper show that, as
conjectured in [4], self noise is responsible of the mismatch
between the simulation results and the analysis of timing
jitter when self noise is neglected. Specifically, it is shown
in the paper that the power spectral density of self noise can
be approximated to a slope of+20 dB/decade, leading to a
non-negligible contribution to the timing jitter when the post-
detection filter (which will be called simply post-filter in the
following) has large bandwidth, hence when the incoming
timing wave to be tracked is affected by large phase noise.
To achieve these results the paper improves over the existing
literature as follows. The analysis of self noise spectrum
generated by Gardner’s detector, which is performed in [15]
for Nyquist-type filters only, is extended here to a general form
of pre-filter, thus allowing to take into account also optimized
pre-filters as that of [16]. The cyclostationary spectrum ofself
noise generated by the square-law detector of the feedforward
scheme is computed here for the first time. Based on the above
results, the paper proposes to approximate self noise spectrum
to a slope of+20 dB/decade, also this approximation being
proposed here for the first time. Finally, the paper derives
optimal post-filters for the feedback and feedforward schemes
in the presence of phase noise and their performance.

The outline of the paper is as follows. In Sec. II the system
model is introduced. Section III reports the analysis of post-
detection noise affecting the feedback scheme, while in Sec.
IV the post-detection noise affecting the feedforward scheme
is analyzed. Section V reports performance analysis and post-
filter optimization for the feedback and feedforward schemes
in the presence of phase noise affecting the incoming timing
wave. Numerical results showing the close fit between analysis
and simulations are presented in Section VI, while conclusions
are drawn in Sec. VII.

II. SYSTEM MODEL

Consider a continuous-time QAM or PSK baseband signal
plus complex AWGN:

r(t, τ) =
∑

k

aku(t− kT − τ) + w(t), (1)
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whereT is the symbol repetition interval which is assumed to
be known,τ is a random and unknown parameter,{ak} is the
sequence of i.i.d. complex random constellation points with
zero mean and unit variance,u(t) is the impulse response of
the transmit filter, andw(t) is complex AWGN with power
spectral densityN0. We assume in what follows that the
frequency response of the transmit filterU(f) is the square
root of a Nyquist filter bandlimited toT−1. Although not
strictly necessary, for concreteness we also assume that ithas
unit energy, so the impulse response of the Nyquist filter is 1at
time t = 0, and we use the signal-to-noise ratio SNR= N−1

0

to characterize the AWGN channel. After the pre-detection
filter (called simply pre-filter in what follows), which is also
assumed to be bandlimited toT−1, one has the signal

y(t, τ) =
∑

k

akv(t− kT − τ) + n(t), (2)

where n(t) is the complex additive Gaussian noise at pre-
filter’s output, and the impulse responsev(t) is the inverse
Fourier transform of

V (f) = U(f)P (f), (3)

whereP (f) is the frequency response of the pre-filter.
In the following two Sections we consider a fedback

scheme based on the Gardner detector [13] and a feedfor-
ward scheme based on the Oerder and Meyr detector [8].
Both the detectors are known to be discrete-time approxi-
mations to the continuous-time square-law detector. Hence,
the different behavior of the two schemes is induced by the
feedback/feedforward implementation.

III. F EEDBACK TIMING RECOVERY

In the feedback scheme by Gardner [13], which is based on
half-baud spaced sampling, the timing error detector is

ℜ{y∗(kT − T/2, ǫk) (y(kT, ǫk)− y((k − 1)T, ǫk))}, (4)

whereℜ{·} denotes the real part of·, the superscript∗ denotes
the complex conjugate, and

ǫk = τ − τ̂k,

being τ̂k the estimate of the timing instant produced at time
k by a PLL based on the phase detector (4).

At phaselock, that is whenE{ǫk} = 0, the estimate of the
timing instant is affected by a zero mean phase error

φk =
2πǫk
T

whose autocorrelation in thez-domain can be written as

Rφ(z) = H(z)H∗(z−∗)Ψ(z), (5)

where we assume that the closed-loop transfer functionH(z)
of the PLL has unit gain atz = 1 andz−∗ is a shorthand for
the complex conjugate ofz−1. The polynomialΨ(z) is the
sum of the three terms “Noise× Noise,” “Noise× Signal,”
“Signal × Signal” that come out when the sequence (2) is
detected through (4):

Ψ(z) = Ψn×n(z) + Ψn×s(z) + Ψs×s(z). (6)

In the following, we will assume thatΨs×s(1) = 0, an
assumption that is met when the impulse responsep(t) of the
pre-filter has certain symmetries that can be checked from the
general form ofΨs×s(z) reported in Appendix A, for instance,
when p(t) is the inverse Fourier transform of a square-root
Nyquist frequency response or when it is the impulse response
of the optimized pre-filter of [16]. With this assumption,
numerical evaluation of the spectrum for each of the three
terms in (6) reveals that, while the slope of the power spectral
density of the terms “Noise× Noise” and “Noise× Signal”
at frequency zero is zero, the slope of the power spectral
density of the term “Signal× Signal” at frequency zero is
+20 dB/decade. This motivates our proposed approximation

Ψ(z) ≈ β + λ(1 − z)(1− z−1), (7)

where
β = βn×n + βn×s,

βn×n = Ψn×n(1) =
2
∫ T−1

0
|P (f)P (T−1 − f)|2df
T · SNR2 ·A2

, (8)

βn×s = Ψn×s(1) =
4
∫ T−1

0
|V (f)P (T−1 − f)|2df
T 2 · SNR·A2

, (9)

A =

∣

∣

∣

∣

∣

4

T

∫ T−1

0

e−jπfTV (f)V ∗(T−1 − f)df

∣

∣

∣

∣

∣

, (10)

λ = −1

2

∞
∑

m=−∞

m2ψs×s;m, (11)

and the polynomial

Ψs×s(z) =

∞
∑

m=−∞

ψs×s;mz
−m

is given in appendix A. Equation (11) is obtained as follows.
Our proposed approximation in frequency domain is

Ψs×s(e
j2πfT ) ≈ λ(1 − ej2πfT )(1 − ej2πfT )

≈ λ(2πfT )2, (12)

where the second approximation holds at low normalized
frequency. The Fourier series expansion of the periodic even
spectrum is given by

Ψs×s(e
j2πfT ) =

∞
∑

m=−∞

ψs×s;m cos(2πmfT ),

which, at low normalized frequency, is approximated to

Ψs×s(e
j2πfT ) ≈

∞
∑

m=−∞

ψs×s;m

(

1− (2πmfT )2

2

)

. (13)

Restricting our attention to pre-filters with symmetries such
thatΨs×s(1) = 0, that is

∞
∑

m=−∞

ψs×s;m = 0,

and equating (12) to (13) one gets (11).
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For instance, letU(f) be the square root of a raised-cosine
Nyquist filter with roll-offα and assume that it has unit energy.
WhenP (f) is the filter matched toU(f) and when it is the
pre-filter of [16] one has

A =
4 sin(πα/2)

π(4− α2)
, (14)

β =
απ2(4− α2)2(1 + SNR)

16 sin2(πα
2
) · SNR2

. (15)

Also, one hasλ = 0 with the pre-filter of [16] and with the
pre-filter of [17], whileλ can be computed numerically when
the matched filter is used as a pre-filter.

IV. FEEDFORWARDTIMING RECOVERY

In the feedforward scheme here considered, the timing
detector produces the complex signal at symbol rate

xk(τ) = ℜ{xk(τ)} + jℑ{xk(τ)}, (16)

where the real (ℜ) and imaginary (ℑ) parts are

ℜ{xk(τ)} = |y(kT, τ)|2 − |y(kT − T/2, τ)|2, (17)

ℑ{xk(τ)} = |y(kT − T/4, τ)|2 − |y(kT − 3T/4, τ)|2, (18)

and we assume that the signal is sampled with frequency equal
to four times the symbol frequency. The complex signal (16)-
(18) is passed through a feedforward post-filter, whose output
at timek is

sk(τ) = A · ej2πτ/T + νk(τ), (19)

where νk(τ) is the complex cyclostationary noise and the
amplitude of the desired complex exponential is

A=

∣

∣

∣

∣

∣

4

T

∫ T−1

0

V (f)V ∗(T−1 − f)df

∣

∣

∣

∣

∣

. (20)

The estimate of the timing instant at timek is

τ̂k =
T

2π
arg{sk(τ)} = τ +

T

2π
φk(τ), (21)

whereφk(τ) is the cyclostationary phase error affecting the
estimate.

When the power ofνk(τ) is much smaller than the power of
the wanted complex exponential, the phase error that affects
the estimate can be analyzed by writing the complex noise
νk(τ) of (19) in the form

νk(τ) = (νr,k(τ) + jνt,k(τ))e
j2πτ/T , (22)

whereνr,k(τ) and νt,k(τ) are the noise components that are
radial and tangential, respectively, to the desired complex
exponential at timek. Equation (22) leads to

φk(τ) = arctan

(

νt,k(τ)

A+ νr,k(τ)

)

≈ νt,k(τ)

A
. (23)

Given the approximation (23), the cyclostationaryz-spectrum
of the phase errorφk(τ) can be written as

Rφ(z, τ) = H(z)H∗(z−∗)Ψ(z, τ), (24)

where we assume that the transfer function of the post-filter
H(z) has unit gain atz = 1. Again, the polynomialΨ(z, τ)
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Fig. 1: Spectra of cyclostationary self noise with detector(17) (18), 256-
QAM, square-root raised cosine transmit filter with roll-off factor 0.25,
and two pre-filters: Matched Filter (MF) and Optimized Pre-filter of
[16] (OP). Solid line: approximation withλ from eqn. (28). Simulated
spectra, MF, from the upper to the lower dotted line: worstτ , average
spectrum computed by (27), bestτ . Simulated spectra, OP, from the
upper to the lower dotted line: worstτ , average spectrum computed
by (27). With the bestτ the self noise spectrum with OP is zero [12].

can be written as the sum of the three terms “Noise× Noise,”
“Noise × Signal,” “Signal× Signal” that come out when the
sequence (2) is raised to the square:

Ψ(z, τ) = Ψn×n(z, τ) + Ψn×s(z, τ) + Ψs×s(z, τ). (25)

The power spectral densities of the terms “Noise× Noise”
and “Noise× Signal” at frequency zero are independent ofτ ,
and, with a further assumption of symmetry on the impulse
responsev(t) [8], the power spectral density of the term
“Signal × Signal” at frequency zero turns out to be equal
to zero, but, as it happens in the feedback scheme, its slope
is +20 dB/decade, leading to the approximation

Ψ(z, τ) ≈ β + λ(τ)(1 − z)(1− z−1), (26)

whereβ = βn×n+βn×s is given in equations (8) and (9), the
term λ(τ) is obtained from the polynomialΨs×s(z, τ) given
in Appendix B by a formula similar to (11). Again, assume
that U(f) is a unit energy square root raised-cosine Nyquist
filter with roll-off α. WhenP (f) is the filter matched toU(f)
or the pre-filter of [16] one has

A =
α

2
,

β =
4(1 + SNR)

SNR2α
.

Phase noise always affects the local oscillators that generate
the clocks that drive the data converters at the transmit and
receive sides. An effect of phase noise is that, during time,
τ randomly visits all the time instants in the period of the
cyclostationary autocorrelation. This leads us to integrate the
cyclostationary functions that depend onτ over the periodT ,
leading to

Ψs×s(z) =
1

T

∫ T

0

Ψs×s(z, τ)dτ, (27)
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and

λ =
1

T

∫ T

0

λ(τ)dτ. (28)

The excellent fit in the low frequency region between the
actualΨs×s(e

j2πfT ) and its approximation can be appreciated
from the spectra reported in Fig. 1 for two pre-filters. The
worst and the best case ofΨs×s(e

j2πfT , τ) for τ ∈ (0, T ] are
also reported in the same Figure.

The detector (17) (18) is a variant of the detector proposed
by Oerder and Meyr [8]. Specifically, the detector considered
here is the cascade of detector [8] and of an integrate-and-
dump filter over the symbol repetition interval. The integrate-
and-dump allows to get a symbol-spaced sequence at detector’s
output, as it happens with Gardner’s detector (4). Moreover,
equations (17) and (18) quickly lead to half-baud spaced
detector of [10], [11], simply by replacing the right side of
(18) by its approximation

Kℜ{y∗(kT − T/2, τ)(y(kT, τ)− y((k − 1)T, τ))}, (29)

whereK is the ratio between the right side of (20) and the
right side of (10), [11].

V. PERFORMANCE WITHPHASE NOISE

If the local oscillators that generate the clocks for data
converters were free of phase noise, then the bandwidth of
the post-filter could be vanishingly small, achieving virtually
zero error between the actual timing instant and its estimate.
Of course, this does not make sense, meaning in other words
that sensible design of the post-detection filter must take
phase noise into account. To make this possible, the random
parameterτ appearing in (2) is hereafter replaced by the
random sequence

τk =
T

2π
θk, (30)

where{θk} is the phase noise sequence that affects the clocks
that drive the data converters.

The objective in the design of the transfer function of the
post-filter is to minimize the mean-square phase error

E{φ2k} = E{(θk − θ̂k)
2}, (31)

where

θ̂k =
2πτ̂k
T

.

Now the phase errorφk is the sum of the post-detection noise
passed through the post-filter and of the components of phase
noise that are not recovered after the post-filter, hence thez-
transform of its autocorrelation is

Rφ(z) = H(z)H∗(z−∗)Ψ(z)

+ (1 −H(z))(1−H∗(z−∗))Υ(z), (32)

whereΥ(z) is the z-spectrum of the phase noise sequence
{θk} of (30).

The phase noise sequence{θk} to be tracked by the timing
recovery mechanism is hereafter modelled as the discrete-time
random walk

θk+1 = θk + γnk, (33)

wherenk is white Gaussian noise with zero mean and unit
power, andγ is the step size of the random walk. Thez-
transform of the autocorrelation of the random walk is

Υ(z) =
γ2

(1− z−1)(1− z)
. (34)

For instance, a passively mode locked laser oscillator at
frequencyT−1 = 40 GHz is characterized byγ2 = 4 · 10−6,
leading to a power spectral density of phase noise at 100 kHz
from the peak equal to−64 dBcarrier/Hz [18], while an active
mode-locked laser oscillator, that has better quality thanthe
passive one, hasγ2 = 10−8, that is−90 dBcarrier/Hz at 100
kHz from the peak of the spectral line [19]. An even better
phase noise spectrum can be obtained by a system based on
a VCO with natural frequency around10GHz locked to a
reference crystal oscillator [20].

A. Optimization of the Loop Filter in the Feedback Scheme

In this subsection, optimization of the1-causal loop filter
is considered. This is the case where the delay in the loop
is the minimum one, that is, one symbol repetition interval.
In practical cases the loop delay can be much larger. Large
loop delay would limit the loop bandwidth, thus compromising
performance as studied in [5]. In other words we are analyzing
the best performance achievable with the feedback scheme.

Following the method by Bode and Shannon, first of all
we compute the whitening filterW (z) of the input sequence
as the causal and minimum phase transfer function resulting
from the spectral factorization

W (z)W ∗(z−∗) =
1

Ψ(z) + Υ(z)
. (35)

Using (7) and (34) for thez-spectra of noise and signal and
performing the spectral factorization one finds

1

Υ(z) + Ψ(z)
=

ξ2(1− z−1)(1− z)
∏2

i=1(1− ziz−1)(1− z∗i z)
, (36)

where
ξ2 =

z1z2
λ

z1, z
−∗
1 = − 1

2
√
2

(

− β3

λ2P
+
β2

λ2
+

4β(γ2 − β)

λP
+

+
16γ2

P
+

4β − 2γ2

λ

)1/2

− P +Q

4λ
,

z2, z
−∗
2 = −1

2

(

Q2

2λ2
+

1

2P

(

−Q
3

λ2
+

4QR

λ
− 8Q

)

+

−R
2
− 2

)1/2

+
P −Q

4λ
,

with P =
√

β2 − 4λγ2, Q = −4λ−β andR = 6λ+γ2+2β.
Selecting forz1 andz2 the two roots lying inside the unit circle
one gets

W (z) =
ξ(1− z−1)

(1 − z1z−1)(1− z2z−1)
, (37)

W ∗(z−∗) =
ξ(1 − z)

(1− z∗1z)(1− z∗2z)
. (38)
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Finally, for the optimal transfer function one has

H(z) =W (z)[Υ(z)W ∗(z−∗)]+, (39)

where the notation[P (z)]+ indicates the1-causal part ofP (z),
that is

[P (z)]+ =

∞
∑

k=1

pkz
−k.

Substituting (34) and (38) in the bracketed term appearing in
the right side of (39) one finds

[Υ(z)W ∗(z−∗)]+ =

[

ξγ2

(1− z−1)(1− z∗1z)(1− z∗2z)

]+

=
ξγ2ζ2z−1

(1− z−1)
, (40)

where

ζ2 =
1

(1 − z1)(1− z2)
=

√

1

γ2ξ2
. (41)

By replacing (37), (40), and (41), in (39) one gets

H(z) =
ξγz−1

(1 − z1z−1)(1− z2z−1)
. (42)

The above transfer function can be implement by a PLL whose
open loop transfer function, after straightforward algebra, is

G(z) =
H(z)

1−H(z)
=

ξγz−1

z1z2z
−1
p (1− z−1)(1− zpz−1)

, (43)

where

zp =
2z1z2

z1 + z2 + γξ +
√

(z1 + z2 + γξ)2 − 4z1z2
. (44)

B. Optimization of the Post-Filter in the Feedforward Scheme

By standard arguments one finds that the transfer function
of the post-filter that minimizes the mean-square error in the
feedforward scheme is

H(z) =
Υ(z)

Υ(z) + Ψ(z)
, (45)

and that thez-spectrum of the estimation error is

Rφ(z) =
Υ(z)Ψ(z)

Υ(z) + Ψ(z)
. (46)

Substituting (26) and (27) for the spectrum of detector’s
noise and (34) for the spectrum of phase noise affecting the
incoming timing wave into (45) and (46) one finds

H(z) =
γ2

γ2 − (z − 2 + z−1)(β − λ(z − 2 + z−1))
, (47)

Rφ(z) =
γ2(β − λ(z − 2 + z−1))

γ2 − (z − 2 + z−1)(β − λ(z − 2 + z−1))
. (48)

Unfortunately, implementing the post-filter with transfer
function (47) is difficult, because its impulse response is atwo-
sided decaying function with two-sided infinite duration. In the
Section devoted to the numerical results, we will consider as
a post-filter the classical moving average filter of [8] and the
cascade of two moving average filters proposed in [4].

SNR [dB]
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σ
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OP  comp
MF  sim
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Fig. 2: Phase error variance versus SNR for the feedback scheme with the
optimal loop filter (43). Solid line: computed variance withmatched
receive filter. Dotted line: computed variance with the optimized pre-
filter of [16]. Crosses: simulation results with matched filter. Squares
simulation results with optimized pre-filter.

VI. N UMERICAL RESULTS

The system considered in this Section is based on 256-
QAM with square-root raised-cosine transmit filter with roll-
off factor equal to 0.25. The phase noise parameterγ2 is set
to 4 · 10−6, a value that, from the literature we are aware of,
seems to be a worst case for real-world systems. Two types
of pre-filters are considered: the square-root raised-cosine pre-
filter matched to the transmit filter and the optimized pre-filter
of [16]. The mean-square phase error

σ2
φ = T

∫ T−1

0

Rφ(e
j2πfT )df (49)

is computed numerically using and adopted as a performance
measure. The use of the mean-square phase error as a perfor-
mance measure is motivated as follows. The SNR penalty due
to the inter-symbol interference caused by timing jitter is

10 · log10(1 + SNR· eMSE) dB,

where the excess MSE (eMSE) can be computed from the
mean-square phase error as (see [4])

eMSE=
σ2
φ

4π2

∞
∑

k=−∞

(ġ(kT ))2 + HOT, (50)

whereġ(t) is the first time derivative of the Nyquist impulse
responseg(t), and HOT stands for Higher Order Terms. With
raised-cosine Nyquist filter with roll-offα one has

∞
∑

k=−∞

(ġ(kT ))2 =
6α2(π2 − 8)− 3π2α+ 2π2

6
. (51)

For instance, withα = 0.25, SNR= 25 dB, andσ2
φ = −38 dB,

neglecting the higher order terms one has an SNR penalty of
0.04 dB.

The results obtained with the feedback scheme and optimal
post-filter, using in (49) eqns. (32) and (42), are reported
in Fig. 2. The floor that appears when one renounces to
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SNR [dB]
5 10 15 20 25 30 35 40 45 50

σ
2 φ
  [

dB
]

-46

-44

-42

-40

-38

-36

-34

-32

-30

-28

-26 MF  comp
OP  comp
MF  sim
OP  sim

MA

2MA

Fig. 3: Phase error variance versus SNR for the feedforward scheme. Moving
Average filter (MA) and cascade of two Moving Averages filters
(2MA) are used as post-filters. Solid line: computed variance with
matched receive filter. Dotted line: computed variance withthe opti-
mized pre-filter of [16]. Crosses: simulation results with matched filter.
Squares simulation results with optimized pre-filter.

the optimized pre-filter is due to self noise. The fit between
simulations and analysis is excellent. With optimized pre-filter,
there is only a moderate mismatch at SNR= 50 dB. The
mismatch is due to the wandering of the phase errorφk around
zero. Actually, whenφk is not zero, the optimal pre-filter does
no more guarantee ideal suppression of self noise.

The results obtained with the feedforward scheme are re-
ported in Fig. 3, where, for each one of the two pre-filters,
the cascade of two moving average filters proposed in [4] and
the classical moving average filter proposed in [8] are used as
post-filters. The duration of the impulse response of the post-
filter is optimized to minimize the mean-square phase error.
Fixed the post-filter, as expected from [12] the optimized pre-
filter outperforms the matched filter. The results also show
that the cascade of two moving average filters outperforms
the classical moving average filter, especially at high SNR.
Actually, at high SNR the bandwidth of the post-filter becomes
large, and the high-frequency portion of the spectrum of
self noise is not well rejected by the tails of the frequency
response of the moving average filter, while the cascade of
two moving average filters is much more effective in rejecting
the undesired high frequency portion of the spectrum of self
noise. Noticeably, the performance with the cascade of two
moving average filters is virtually insensitive to the pre-filter
in the low-to-intermediate SNR region, say up to SNR equal to
about30 dB, that is a reasonable SNR value for the threshold
of a coded 256-QAM. At SNR= 30 dB the mean-square
phase error with post-filter based on 2 moving average filters
is about−38 dB, leading to, as shown before, an SNR penalty
of only 0.04 dB. With smallerγ2, the divergence between
the performance of matched pre-filter and optimized pre-
filter occurs at SNRs even higher than30 dB, leading to the
conclusion that, with modulation formats as dense as 256-
QAM or less, there is no need of using an optimized pre-
filter. From Fig. 3 it can also be seen that simulation results

confirm the analysis based on (27) and on the approximation
(26). The small disagreement between analysis and simulation
that is observed at high SNR for the case of optimized pre-
filter and moving average post-filter can be explained by
observing that the approximation of the spectrum of self noise
used in the analysis over-estimates the actual spectrum in the
high-frequency region, as it can be seen from Fig. 1. When
filtered through the high tails of the moving average filter, this
mismatch induces the disagreement of about1 dB between the
square and the dotted line that can be seen at SNR= 50 dB in
Fig. 3. We have checked that the performance of the cascade of
two moving average filters is within 0.07 to 0.2 decibels from
the performance of the optimal post-filter (47). Also, we have
simulated the performance of the detector of [11], which turns
out to be virtually indistinguishable from the performanceof
the detector (17), (18).

VII. C ONCLUSION

The power spectral density of self noise in non-data-aided
feedback and feedforward timing recovery has been studied
in the paper. The presented results show that, while in the
feedback scheme an optimized pre-filter can suppress self
noise, in feedforward timing recovery self noise cannot be
completely suppressed. Since feedforward timing recoveryis
preferred to feedback timing recovery in digital receivers, these
results push to deepen the investigation.

What we have found about the feedforward scheme is that,
even if an optimized pre-filter is adopted, the power spectral
density of self noise can be suppressed only at frequency
zero, then, at higher frequency, it can be approximated to a
slope of+20 dB/decade. Therefore, when the bandwidth of
the post-filter is large, large bandwidth being a need when the
timing wave to be tracked is affected by large phase noise,
the impact of self noise on the performance of feedforward
timing recovery cannot be neglected.

The analytical results presented in the paper, confirmed
by computer simulations, show that, with a bad phase noise
spectrum (−64 dBcarrier/Hz@100 kHz), the impact of self
noise can be non-negligible when the square-root Nyquist pre-
filter with a simple moving average post-filter as in [8] is
used. Conversely, with the post-filter based on the cascade
of two moving average filters proposed in [4], even if the
conventional square-root Nyquist filter is used as a pre-filter,
the impact of self noise is negligible for constellations asdense
as 256 QAM or less. Moreover, our results also show that
feedforward timing recovery with square-root Nyquist pre-
filter outperforms feedback timing recovery with optimized
pre-filter for SNR lower than40 dB, while, if optimized
pre-filter is used also in the feedforward scheme, then it
outperforms the feedback scheme up to SNR= 50 dB, that
is, in all the cases of practical interest that can be foreseen
today. By computing the excess mean-square error induced
by the feedforward scheme with better phase noise spectra,
such as those of [19] and [20], one finds that clock recovery
does not impact system performance. This also holds for the
feedback scheme provided that the loop delay is small enough
to allow for the desired loop bandwidth, see [5].
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APPENDIX A

Let

Ψs×s(z) =

∞
∑

k=−∞

ψs×s;kz
−k.

The coefficients of the above polynomial can be written as

ψs×s;m = ψ1;m − ψ2;m − ψ3;m,

where

ψ1,m = δm

(

2B v2
(

T

2

)

+ 2C

∞
∑

l=−∞

v2
(

lT−T
2

)

)

,

ψ2,m = (δm−1 + δm+1)·
(

B v2
(

T

2

)

+ C

∞
∑

l=−∞

v

(

lT−T
2

)

v

(

lT+
T

2

)

)

,

ψ3,m =

∞
∑

l=−∞

δm−l · C ·
(

v

(

mT+
T

2

)

− v

(

mT−T
2

))2

,

where

δm =

{

1, m = 0,
0, m 6= 0,

B =
A4 − 3

2A2
, C =

1

2A2
,

with

A4 = 2(E{(ℜ{ak})4}+ E{(ℑ{ak})4}).

Using the above coefficients in (11) one has

λ =B v2
(

T

2

)

+ C
∞
∑

l=−∞

v

(

lT − T

2

)

v

(

lT +
T

2

)

+ C

∞
∑

l=1

l2
(

v

(

lT +
T

2

)

− v

(

lT − T

2

))2

.

APPENDIX B

Although being quite straightforward, exact computation of
Ψs×s(τ, z) is lengthy and tedious, therefore we report only
the final results (for details see [21].) Let

Ψs×s(z, τ) =

∞
∑

k=−∞

ψs×s;k(τ)z
−k.

The coefficients of the above polynomial are as follows.

ψs×s;m(τ) =
1

2A2

(

R1(τ,mT ) sin
2

(

2πτ

T

)

+

+R1(τ−T/4,mT ) cos2
(

2πτ

T

)

+

−1

2
(R2(τ,mT ) +R2(τ,−mT )) sin

(

4πτ

T

))

,

where

R1(τ,mT ) = (A4 − 3)R1,a(τ,mT )+

+ 2R1,b(τ,mT ) + 2R1,c(τ,mT ),

R2(τ,mT ) = (A4 − 3)R2,a(τ,mT )+

+ 2R2,b(τ,mT ) + 2R2,c(τ,mT ).

The aboveR1,{a,b,c}(τ,mT ) andR2,{a,b,c}(τ,mT ) are

R1,a(τ,mT ) =
∑

i

q2m(iT+τ) +
∑

i

q2m(iT+τ−T/2)

−
∑

i

q2m−1/2(iT+τ)−
∑

i

q2−m−1/2(iT+τ),

R1,b(τ,mT ) =
∑

i

q0(iT+τ)
∑

l

q0(lT+mT+τ)

+
∑

i

q0(iT+τ−T/2)
∑

l

q0(lT+mT+τ−T/2)

−
∑

i

q0(iT+τ)
∑

l

q0(lT+mT+τ−T/2)

−
∑

i

q0(iT+τ)
∑

l

q0(lT−mT+τ−T/2),

R1,c(τ,mT ) =

(

∑

i

qm(iT+τ)

)2

+

(

∑

i

qm(iT+τ−T/2)
)2

−
(

∑

i

qm−1/2(iT+τ)

)2

−
(

∑

i

q−m−1/2(iT+τ)

)2

,

R2,a(τ,mT ) =
∑

i

q2m−1/4(iT+τ) +
∑

i

q2m−1/4(iT+τ−T/2)

−
∑

i

q2m−3/4(iT+τ)−
∑

i

q2−m−1/4(iT+τ−T/4),

R2,b(τ,mT ) =
∑

i

q0(iT+τ)
∑

l

q0(lT+mT+τ−T/4)+

+
∑

i

q0(iT+τ−T/2)
∑

l

q0(lT+mT+τ−3T/4)+

−
∑

i

q0(iT+τ)
∑

l
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−
∑

i
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∑

l
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(

∑

i

qm−1/4(iT+τ)

)2

+

(

∑
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∑
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(

∑
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,

where

qp(a) = v(a)v(a + pT ).
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