
A Configurable Board-level Adaptive Incremental
Diagnosis Technique based on Decision Trees

Cristiana Bolchini, Luca Cassano
Dipartimento di Elettronica, Informazione e Bioingegneria - Politecnico di Milano, Italy

Email: {cristiana.bolchini, luca.cassano}@polimi.it

Abstract—Functional diagnosis for complex electronic boards

is a time-consuming task that requires big expertise to the

diagnosis engineers. In this paper we propose a new engine for

board-level adaptive incremental functional diagnosis based on

decision trees. The engine incrementally selects the tests that have

to be executed and based on the test outcomes it automatically

stops the diagnosis as soon as one or more faulty candidates can

be identified, thus allowing to reduce the number of executed tests.

Moreover, we propose a configurable early stop condition for the

engine that allows to further reduce the number of executed

tests leveraging the diagnosis accuracy. The effectiveness of the

proposed approach has been assessed using a set of synthetic but

realistic boards and three industrial boards.

Keywords—Adaptive Diagnosis; Decision Trees; Functional

Diagnosis; Incremental Diagnosis; Machine Learning.

I. INTRODUCTION AND RELATED WORK

The complexity of modern electronic systems might make
structural test/diagnosis approaches not suitable, therefore
functional ones have been designed to overcome such limi-
tation [1]. Functional diagnosis aims at identifying the cause
of a failure of an electronic system, i.e., a mismatch between
the expected behaviour and the actual one, by applying a set of
input stimuli and by observing the system responses, without
knowing the internal structure of the system under analysis.

Several motivations may lead companies to apply func-
tional diagnosis techniques: 1) the identification of the faulty
component for possible repair in case of an expensive board,
hosting several subsystems; 2) the identification of the un-
faulty components for possible reuse in case of an unfixable
board hosting expensive subsystems; and 3) the collection
of information on components’ failure rates, to be able to
monitor the quality of suppliers’ products. Functional diagnosis
is a very complex task; indeed, the effectiveness of diagnosis
activities is often more affected by the expertise and the skills
of the test/diagnosis engineers than by the CAD tools mainly
because the information provided by the currently available
software tools often lack of preciseness. As a result, a number
of machine learning-based “intelligent” techniques have been
proposed in the last years to assist the operator.

The main problem addressed by most of the available
techniques, such as the ones presented in [2], [3], [4], [5],
is the extraction of an effective system model starting from
a limited amount of data belonging to previously performed
testing/diagnosis activities. The extracted model is then used in
a “traditional” way, i.e., by applying all the available tests and
collecting all outcomes (referred to as a complete syndrome).
Such solutions are thus meant to be used at design time, while
not aimed at driving the actual runtime diagnosis process.

Given a model of the board under analysis, a new strategy
aiming at reducing the number of tests to be executed to
achieve the diagnosis has been introduced in [6], dubbed adap-

tive, incremental functional diagnosis. The approach, based
on Bayesian Belief Networks, incrementally executes (groups
of) tests and, based on their outcomes, constituting a partial

syndrome, adapts the execution order of the remaining tests and
interrupts the process as soon as the faulty component can be
identified. Subsequently, Data Mining has been adopted as an
alternative engine to support the methodology ([7]), offering
interesting improvements. A comparative analysis of different
machine learning-based engines has preliminarily shown that
decision trees constitute a good candidate ([8]).

In this paper, we propose a refined and tuned exploitation
of decision trees, for adaptive incremental functional diagnosis,
introducing also a customizable feature to leverage accuracy
in favour of a further reduction in the number of executed
tests (thus lowering time and cost of the diagnosis process).
in particular, the proposed technique (referred to as an early

stop condition) is configurable, allowing the user to specify the
maximum acceptable error (in terms of fault-free components
erroneously identified as faulty), thus bounding the accuracy
reduction.

The remainder of this paper is organized as follows: Sec-
tion II discusses the problem we face and presents the decision
trees; Section III shows the proposed approach; Section IV
presents the early stop mechanism; Section V presents the
metrics defined for the evaluation of the method and discusses
the experimental results; Section VI concludes the paper.

II. PROBLEM STATEMENT AND BACKGROUND

A. Problem Statement

Let us consider an electronic board that has exhibited an
erroneous behaviour, and a stakeholder interested in identifying
the faulty component(s). An adaptive incremental functional
diagnosis approach performs a test at a time and determines
(incrementality) whether enough information is available to
determine the diagnosis, or more test outcomes are necessary.
At each iteration, the test to be executed is selected based
on the previous collected information (adaptability); as a
consequence, the sequence of tests is dynamically determined.
More in detail, the steps iteratively performed are: 1) select
a test to be executed on the faulty board; 2) execute and
collect the outcome; 3) based on the current partial syndrome
decide either to stop the diagnosis process pointing to the faulty
component or to execute a new test, restarting from step 1.
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We refer to one test although it generally consists of a short
test suite verifying a functionality of the component under
consideration, corresponding to a set of input patterns and/or
probing activities. The fundamental characteristic of the test

as referred to is that it is the smallest unit of activity the test
engineer has defined.

Adaptive incremental diagnosis approaches aim at “identi-
fying the faulty component(s) with the highest accuracy while
executing the smallest number of tests”. We refer to accuracy
as the ability of the approach to identify the faulty candidate
component(s) introducing neither false positives, i.e., fault-
free components erroneously considered as faulty, nor false
negatives, i.e., faulty components erroneously considered as
fault-free. We refer the reader to Section V-A for a formal
definition of the accuracy and number of test metrics.

Finally, it is worth noting that in the context of adaptive
incremental diagnosis two assumptions are fundamental: 1) At
least a faulty component exists, since diagnosis takes place
because a failure has been observed; and 2) only one faulty
component exists, otherwise the identification of the source of
a problem could not imply the process can be interrupted.

B. Decision Trees

Decision Trees (DTs) are decision-support tree-like struc-
tures used to classify instances of a context of objects based
on the values of a set of features [9]. Generally speaking,
the internal nodes of a DT represent observations of the
features; the branches represent decisions taken according to
the observations and the leaves represent class labels, i.e.,
decisions taken after observing all/some features. Each path
from the root to a leaf represents a classification rule. More in
details, each internal node is associated with a feature and with
a decision rule, i.e., the rule that determines which branch has
to be taken based on the observation of the feature. Two kinds
of features (and associated decision rules) exist: ordered, i.e.,
the actual value of the feature is compared with a threshold,
and categorical, i.e., the actual value of the feature has to fall
into a given subset. Thus in each internal node a <feature,
decision rule> pair is stored, referred to as a split.

DTs are built recursively, starting from the root node.
According to the available training data, i.e., vectors of sample
values of all the features and the corresponding class, for each
node a split is found. Then, the remaining training samples are
divided by using the split among the children of the node and
again the children nodes are recursively split. At each node,
this procedure may stop in one of the following cases: 1) the
depth of the constructed tree branch has reached a specified
maximum value; 2) the number of training samples in the node
is lower than a threshold and thus it is not significant to further
split the node; 3) all the samples in the node belong to the
same class; and 4) the best identified split does not provide
any improvement compared to a random choice. Once a DT
has been built, instances of the problem can be classified at run

time by starting from the root and traversing the tree based on
the actual values of the features obtained through observations.

In the present context, the DT is used to classify the
faulty component(s) associated with the outcomes of tests
(observations), either PASS or FAIL; the leaves of the tree
are the faulty candidate(s). The proposed approach aims at
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Fig. 1. The proposed incremental diagnosis flow using Decision Trees

building a DT starting from the information gathered from
previous diagnosis sessions, or from a system model provided
by the test/diagnosis engineers and then – at runtime – by
traversing it and executing the corresponding tests to perform
the diagnosis. The next section introduces the preliminary,
design time, activity for the creation of the DT, as well as its
runtime exploitation for the adaptive incremental diagnosis.

III. THE PROPOSED DIAGNOSIS APPROACH

The proposed approach consists of two phases, a design

time one, and a run time one, as shown in Figure 1. At design
time, the decision tree, which represents the key element of the
proposed adaptive incremental diagnosis, is built. This phase,
although complex in relation with the amount of available data,
is performed off-line at the beginning and can be periodically
recalled, to tune or adjust the DT with respect to new recent
diagnoses. The DT is then fed to the incremental engine, that at
run time, when a failing board needs to be analysed, iteratively
and adaptively requests the execution of tests and collects the
outcomes from an Automatic Test Equipment (ATE) until the
diagnosis can be performed.

The decision tree represents the information putting into
relation failing/passing tests with the faulty components. To
build such a tree, it is necessary to have a log containing a
number of <complete syndrome, faulty candidate(s)> pairs.
Such a log may be 1) generated from a model of the board
representing the relationship between components and tests,
or 2) collected from previous diagnosis activities using a
traditional approach based on complete syndromes.

When using previous diagnosis logs to train the decision
tree, the used log must contain the required amount of infor-
mation, for the learning process to be effective. Much research
has been devoted to the extraction of an effective model of the
system from a limited amount of historic data [10], [11]. In
this work we do not address the problem of incomplete or in-
sufficient information, focusing instead on the other alternative
for building the decision tree, starting from a model provided
by the test/diagnosis engineer, as the one used by commercial
tools [12], [13] typically adopted in industrial environments.

1) System Model: We adopt the Components-Tests Matrix

(CTM) system model proposed in [6], such that the overall
proposal cab be effectively integrated in a consolidated in-
dustrial diagnosis environment. The CTM model represents a
complex electronic board in terms of its components (the



Tests
T1 T2 T3 T4 T5

Components
C1 0.9 � 0.9 � �
C2 0.5 0.9 � 0.1 0.1
C3 � 0.1 0.1 0.9 0.9

Fig. 2. Sample CTM used as a running example

rows of the matrix) and the tests that have been designed
to exercise them (the columns of the matrix). Components
consist of both ICs and passive components, and are of interest
for the test engineer and for which at least one test exists.
Each ctm

i,j

entry represents the probability that test T
j

fails
when component C

i

is faulty. It is worth noting that, since
it is very difficult to determine a quantitative estimation of
this probability, a discrete, qualitative scale is used. More
precisely, test engineers are required to specify how likely
is that test T

j

fails when component C

i

is faulty, using
values in the set {High, Medium, Low, None}. Then, in order
for automatic tools to handle the CTM model of the board, the
qualitative values {High, Medium, Low, None} are translated
into quantitative ones, using the scale {0.9, 0.5, 0.1, 0}. The
limited impact of the chosen set of quantitative values on
the behaviour of the diagnosis engines has been demonstrated
([8]). The CTM shown in Fig. 2 is adopted as running example
throughout the paper.

2) Diagnosis Log Generation: The features of the problems
are the available tests, the values of the features are the
outcomes of the tests, i.e., either PASS or FAIL, and the class
labels are the faulty candidate components. Thus, tests are
associated with the internal nodes of the DT, test outcomes
with branches and faulty candidate components with leaves.
We refer to the set of faulty candidate components associated
with leaf L

j

as FCCS

j

.

Provided a CTM model of the board under analysis is
available, extracting a log from the CTM allows to keep track
of all the possible syndromes. It is worth noting that, given
a CTM model, not all syndromes are equally likely to occur.
For instance, according to our running example, when C3 is
faulty, syndrome PPPFF is more likely to occur than PFFPP
(the two occurrence probabilities are 21.89% and 0.000033%,
respectively). We build the training log starting from the CTM
mode. We calculate the probability of occurrence p

s

of each
syndrome s as:

p

s

=
ncX

i=1

0

@
AFP

i

·
ntY

j=1

p

i,j

1

A (1)

where AFP

i

is the a-priori failure probability of component
C

i

(note that for the sake of simplicity, but without loss of
generality, we are assuming that components have all the same
a-priori failure probability) and p

i,j

is defined as:

p

i,j

=

⇢
1� ctm

i,j

if s[T
j

] = PASS
ctm

i,j

if s[T
j

] = FAIL
(2)

In other words, p

i,j

represents the probability of test T

j

having outcome s[T
j

] when the faulty component is C
i

. When
building the log, we include each syndrome in the log a
number of times proportional to the occurrence probability of
the syndrome itself. By including all the possible syndromes
in the log we ensure that our approach is able to manage both
frequent and very rare syndromes without compromising the

Test Outcomes Diagnosis
T1 T2 T3 T4 T5

P P F P P {C1, C3}
F P P P P {C1, C2}
F P F P P {C1}
P P P P F {C2, C3}
P F P F F {C2, C3}

...
F P P P F {C2}
F F P P P {C2}
P P F F F {C3}
P F F F F {C3}

Fig. 3. An excerpt of the log extracted from the example CTM
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Fig. 4. The decision tree associated with the CTM shown in Figure 2.

diagnosis accuracy; on the other hand, as we will discuss in
the next section, when dealing with frequent syndromes, the
approach will be much more effective than when dealing with
rare syndromes in terms of number of executed tests. Figure 3
shows an excerpt of the log extracted from the example CTM,
which coresponds to the log collected from historic test data.

It is worth noting that some complete syndromes may point
to more than one faulty candidate component. In this condition,
no diagnosis engine can exactly identify the faulty component.
Thus, the best result without introducing possible errors is to
identify as faulty candidates all the components associated with
the syndrome. This may happen in the scenario where the
previous diagnosis logs are used, as well as when using the
CTM model, since it is an issue related to the lack of isolation
capability of the available tests.

3) Decision Tree Extraction: By starting from the log,
the DT for the board under consideration can be extracted
and trained and Figure 4 reports the DT associated with the
running example CTM. The DT itself intrinsically encodes the
test ordering policy and the stop condition, determined by the
tree traversal from root to leaves, and the natural conclusion
of the diagnosis process occurs when a leaf is reached.

A. Diagnosis Process

When performing the incremental process, the following
steps are iteratively carried out:

test selection: identification of the most useful test to be
executed given the current partial available information
(outcomes of the already executed tests),

stop condition evaluation: analysis of the current partial in-
formation to determine whether to stop the procedure
because one or more faulty candidate components can
be identified, or to continue with other tests, and



faulty/not faulty components identification: based on the lat-
est collected observation, analysis of the not yet classi-
fied components, that can now be identified as the root
cause(s) of the system failure, or undoubtedly fault free.

Once the DT associated with a board has been built, when
a failing device is found, the diagnosis process is executed, by
exploiting the DT and traversing it. More in details, the first
test to be executed is always the one associated with the root;
based on the test outcome, a branch will be taken, reaching
one of the two children. The process continues until a leaf is
reached, and the associated components are identified as faulty
candidates.

By referring to the DT in Figure 4, let us consider the case
where the complete syndrome would be PPFFP, pointing to
component C3. The incremental process behaves as follows.
T1 is the root of the DT and is initially executed and passes,
leading to T3 as the next test to be executed. Being T3=FAIL,
the next test to be executed is T4, with outcome FAIL and a
leaf is reached, identifying C3 as the faulty component.

As previously discussed, frequent syndromes appear in the
training set many more times than rare ones, therefore the
proposed approach behaves much better when dealing with the
former ones, as the decision tree considers them more reliable.
As an example, we consider the two previously mentioned
syndromes: PPPFF and PFFPP. When dealing with PPPFF,
which is a frequent syndrome, the proposed approach only
requires the execution of T1 and T3 to identify C2 and C3

as the faulty candidate components and C1 as a not faulty
component. On the other hand, when dealing with PFFPP,
which is a very rare syndrome, the approach requires to execute
the whole suite of tests to identify C3 as the faulty component
and C1 and C2 as fault free. Actually the behaviour mimics
that of an expert, focusing first on the most probable causes
and only later resorting to the least frequent causes, when all
previous observations have not produced any diagnosis.

For a more detailed discussion on the metrics that we
adopted to evaluate the effectiveness and efficiency of the pro-
posed approach in terms of accuracy and number of executed
tests we refer the reader to Section V-A.

IV. THE PROPOSED EARLY STOP CONDITION

To speed up the diagnosis process we designed an early

stop condition, to further reduce the number of tests required
to identify the faulty candidate component(s) leveraging on
the diagnosis accuracy. The early stop condition is based
on a forward exploration of the tree, and verifies whether
the maximum error (Max

e

) that would be introduced by
interrupting the process before reaching a leaf is smaller than
a configurable threshold value Err

th

.

To support this behavior, we introduce three sets of compo-
nents associated with the DT: Faulty Components Set (FCS),
Not Faulty Components Set (NFCS) and Unclassified Com-

ponents Set (UCS). FCS contains the components identified
as faulty, NFCS the components identified as fault-free, and
UCS the component component for which no classification
applies. Given a failing board, at the beginning of the diagnosis
process, FCS and NFCS are empty while UCS contains all the
components. During the traversal of the tree, when a test T

j

fails, all the components having ctm

ij

= 0 are moved from
UCS to NFCS; in fact, ctm

ij

= 0 means when component C
i

is faulty test T
j

does not fail, consequently T

j

failing implies
C

i

not faulty. This allows to have an updated forecast of the
evolution of the diagnosis process by analyzing these sets, so to
be able to decide whether to interrupt the process in favour of
a reduced number of tests. Moreover, a set of faulty candidate
components is associated with each internal node N

i

of the DT:
this set, referred to as reachable faulty candidate components

set (RFCCS

i

), contains all the faulty candidate components
associated with all the leaves belonging to the sub-tree having
internal node N

i

as root node.

In order to evaluate costs and benefits of an early interrup-
tion when at node N

i

, the following maximum error estimation
Max

e

is introduced:

Max

e

= 1� #FCCS

mini

#RFCCS

i

(3)

where #FCCS

min

is the minimum cardinality among the
ones of all the faulty candidate component sets of the leaves
belonging to the sub-tree having N

i

as root and #RFCCS

i

is the cardinality of the reachable candidate component set of
N

i

. If the early stop condition is verified, all the components
in the reachable faulty components set of internal node N

i

are
moved in FCS and the diagnosis procedure stops.

Let us recall the previous running example, with complete
syndrome PPFFP and faulty component C3, and let us set
Err

th

= 60%. After executing T1, with outcome PASS,
the traversing of the tree reaches the node associated with
T3: this node has #FCCS

min

= 1 and #RFCCS = 3
(indeed, the possible diagnoses are {C2, C3}, {C3} and {C1,
C3}); thus the maximum error introduced by the early stop
condition at the current step of the execution is 66.66%, higher
than the threshold, thus the process proceeds with test T3.
T3=FAIL leads to node associated with T4. This node has
#FCCS

min

= 1 and #RFCCS = 2 (the possible diagnoses
are {C3} and {C1, C3}), and Max

e

= 50%, which allows to
stop the diagnosis process. C1 and C3 are identified as faulty
candidates. The loss of accuracy with respect to the diagnosis
procedure without early stop condition is 50%, the reduction
in the number of executed tests is 33.33%.

V. EXPERIMENTAL ANALYSIS

A. Evaluation Metrics

We defined the following two metrics to evaluate the
effectiveness of the proposed approach: i) the accuracy of
the diagnosis, Acc. with respect to the outcome achieved by
a diagnosis procedure based on the execution of all tests,
and ii) the number of executed tests, #T . As previously
discussed, it is possible that, according to the CTM model of
the board, some syndromes point to more than one faulty
candidate. In this condition neither a traditional diagnosis
procedure nor an incremental one could discriminate among
the faulty candidates and identify the exact faulty component.
Given this, the proposed approach can either identify the
same faulty candidate(s) as a traditional approach (possibly
executing fewer tests) or introduce inaccuracies by identifying
either a subset of the faulty candidates (false negatives) or
additional ones (false positives).



TABLE I. BOARDS CHARACTERISTICS.
ID nC nT nLS nFS nSS nRS

1 4 9 98 17 36 45
2 5 13 415 19 66 330
3 7 17 2383 26 132 2225
4 10 14 1090 27 143 920
5 10 18 1678 56 94 1528
6 15 25 1249 19 109 1121
7 19 29 1339 22 134 1183
8 22 32 953 25 183 745
9 25 40 3063 18 141 2904
10 32 55 4677 15 196 4466
Ind. 1 5 18 11788 14 72 11702
Ind. 2 14 24 12290 16 20 12254
Ind. 3 25 44 13261 17 39 13205

Furthermore, different syndromes have different occurrence
probabilities, thus the two mentioned metrics Acc. and #T are
computed by weighting the contributions on the probability of
occurrence of the syndromes; the impact of the behaviour of
the approach for syndromes that rarely occur is less relevant
than that of frequent syndromes. We calculated these two
indices as:

Acc =
nLSX

s=1

(acc
s

⇥ p

s

) (4)

#T =
nLSX

s=1

(num tests

s

⇥ p

s

) (5)

where acc

s

and num tests

s

are the accuracy and the number
of executed tests, respectively, when analyzing syndrome s,
and p

s

is the occurrence probability of syndrome s calculated
with Equation 1. The accuracy of the approach for a given
syndrome s is calculated as:

acc

s

=
N

Corrs

N

Tots +N

NotCorrs

(6)

where N

Corrs is the number of components correctly diag-
nosed, N

Tots is the total number of components associated
with syndrome s and N

NotCorrs is the number of components
wrongly diagnosed (either false positives or false negatives);

B. The Considered Boards

We evaluated the proposed approach on a set of 10 syn-
thetic but realistic boards of various sizes and complexity,
whose characteristics are reported in Table I, in terms of
number of components (n

C

), number of tests (n
T

) and number
of legal syndromes (n

LS

) compatible with the CTM defining the
board model. The last three rows report the details of three
real-world industrial boards. Syndromes have been clustered
according to their occurrence probability. The second part of
Table I reports the number of frequent (column n

FS

), sporadic

(column n

SS

) and rare (column n

RS

) syndromes, having a
probability of occurrence higher than 1%, between 1% and
0.1% and lower than 0.1%, respectively.

C. Results and Discussion

All the experiments have been carried out by considering
one complete syndrome at a time, knowing the associated
faulty component(s) identified by a process using the com-
plete syndrome. Given such “hidden complete” syndrome (and
associated “golden” diagnosis), we execute our methodology
and perform the dynamically selected sequence of tests until
the stop condition is verified. At that point we compare

the outcomes of the proposed method against the “golden”
diagnosis and compute the accuracy. The process is repeated
for all the legal syndromes of each considered CTM.

Table II reports the results of the experiments. More in
details, columns two and three report the accuracy and the
percentage of executed tests with respect to the whole test
suite when using the basic stop condition (considered as the
“baseline experiment”). The remaining columns report the
reduction of accuracy and of the number of executed tests with
respect to the baseline experiment when considering the early
stop condition with Err

th

= 25%, 50% and 75%, respectively.

Do note that the basic execution of the proposed approach
(without early stop condition) achieves a high fault coverage
for most of the considered boards (92.85% on the average)
using in most cases less than the 50% of the available tests
(44.62% on average). If we look at the remaining results, it
can be observed that, while Err

th

= 25% does not bring any
noticeable benefit, the execution with the early stop condition
allows to significantly reduce the amount of executed tests
when Err

th

= 50% and Err

th

= 75%: -13.72% and -30.14%
on average, respectively, with a maximum of -39.79% and -
77.71%, respectively. Accuracy decrease is limited (-11.20%
and -28.51% on average, respectively) and in most cases is
smaller than the decrease in the number of executed tests.

The effectiveness of the proposed approach can be better
highlighted by focusing on frequent syndromes, and Table III
reports the detailed results of the previous experiments for
these syndromes only. The baseline experiment achieves al-
ways a 100% accuracy (except for boards 11 and 12) with a
reduced percentage of executed tests (42.17% on the average).
Case Err

th

= 25% has no significant effects, while when
Err

th

= 50% and Err

th

= 75%, the reduction of executed
tests is large (-15.99% and -34.83% on average, respectively,
with maximum values of -42.68% and -78.77%, respectively)
while the decrease of the accuracy is limited (-6.88% and -
21.89% on average, respectively) and in almost all cases (apart
boards 5, 10 and 12) is always significantly smaller than the
reduction of the number of executed tests. In some cases there
is even a significant reduction of the number of tests (-5.88%
for board 6 and -13.43% for the industrial board 3) with no
decrease in accuracy. As a result, when the user is interested
in an aggressive reduction of the number of tests, the loss
in accuracy is never as harsh as the benefit in terms of test
time/effort. This is the tunable element the user can exploit
while fitting her/his requirements and constraints.

Experiments have been carried out on an Intel i7-3770
3.4GHz microprocessor equipped with 8GB of RAM; the time
required to carry out the analysis varies from about 1 second
for the smallest synthetic boards to half a minute for the largest
ones, and about 10 seconds for the industrial boards. Therefore,
we believe that the proposed diagnosis approach could easily
be integrated in an industrial test process.

For the sake of space, in this paper we focused on the
assessment of the effectiveness and efficiency of the proposed
decision tree-based diagnosis engine and of its early stop
condition. We refer the reader to [8] for a thorough comparison
among several machine learning-based diagnosis engines in
terms of accuracy as well as scalability and robustness against
errors in the CTM model.



TABLE II. RESULTS ACHIEVED BY THE PROPOSED DIAGNOSIS APPROACH.

boardID Errth = 0% Errth = 25% Errth = 50% Errth = 75%
Acc. (%) T (%) �Acc. (%) �T (%) �Acc. (%) �T (%) �Acc.(%) �T (%)

1 100.00% 53.33% -0.00% -0.00% -32.07% -39.79% -50.02% -77.71%
2 100.00% 36.46% -0.00% -0.00% -16.30% -38.82% -16.47% -41.98%
3 100.00% 46.30% -0.04% -0.30% -6.46% -27.41% -20.25% -35.38%
4 100.00% 66.57% -0.10% -0.40% -7.22% -15.77% -39.72% -46.03%
5 99.99% 45.16% -0.00% -0.00% -21.30% -9.59% -51.89% -28.17%
6 100.00% 42.40% -0.00% -0.00% -2.03% -7.08% -22.61% -27.76%
7 99.50% 45.72% -0.06% -0.60% -6.80% -7.54% -22.32% -25.49%
8 99.19% 41.49% -0.00% -0.00% -4.00% -7.08% -31.11% -25.17%
9 96.15% 38.95% -0.07% -0.10% -8.39% -7.31% -22.95% -26.32%
10 84.27% 31.64% -0.00% -0.00% -10.40% -5.52% -39.50% -18.80%
11 64.85% 26.83% -0.00% -0.00% -8.82% -2.91% -21.31% -9.60%
12 49.76% 19.75% -0.00% -0.00% -13.44% -2.67% -39.93% -8.19%
Ind. 1 100.00% 41.50% -0.00% -0.00% -20.13% -21.29% -23.17% -49.53%
Ind. 2 100.00% 69.75% -0.00% -0.00% -5.49% -9.14% -14.07% -22.46%
Ind. 3 98.99% 63.41% -0.00% -0.00% -5.17% -3.91% -12.31% -9.53%
avg 92.85% 44.62% -0.02% -0.09% -11.20% -13.72% -28.51% -30.14%

TABLE III. DETAILED ANALYSIS OF THE RESULTS ACHIEVED BY THE PROPOSED DIAGNOSIS APPROACH ON THE FREQUENT SYNDROMES.

boardID Errth = 0% Errth = 25% Errth = 50% Errth = 75%
Acc. (%) T (%) �Acc. (%) �T (%) �Acc. (%) �T (%) �Acc.(%) �T (%)

1 100.00% 52.33% -0.00% -0.00% -29.22% -42.68% -47.31% -78.77%
2 100.00% 33.92% -0.00% -0.00% -12.66% -42.63% -12.66% -46.94%
3 100.00% 43.62% -0.00% -0.00% -2.07% -28.75% -20.09% -35.10%
4 100.00% 71.64% -0.00% -0.30% -3.11% -17.85% -29.34% -46.86%
5 100.00% 39.67% -0.00% -0.00% -21.43% -6.02% -59.53% -14.00%
6 100.00% 38.76% -0.00% -0.00% -0.00% -5.88% -17.14% -33.02%
7 100.00% 40.17% -0.74% -0.69% -4.75% -10.82% -13.55% -35.11%
8 100.00% 42.69% -0.00% -0.00% -1.87% -8.64% -18.21% -28.55%
9 100.00% 38.32% -0.00% -0.33% -4.24% -5.35% -8.55% -33.72%
10 100.00% 31.78% -0.00% -0.00% -5.22% -5.32% -27.97% -21.11%
11 93.93% 23.09% -0.00% -0.00% -2.15% -5.53% -7.04% -15.94%
12 50.00% 22.72% -0.00% -0.00% -0.00% -0.00% -25.00% -4.00%
Ind. 1 100.00% 52.56% -0.00% -0.00% -12.21% -22.09% -19.76% -62.05%
Ind. 2 100.00% 60.54% -0.00% -0.00% -4.23% -24.91% -11.28% -26.43%
Ind. 3 100.00% 40.79% -0.00% -0.00% -0.00% -13.43% -10.96% -40.89%
avg 96.26% 42.17% -0.05% -0.09% -6.88% -15.99% -21.89% -34.83%

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for adaptive incre-
mental functional diagnosis at the board-level based on the
decision trees. The approach has demonstrated to be effective
in achieving a high diagnosis accuracy and in reducing the
number of tests required to be executed with respect of the
whole test suite. Moreover, we have presented a configurable
early stop condition for the proposed approach that allows to
further reduce the number of executed test without excessively
reducing the accuracy of the diagnosis. By configuring the
stop condition, the user is empowered to tune the reduction of
number of executed tests and the decrease of the accuracy.

As future work we plan to consider and compare different
algorithms for the generation of the decision tree in order to
further improve the efficiency of the proposed method.
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