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HARNACK’S INEQUALITY AND HÖLDER CONTINUITY FOR WEAK

SOLUTIONS OF DEGENERATE QUASILINEAR EQUATIONS WITH

ROUGH COEFFICIENTS

D. D. Monticelli1, S. Rodney2 and R. L. Wheeden3

Abstract. We continue to study regularity results for weak solutions of the large class of second
order degenerate quasilinear equations of the form

div
(

A(x, u,∇u)
)

= B(x, u,∇u) for x ∈ Ω

as considered in our paper [MRW]. There we proved only local boundedness of weak solutions.
Here we derive a version of Harnack’s inequality as well as local Hölder continuity for weak solu-
tions. The possible degeneracy of an equation in the class is expressed in terms of a nonnegative
definite quadratic form associated with its principal part. No smoothness is required of either the
quadratic form or the coefficients of the equation. Our results extend ones obtained by J. Serrin
[S] and N. Trudinger [T] for quasilinear equations, as well as ones for subelliptic linear equations
obtained in [SW1, 2].

1. Introduction

1.1. General Comments. Our main goal is to prove Harnack’s inequality and local Hölder
continuity for weak solutions u of quasilinear equations of the form

(1.1) div
(
A(x, u,∇u)

)
= B(x, u,∇u)

in an open set Ω ⊂ Rn. The vector-valued function A and the scalar function B will be assumed
to satisfy the same structural conditions as in our earlier paper [MRW], where we proved that
weak solutions are locally bounded. The possible degeneracy of equation (1.1) is expressed in
terms of a matrix Q(x), that may vanish or become singular, associated with the functions A,B.
More precisely, given p with 1 < p <∞ and an n×n nonnegative definite symmetric matrix Q(x)

satisfying |Q| ∈ L
p/2
loc (Ω), we assume the following structural conditions: For (x, z, ξ) ∈ Ω×R×Rn,

there is a vector Ã(x, z, ξ) with values in Rn such that for a.e. x ∈ Ω and all (z, ξ) ∈ R×Rn,

(1.2)





(i) A(x, z, ξ) =
√
Q(x)Ã(x, z, ξ),

(ii) ξ ·A(x, z, ξ) ≥ a−1
∣∣∣
√
Q(x) ξ

∣∣∣
p
− h(x)|z|γ − g(x),

(iii)
∣∣∣Ã(x, z, ξ)

∣∣∣ ≤ a
∣∣∣
√
Q(x) ξ

∣∣∣
p−1

+ b(x)|z|γ−1 + e(x),

(iv)
∣∣∣B(x, z, ξ)

∣∣∣ ≤ c(x)
∣∣∣
√
Q(x) ξ

∣∣∣
ψ−1

+ d(x)|z|δ−1 + f(x),

where a, γ, ψ, δ > 1 are constants, and b, c, d, e, f, g, h are nonnegative measurable functions of
x ∈ Ω.

2000 Mathematics Subject Classification. 35J70, 35J60, 35B65.
Key words and phrases. quasilinear equations, degenerate elliptic partial differential equations, degenerate

quadratic forms, weak solutions, regularity, Harnack inequality, Hölder continuity, Moser method.
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The sizes of the exponents are restricted to the ranges

(1.3) γ ∈ (1, σ(p − 1) + 1), ψ ∈ (1, p + 1− σ−1), δ ∈ (1, pσ),

where σ > 1 is a constant that measures the gain in integrability in a naturally associated Sobolev
estimate (see (2.8) below). For the classical Euclidean metric |x − y|, nondegenerate Q and
1 < p < n, the Sobolev gain factor σ is n/(n− p). Furthermore, the functions b, c, d, e, f, g, h will
be assumed to lie in certain Lebesgue or Morrey spaces, and to satisfy the minimal integrability
conditions

(1.4)
c ∈ L

σp
σp−1−σ(ψ−1)

loc (Ω), e ∈ Lp
′

loc(Ω), f ∈ L
(σp)′

loc (Ω),

b ∈ L
σp

σ(p−1)−γ+1

loc (Ω), d ∈ L
pσ
pσ−δ
loc (Ω).

Here and elsewhere we use a prime to denote the dual exponent, for example, 1/p+1/p′ = 1 when
1 ≤ p ≤ ∞, with the standard convention that 1 and ∞ are dual exponents.

The quadratic form associated with Q(x) will be denoted

(1.5) Q(x, ξ) = 〈Q(x)ξ, ξ〉, (x, ξ) ∈ Ω×Rn,

and we note that Q(x, ξ) may vanish when ξ 6= 0, i.e., Q(x) may be singular (degenerate).
As in [MRW] and following [SW1, 2], our weak solutions are pairs (u,∇u) which belong to an

appropriate Banach space W1,p
Q (Ω) obtained by isomorphism from the degenerate Sobolev space

W 1,p
Q (Ω), defined as the completion with respect to the norm

(1.6) ||u||
W 1,p
Q (Ω)

=

(
ˆ

Ω
|u|p dx+

ˆ

Ω
Q(x,∇u) p2 dx

) 1
p

of the class of functions in Liploc(Ω) with finiteW 1,p
Q (Ω) norm. Technical facts about these Banach

spaces are given in [MRW], [SW1, 2] with weighted versions in [CRW], and some of them will be
recalled below. For now, we mention only that when Q is degenerate, it is important to think of
an element of the Banach space W1,p

Q (Ω) as a pair (u,∇u) rather than as just the first component
u, due to the possibility that ∇u may not be uniquely determined by u. Nonuniqueness of ∇u
causes us little difficulty since our primary regularity results concern estimates of u rather than
∇u. Except for the need to consider a pair, the notions of weak solution, weak supersolution and
weak subsolution that we will use are standard, namely, we say that a pair (u,∇u) ∈ W 1,p

Q (Ω)
satisfies

div(A(x, u,∇u)) = (≤ , ≥) B(x, u,∇u) for x ∈ Ω(1.7)

in the weak sense if for every nonnegative test function ϕ ∈ Lip0(Ω), the corresponding integral
expression

(1.8)

ˆ

Ω

[
∇ϕ ·A(x, u,∇u) + ϕB(x, u,∇u)

]
dx = (≥ , ≤) 0

holds. The integrals in (1.8) converge absolutely due to (1.2)–(1.4); see [MRW, Proposition 2.5,
Corollary 2.6, Proposition 2.7].

Our results and analysis are carried out in the context of a quasimetric ρ on Ω, that is, ρ :
Ω× Ω → [0,∞) and satisfies the following for all x, y, z ∈ Ω:

• ρ(x, y) = ρ(y, x) (symmetry),

• ρ(x, y) = 0 ⇐⇒ x = y (positivity),

• ρ(x, y) ≤ κ[ρ(x, z) + ρ(y, z)] (triangle inequality),(1.9)

where κ ≥ 1 is independent of x, y, z ∈ Ω. In particular, we will assume that appropriate Sobolev-
Poincaré estimates hold and that Lipschitz cutoff functions exist for the class of quasimetric ρ-balls
defined for x ∈ Ω and r > 0 by

B(x, r) = {y ∈ Ω : ρ(x, y) < r}.(1.10)



We will refer to B(x, r) as the ρ-ball of radius r > 0 and center x. All ρ-balls lie in Ω by their
definition, and they are assumed to be open with respect to the usual Euclidean topology. The
estimates we need are summarized in §2.

1.2. Some Known Results. In the standard elliptic case when Q(x) = Identity and ρ(x, y) =
|x − y| is the ordinary Euclidean metric, regularity results including Harnack’s inequality and
local Hölder continuity for weak solutions of (1.1) were derived in [S] and [T] under structural
conditions more restrictive than (1.2). Obtaining analogues of these results in the degenerate case
is our main concern.

In the degenerate (or subelliptic) case, Harnack’s inequality and Hölder continuity have been
studied in [SW1, 2] for linear equations with rough coefficients and nonhomogeneous terms, and
those results are included among the ones we derive here. Moreover, in the degenerate quasilinear
case, and under the same structural assumptions as in (1.2), local boundedness of weak solutions
is proved in [MRW]. In fact, a rich variety of local boundedness estimates is given there depending
on the strength and type of condition imposed on the coefficients, but still without any assumption
about their differentiability.

In order to describe a known estimate in the degenerate quasilinear case, we now record (without
listing the precise technical data) a fairly typical form of the local boundedness estimates proved

in [MRW] in case γ = δ = p and ψ ∈ [p, p+ 1− σ−1) : If (u,∇u) ∈W 1,p
Q (Ω) is a weak solution of

(1.1) in a ρ-ball B(y, r), then for any k > 0, there are positive constants τ, C, and Z̄ such that

(1.11) ess sup
x∈B(y,τr)

(
|u(x)| + k

)
≤ CZ̄

(
1

|B(y, r)|

ˆ

B(y,r)

(
|u(x)| + k

)p
dx

) 1
p

.

Here, τ and C are independent of u, k,B(y, r), b, c, d, e, f, g and h, but Z̄ generally depends on all
these quantities in very specific ways described in [MRW] and later in this paper. The richness
of boundedness estimates that we mentioned above results from estimating Z̄ under various as-
sumptions on the coefficients. In fact, the estimates in Corollaries 1.8–1.11 of [MRW] offer only
a sample of those which are possible. Understanding Z̄, removing its dependence on u and some
of the other data, and generalizing the mean-value estimates which lead to (1.11) are important
ingredients in deriving the regularity results in this paper, where in the broad sense we follow the
Moser method.

In order to state our results carefully, including (1.11), we must describe the technical back-
ground, which is considerable. This is done in the next section.

2. Technical Background and Hypotheses

Our principal results are axiomatic in nature and based mainly on the existence of appropriate
Sobolev-Poincaré inequalities and Lipschitz cutoff functions in a space of homogeneous type. In
this section, we describe the setting for our work and list our main assumptions.

2.1. Homogeneous Spaces. Let Ω ⊂ Rn be an open set and ρ be a quasimetric defined on Ω
satisfying (1.9). We will make two a priori assumptions relating the ρ-balls defined in (1.10) and
the Euclidean balls

D(x, r) = {y ∈ Ω : |x− y| < r}.
Note that D(x, r) is the intersection with Ω of the ordinary Euclidean ball with center x and
radius r, and recall that all ρ-balls are also subsets of Ω. As we already mentioned, we will always
assume that every B(x, r) is an open set according to the Euclidean topology. Second, we will
always assume that

for all x ∈ Ω, |x− y| → 0 if ρ(x, y) → 0.(2.1)



As a consequence of (2.1), for every x ∈ Ω there exists R0(x) > 0 such that the Euclidean closure

B(x, r) of B(x, r) satisfies B(x, r) ⊂ Ω for all 0 < r < R0(x). See Lemma 2.1 of [MRW] for this
result.

Remark 2.1. Since ρ-balls are assumed to be open sets, the converse of (2.1) automatically holds:

for all x, y ∈ Ω, ρ(x, y) → 0 if |x− y| → 0.(2.2)

Furthermore, since ρ-balls are open, every ρ-ball has positive Lebesgue measure.

As is well-known, the triangle inequality (1.9) implies that ρ-balls have the following swallowing
property (see e.g. [CW1, Observation 2.1] for the simple proof):

Lemma 2.2. If x, y ∈ Ω, 0 < t ≤ r and B(y, t) ∩B(x, r) 6= ∅, then
B(y, t) ⊂ B(x, γ∗r)(2.3)

where γ∗ = κ+ 2κ2 with κ as in (1.9).

Remark 2.3. The constant γ∗ in the conclusion of Lemma 2.2 can be decreased if we only
require information about the center of the smaller ball. Indeed, if x, y ∈ Ω, 0 < t ≤ r, and
B(y, t) ∩B(x, r) 6= ∅, then y ∈ B(x, 2κr) by (1.9).

Definition 2.4. We call the triple (Ω, ρ, dx) a local homogeneous space if Lebesgue measure
is locally a doubling measure for ρ-balls, i.e., if there are constants C0, d0 > 0 and a function
R1 : Ω → (0,∞) such that if x, y ∈ Ω, 0 < t ≤ r < R1(x) and B(y, t) ∩B(x, r) 6= ∅, then

|B(x, r)| ≤ C0

(r
t

)d0 |B(y, t)|.(2.4)

This notion generalizes that of a symmetric general homogeneous space as defined in [SW1, p.
71]. Also, due to the swallowing property, (2.4) has an equivalent form: There are constants
C ′
0, c

′ > 0 such that if x, y ∈ Ω, 0 < t ≤ r < c′R1(x) and B(y, t) ⊂ B(x, r), then

|B(x, r)| ≤ C ′
0

(r
t

)d0 |B(y, t)|(2.5)

for the same d0 and R1(x) as in (2.4).

Remark 2.5. By a result of Korobenko-Maldonado-Rios (see [KMR]), the validity of the local
doubling condition (2.4) for some exponent d0 > 0 and function R1(x) > 0 is a consequence of
two conditions that will be introduced below: the local Sobolev inequality (2.8) and the existence
of appropriate sequences of Lipschitz cutoff functions, supported in pseudometric balls with small
radius and adapted to the matrix Q, as described in (2.10).

We will usually require that R1(x), as well as similar functions we will use to restrict sizes of
radii, satisfies the local comparability condition described in the next definition.

Definition 2.6. Let E ⊂ Ω. We say that a function f : Ω → (0,∞) satisfies a local uniformity
condition with respect to ρ in E if there is a constant A∗ = A∗(f,E) ∈ (0, 1) such that for all
x ∈ E and all y ∈ B(x, f(x)),

A∗ <
f(y)

f(x)
<

1

A∗
.(2.6)

Condition (2.6) is automatically true in case f is bounded above on E and also has a positive
lower bound on E. This condition will be helpful in our proof of the John-Nirenberg estimate
using techniques related to those in [SW1]. It is not required in [SW1] since there, R0(x), R1(x)
(and R2(x) in §2.2 below) are chosen to be the same fixed multiple of the Euclidean distance
dist(x, ∂Ω) and so (2.6) holds with f(x) = R0(x) = R1(x) = R2(x) on any set E satisfying
E ⊂ Ω. In some proofs to follow we will choose E to be a specific quasimetric ball B(z, r).



2.2. Poincaré-Sobolev Estimates and Cutoff Functions. Let p and Q be as in (1.2), and

recall that p ∈ (1,∞) and |Q| ∈ L
p/2
loc (Ω). Before we state the Sobolev and Poincaré estimates that

we require, let us make a few more comments about the Sobolev spaceW 1,p
Q (Ω). A fuller discussion

can be found in [MRW], [SW2], and [CRW]. Let LipQ,p(Ω) denote the class of locally Lipschitz

functions with finite W 1,p
Q (Ω) norm; see (1.6). The space W 1,p

Q (Ω) is by definition the Banach

space of equivalence classes of sequences in LipQ,p(Ω) which are Cauchy sequences with respect
to the norm (1.6). Here two Cauchy sequences are called equivalent if they are equiconvergent in

W 1,p
Q (Ω).

To further describe W 1,p
Q (Ω), we consider the form-weighted space consisting of all (Lebesgue)

measurable Rn-valued functions f(x) defined in Ω for which

(2.7) ||f ||Lp(Ω,Q) =

{
ˆ

Ω
Q(x, f(x))

p
2 dx

} 1
p

<∞.

By identifying any two measurable Rn-valued functions f and g with ||f − g||Lp(Ω,Q) = 0, (2.7)
defines a norm on the resulting Banach space of equivalence classes. We denote this Banach
space of equivalence classes by Lp(Ω, Q). If {wk} = {wk}∞k=1 ∈ W 1,p

Q (Ω), meaning that {wk}
is a Cauchy sequence of LipQ,p(Ω) functions with respect to (1.6), then there is a unique pair
(w,v) ∈ Lp(Ω) × Lp(Ω, Q) such that wk → w in Lp(Ω) and ∇wk → v in Lp(Ω, Q). The pair

(w,v) represents the particular equivalence class in W 1,p
Q (Ω) containing {wk}. The space W1,p

Q (Ω)

is defined to be the collection of all pairs (w,v) that represent equivalence classes in W 1,p
Q (Ω).

Thus, W1,p
Q (Ω) is the image of the isomorphism J : W 1,p

Q (Ω) → Lp(Ω)× Lp(Ω, Q) defined by

J ([{wk}]) = (w,v),

where [{wk}] denotes the equivalence class in W 1,p
Q (Ω) containing {wk}. Therefore, W1,p

Q (Ω) is

a closed subspace of Lp(Ω) × Lp(Ω, Q) and hence a Banach space as well. Since W1,p
Q (Ω) and

W 1,p
Q (Ω) are isomorphic, we will often refer to elements (w,v) of W1,p

Q (Ω) as elements of W 1,p
Q (Ω).

Interestingly, v is generally not uniquely determined by w for pairs (w,v) in W1,p
Q (Ω), i.e., the

projection

P : W1,p(Ω) → Lp(Ω)

defined by P ((w,v)) = w is not always an injection; see [FKS] for an example. However, we will

generally abuse notation and denote pairs in W 1,p
Q (Ω) by (w,∇w) instead of (w,v).

(W 1,p
Q )0(Ω) will denote the space analogous to W 1,p

Q (Ω) but where the completion is formed

by using Lipschitz functions with compact support in Ω. A typical element of (W 1,p
Q )0(Ω) may

be thought of as a pair (w,∇w) ∈ Lp(Ω) × Lp(Ω, Q) for which there is a sequence {wk} ⊂
LipQ,p(Ω) ∩ Lip0(Ω) such that wk → w in Lp(Ω) and ∇wk → ∇w in Lp(Ω, Q). Here we again
adopt the abuse of notation ∇w for the second component v of a pair (w,v).

We can now state the Sobolev-Poincaré estimates that we will assume. We say that a local
Sobolev inequality holds in Ω if there exists a function R2 : Ω → (0,∞) and constants C1 > 0 and
σ > 1 such that for every ρ-ball B(y, r) with 0 < r < R2(y), the inequality

( 1

|B(y, r)|

ˆ

B(y,r)
|w|pσdx

) 1
pσ ≤ C1

[
r
( 1

|B(y, r)|

ˆ

B(y,r)
|
√
Q∇w| p2 dx

) 1
p

(2.8)

+
( 1

|B(y, r)|

ˆ

B(y,r)
|w|pdx

) 1
p
]

holds for all (w,∇w) ∈ (W 1,p
Q )0(B(y, r)).



We say that a local Poincaré inequality holds in Ω if there are constants C2 > 0 and b ≥ 1 such
that for every ρ-ball B(y, r) with 0 < r < R2(y), the inequality

1

|B(y, r)|

ˆ

B(y,r)
|w − wB(y,r)|dx ≤ C2r

( 1

|B(y, br)|

ˆ

B(y,br)
|
√
Q∇w|pdx

) 1
p

(2.9)

holds for all (w,∇w) ∈W 1,p
Q (Ω), where wB(y,r) =

1

|B(y, r)|

ˆ

B(y,r)
wdx.

Remark 2.7. It is easy to see that (2.8) and (2.9) hold as stated, that is, for all (w,∇w) in

(W 1,p
Q )0(B(y, r)) or W 1,p

Q (Ω) respectively, provided they hold for all w in LipQ,p(Ω)∩Lip0(B(y, r))

or LipQ,p(Ω) respectively.

As in [MRW], we ask for two more structural requirements related to our collection of quasimet-
ric ρ-balls {B(x, r)}r>0;x∈Ω. The first of these is the existence of appropriate sequences of Lipschitz
cutoff functions (called “accumulating sequences of Lipschitz cutoff functions” in [SW1]). Specif-
ically, for the function R2 related to the Poincaré-Sobolev estimate (2.8), we assume there are
positive constants s∗, Cs∗ , τ and N , with pσ′ < s∗ ≤ ∞ and τ < 1, such that for every ρ-ball
B(y, r) with 0 < r < R2(y), there is a collection of Lipschitz functions {ηj}∞j=1 satisfying

(2.10)





supp η1 ⊂ B(y, r)

0 ≤ ηj ≤ 1 for all j

B(y, τr) ⊂ {x ∈ B(y, r) : ηj(x) = 1} for all j

supp ηj+1 ⊂ {x ∈ B(y, r) : ηj(x) = 1} for all j
(

1

|B(y, r)|

ˆ

B(y,r)

∣∣√Q∇ηj
∣∣s∗dx

)1/s∗

≤ Cs∗
N j

r
for all j.

This condition is slightly weaker than the corresponding one in [SW1]; see [MRW, p. 149] for a
fuller discussion. We note that since s∗ > pσ′, there is a number s′ > σ′ such that s∗ = ps′. The
exponent s = s∗

s∗−p dual to s′ satisfies 1 ≤ s < σ and plays an important role in our results.

Remark 2.8. As already mentioned in Remark 2.5, conditions (2.8) and (2.10) imply the validity
of the local doubling condition (2.4) for some positive exponent d0 (see [KMR]). It is important to
note that the smaller the exponent d0 in (2.4) can be chosen, the weaker the required assumptions
of local integrability on the coefficients b, c, d, e, f, g, h in (1.2) will be in the theorems to follow. See
the statements of Proposition 3.3, of Theorems 3.5, 3.7, 3.10, 3.11, 3.13, 3.15 and of Corollaries
3.9, 3.12, 3.16.

Our last requirement is that the following pair of inequalities hold simultaneously: There
exists t ∈ [1,∞] such that for every ρ-ball B(y, r) with 0 < r < R2(y), there is a constant
C3 = C3(B(y, r)) > 0 such that

(2.11)

(
ˆ

B(y,r)
|
√
Q∇η|pt dx

)1/pt

<∞ and

(2.12)

(
ˆ

B(y,r)
|f |pt′dx

)1/pt′

≤ C3 ||f ||W 1,p
Q (Ω) = C3

(
ˆ

Ω
|
√
Q∇f |pdx+

ˆ

Ω
|f |pdx

)1/p

for all η ∈ {ηj}, {ηj} as in (2.10), and all f ∈ Liploc(Ω). As usual, t
′ denotes the dual exponent of

t. In case t or t′ is infinite, we simply replace the relevant term in (2.11) or (2.12) by an essential
supremum.

Remark 2.9. These inequalities are used in [MRW] to derive a product rule for elements of

W 1,p
Q (Ω). They also imply that functions in W 1,p

Q (Ω), which are generally not compactly supported,

have sufficiently high local integrability in case the Sobolev inequality (2.8) holds only for compactly



supported Lipschitz functions. See [MRW, Section 2, p. 162] for these results. It is useful to note
that (2.11) is automatically satisfied for every t with 1 ≤ t ≤ s∗/p by (2.10). However, (2.11) may
also hold for larger values of t independently of (2.10). See [MRW, p. 150] for details. In fact, if

(2.11) holds with t = ∞ then (2.12) (with t′ = 1) is trivial due to the form of the W 1,p
Q (Ω) norm

(1.6).

In order to simplify notation when combining hypotheses, we fix a single function r1 : Ω →
(0,∞) satisfying

r1(x) ≤ min{R0(x), R1(x), R2(x), 1}, x ∈ Ω,(2.13)

where R0 is as described below (2.1), R1 is as in Definition 2.4 and R2 is as in (2.8), (2.9), (2.10),
(2.11), and (2.12).

3. Harnack’s Inequality

We begin this section by recalling some notations of [MRW]. Given a measurable set E and a
measurable function f on E, we write

||f ||p,E;dx =

(
1

|E|

ˆ

E
|f(x)|pdx

) 1
p

=

(

E
|f(x)|pdx

) 1
p

, and(3.1)

||f ||p,E;dx =

(
ˆ

E
|f(x)|pdx

) 1
p

.(3.2)

In some cases when context is clear, the set E may be dropped from the left hand side in (3.1)
and (3.2).

Given a function u and constants k, ǫ1, ǫ2, ǫ3 with k > 0 and ǫ1, ǫ2, ǫ3 ∈ (0, 1], we denote

ū = |u|+ k, b̄ = b+ k1−pe,
h̄ = h+ k−pg, d̄ = d+ k1−pf.

(3.3)

Here, b, c, d, e, f, g, h denote the coefficients in (1.2). Furthermore, for each ρ-ball B(y, r), define

Z̄ = Z̄(B(y, r), ū) = 1 + rp−1‖b̄‖p′σ′,B(y,r);dx(3.4)

+

(
rp‖c

p
p+1−ψ ū

p(ψ−p)
p+1−ψ ‖ pσ′

p−ǫ1
,B(y,r);dx

) 1
ǫ1

+

(
rp‖h̄‖ pσ′

p−ǫ2
,B(y,r);dx

) 1
ǫ2

+

(
rp‖d̄‖ pσ′

p−ǫ3
,B(y,r);dx

) 1
ǫ3

,

where the exponents p, ψ, σ are as usual; see (1.2) and (2.8). It is important to note that Z̄ is not
monotone in its first argument due to the normalized norms appearing in its definition. However,
if Z̄(B, ū) <∞, then Z̄(B′, ū) <∞ whenever B′ ⊂ B = B(y, r) with r < R0(y).

3.1. Standing Assumptions. In order to state our main results efficiently, we list here several
standing assumptions to remain in effect for the rest of this paper. As above, Ω will always
denote a bounded domain in Rn, ρ denotes a quasimetric on Ω, and Q(x) denotes a measurable
symmetric nonnegative definite matrix defined in Ω. We always assume the triple (Ω, ρ, dx)
defines a local homogeneous space in the sense of Definition 2.4. Note that this ensures that
the local doubling condition (2.4) is satisfied. We also assume the validity of the local Sobolev
and Poincaré inequalities (2.8) and (2.9) and the existence of accumulating sequences of Lipschitz
cutoff functions satisfying (2.10) for a fixed τ ∈ (0, 1) and s∗ > pσ′. Here σ′ denotes the dual
exponent to the Sobolev gain factor σ of (2.8). Lastly, we assume that each of (2.11) and (2.12)
holds for some t ∈ [1,∞]. We can now state our core Harnack result. Under certain conditions,
it will spawn other versions of Harnack’s inequality that will lead to continuity of weak solutions.



3.2. Main Results.

Proposition 3.1. Let 1 < p <∞ and |Q(x)| ∈ L
p/2
loc

(Ω). Assume that the functions A,B of (1.1)
satisfy (1.2) with

(3.5) γ = δ = p, ψ ∈ [p, p+ 1− σ−1).

Fix y ∈ Ω and suppose there is a function r1(x) as in (2.13) that satisfies a local uniformity
condition in B(y, r1(y)) with constant A∗ = A∗(y, r1(y)); see (2.6). Let

(3.6) C∗ =
128bκ10(γ∗)8

τA3
∗ min{A2

∗, (8κ
5)−1} ,

where b is from (2.9). For x0 ∈ B
(
y, τ5κr1(y)

)
and r ∈

(
0, τA∗

5κC∗
r1(y)

)
, define

E = {(x, l) : B(x, l) ⋐ B(x0, C∗r) and 0 < l ≤ C∗r}.
Let (u,∇u) ∈ W 1,p(Ω) be a weak solution of (1.1). Assume that ǫ1, ǫ2, ǫ3 ∈ (0, 1] and k ≥ 0 are
such that

sup
(x,l)∈E

Z̄
(
B(x, l), ū

)
=M <∞,(3.7)

where Z̄ is defined by (3.4) and ū = |u|+ k. If u ≥ 0 in B(x0, C∗r), then the Harnack inequality

ess sup
z∈B(x0,τr)

ū(z) ≤ C4

[
C5Z̄(B(x0, r), ū)

]C6M ess inf
z∈B(x0,τr)

ū(z)(3.8)

holds with

i) C4 depending on p, σ, s, ǫ1, ǫ2, ǫ3,
ii) C5 depending on a, p, σ, s, ǫ1, ǫ2, ǫ3, C1 in (2.8), N,Cs∗ in (2.10), on the pseudometric ρ,
iii) C6 depending on a, p, σ, s, ǫ1, ǫ2, ǫ3, C2, b in (2.9), τ,N,Cs∗ in (2.10), C0, d0 in (2.4) and

on the pseudometric ρ.

Remark 3.2. Since under the hypotheses of Proposition 3.1 one has (x0, r) ∈ E, we obtain

ess sup
z∈B(x0,τr)

ū(z) ≤ C4

[
C5M

]C6M ess inf
z∈B(x0,τr)

ū(z)(3.9)

with C4, C5, C6 independent of (u,∇u), b, c, d, e, f, g, h, k, y, x0 , r,M.

A proof of Proposition 3.1 is given in §6. The next proposition provides explicit integrability
conditions on structural coefficients and choices of ε1, ε2, ε3 and k that ensure condition (3.7) is
satisfied. It also provides a decay condition on k essential for proving Hölder continuity of weak
solutions to (1.1); see Theorem 3.7 and its proof.

Proposition 3.3. Let 1 < p <∞, |Q| ∈ L
p/2
loc (Ω), and ψ ∈ [p, p+1−σ−1). Let (u,∇u) ∈W 1,p

Q (Ω),

fix y ∈ Ω and suppose there is a function r1(x) as in (2.13) which satisfies a local uniformity
condition in B(y, r1(y)) with constant A∗ = A∗(y, r1(y)). Let C∗ be defined as in (3.6) and
assume that

i) b, e ∈ LB
loc
(Ω) with B ≥ max

{
p′σ′, d0

p−1

}
;

ii) h, g ∈ LH
loc
(Ω) with H ≥ d0

p , H > σ′;

iii) d, f ∈ LD
loc
(Ω) with D ≥ d0

p , D > σ′;

iv) c ∈ LC
loc
(Ω) with C ≥ d0pσ

(p+1−ψ)(pσ+d0)−d0
> 0 and C > pσ

σ(p+1−ψ)−1 .

For every x0 ∈ B
(
y, τ5κr1(y)

)
and r ∈

(
0, τA∗

5κC∗
r1(y)

)
, define

k = k(x0, r) = k
(
B(x0, C∗r)

)

=
[
(C∗r)

p−1‖e‖B,B(x0,C∗r);dx

] 1
p−1

+
[
(C∗r)

p‖f‖D,B(x0,C∗r);dx

] 1
p−1

+
[
(C∗r)

p‖g‖H,B(x0 ,C∗r);dx

] 1
p
.



Then

k(x0, r) ≤ Λrλ,(3.10)

where λ,Λ are nonnegative numbers independent of x0, r of the form

λ = min
{
1− d0

(p− 1)B ,
1

p− 1

(
p− d0

D
)
, 1− d0

pH
}
, and

Λ = C
1

(p−1)B
0 C

1−
d0

(p−1)B
∗ r1(y)

1−λ‖e‖
1
p−1

B,B(y,r1(y));dx

+ C
1

(p−1)D
0 C

p
p−1

−
d0

(p−1)D
∗ r1(y)

p
p−1

−λ‖f‖
1
p−1

D,B(y,r1(y));dx

+ C
1
pH
0 C

1−
d0
pH

∗ r1(y)
1−λ‖g‖

1
p

H,B(y,r1(y));dx
.

Moreover, with ǫ1, ǫ2 and ǫ3 defined by

ǫ1 = min
{
1,
pσ(p+ 1− ψ)− p− (p2σ/C)

(σ − 1)(p + 1− ψ)

}
, ǫ2 = min

{
1, p− pσ′

H
}
, ǫ3 = min

{
1, p − pσ′

D
}
,

(3.7) is satisfied with

M = 1 + C
1
B
0

[
1 + r1(y)

p−1‖b‖B,B(y,r1(y));dx

]
+ C

1
ε2H
0

[
1 + r1(y)

p‖h‖H,B(y,r1(y));dx

] 1
ǫ2

+ C
1

ε3D
0

[
1 + r1(y)

p‖d‖D,B(y,r1(y));dx

] 1
ǫ3

+C
ψ−p+(pσ/C)
ǫ1(p+1−ψ)σ

0

[
r1(y)

p‖c‖
p

p+1−ψ
C,B(y,r1(y));dx

(
‖u‖pσ,B(y,r1(y));dx

+ Λr1(y)
λ
) p(ψ−p)
p+1−ψ

] 1
ǫ1

,

where C0 is as in (2.4).

Proposition 3.3 is proved in the appendix.

Remark 3.4. (1) In part (iv), the assumption that d0pσ
(p+1−ψ)(pσ+d0)−d0

> 0 follows from the

condition ψ ∈ [p, p+1−σ−1) provided d0 ≤ pσ′; also, in the classical Euclidean situation,
the condition d0 ≤ pσ′ is true with equality. If it is the case that d0 > pσ′, this condition
further restricts ψ ∈ [p, p+ 1− d0

d0+pσ
) ( [p+ 1− σ−1).

(2) The constants λ,Λ,M in Proposition 3.3 are independent of x0, r. Moreover λ is inde-
pendent of y. The constant M depends on u only through ‖u‖pσ,B(y,r1(y));dx, and it is
independent of u when ψ = p.

(3) The strict inequalities in (ii), (iii) and (iv) guarantee that ǫ1, ǫ2, ǫ3 > 0; moreover λ > 0
if all the inequalities in (i), (ii), (iii) are strict.

Combining Propositions 3.1 and 3.3 we obtain the following theorem.

Theorem 3.5. (Harnack’s Inequality, when γ = δ = p and ψ ≥ p) Let 1 < p < ∞ and |Q| ∈
L
p/2
loc (Ω). Let A,B be functions satisfying (1.2) with γ, δ, ψ restricted to

γ = δ = p, ψ ∈ [p, p + 1− σ−1).

Fix y ∈ Ω and suppose there is a function r1(x) as in (2.13) which satisfies a local uniformity
condition in B(y, r1(y)) with constant A∗ = A∗(y, r1(y)). Let C∗ be as in (3.6), x0 ∈ B(y, τ5κr1(y))

and r ∈ (0, τA∗
5κC∗

r1(y)). Assume that the structural functions b, c, d, e, f, g, h of (1.2) and ǫ1, ǫ2, ǫ3

and k = k(x0, r) are as in Proposition 3.3. If (u,∇u) ∈W 1,p
Q (Ω) is a weak solution of (1.1) in Ω

and u ≥ 0 in B(x0, C∗r), then

ess sup
z∈B(x0,τr)

(
u(z) + k(x0, r)

)
≤ C ess inf

z∈B(x0,τr)

(
u(z) + k(x0, r)

)
,(3.11)



with C = C4(C5M)C6M , M as in Proposition 3.3 and C4, C5, C6 as in Proposition 3.1 with
ǫ1, ǫ2, ǫ3 given in Proposition 3.3. The constant C depends on ||u||pσ,B(y,r1(y));dx only when ψ > p
and only through M .

The proof of Theorem 3.5 follows by simply combining Propositions 3.1, 3.3 and is left to the
reader. Theorem 3.5 will allow us to prove Hölder continuity of weak solutions to (1.1). First we
recall the notions of Hölder continuity that we will use.

Definition 3.6. Let w : Ω → R and S ⊂ Ω. We say that w is:

(1) essentially Hölder continuous with respect to ρ in S if there are positive constants C,µ
such that

ess sup
z,x∈S

|w(z) − w(x)|
ρ(z, x)µ

≤ C.(3.12)

(2) essentially locally Hölder continuous with respect to ρ in S if for every compact set
K ⊂ S, there are positive constants C,µ such that

ess sup
z,x∈K

|w(z) − w(x)|
ρ(z, x)µ

≤ C.(3.13)

In these definitions, the notion of Hölder continuity of a function is relative to the quasimetric
ρ. Classical Hölder continuity with respect to the usual Euclidean metric then follows by impos-
ing a Fefferman-Phong containment condition on the family of quasimetric ρ-balls. Recall that a
Fefferman-Phong condition holds if there are positive constants C, ε such D(x, r) ⊂ B(x,Crε) for
x ∈ Ω and r > 0 sufficiently small (in terms of x). Several references impose this condition for
such a purpose; see [FP] and [SW1] for further discussion.

Our study of Hölder continuity of weak solutions begins with the case when the exponents
γ, δ, ψ are restricted as in (3.5).

Theorem 3.7. (Hölder continuity, when γ = δ = p and ψ ≥ p) Let 1 < p <∞ and |Q| ∈ L
p/2
loc (Ω).

Let (u,∇u) be a weak solution of (1.1) in Ω where the functions A(x, z, ξ) and B(x, z, ξ) satisfy
(1.2) with γ, δ, ψ as in (3.5). Assume that the coefficient functions of (1.2) satisfy conditions (i)-
(iv) of Proposition 3.3 with strict inequality. Let y ∈ Ω and suppose there is a function r1(x) as in
(2.13) which satisfies a local uniformity condition in B(y, r1(y)) with constant A∗ = A∗(y, r1(y)).

Then u is essentially Hölder continuous with respect to ρ in B(y, τ
2

5κr1(y)). The constants C and µ

in (3.13) depend on y, r1(y), A∗, κ as in (1.9), the Harnack constant C4(C5M)C6M which appears
in Theorem 3.5, λ as in Proposition 3.3; C depends also on ‖u‖pσ,B(y,r1(y));dx.

Remark 3.8. We explicitly note that µ in the previous Theorem depends on ‖u‖pσ,B(y,r1(y));dx

only through M , and thus it depends on u itself only if ψ > p.

Theorem 3.7 is proved in §7. The next result gives sufficient conditions for essential local Hölder
continuity of solutions in Ω.

Corollary 3.9. Let 1 < p < ∞ and |Q| ∈ L
p/2
loc (Ω), and suppose (1.2) holds with γ, δ, ψ as in

(3.5). Assume also that the coefficient functions of (1.2) satisfy conditions (i)-(iv) of Proposition
3.3 with strict inequality. Let r1 : Ω → (0,∞) be a function satisfying (2.13) with the property
that given any compact K ⊂ Ω there is a positive constant s0 such that s0 ≤ r1(y) ≤ 1 for every

y ∈ K. Then if (u,∇u) ∈W 1,p
Q (Ω) is a weak solution of (1.1) in Ω, u is essentially locally Hölder

continuous with respect to ρ in Ω.

A brief proof of Corollary 3.9 can be found in §8.



3.3. Some consequences. The following results are concerned with some of the possible cases
when the exponents γ, δ, ψ are allowed to vary in the ranges given in (1.3).

In particular, Theorems 3.10 and 3.11 and Corollary 3.12 are devoted to the case when γ, δ, ψ <
p. We consider the case when γ, δ, ψ > p and satisfy (1.3) in Theorems 3.13 and 3.15 and in
Corollary 3.16. See §9 for their proofs.

Of course, similar results can be obtained for other choices of γ, δ, ψ in the ranges given in (1.3)
but we won’t list them here. Such results can all be derived from Theorems 3.5, 3.7 and Corollary
3.9. We leave the details to the interested reader.

Theorem 3.10. (Harnack’s Inequality, when γ, δ, ψ < p) Let 1 < p <∞ and |Q| ∈ L
p/2
loc (Ω). Let

A,B be functions satisfying (1.2) with γ, δ, ψ restricted to

(3.14) γ, δ, ψ ∈ (1, p).

Fix y ∈ Ω and suppose there is a function r1(x) as in (2.13) which satisfies a local uniformity
condition in B(y, r1(y)) with constant A∗ = A∗(y, r1(y)). Let C∗ be as in (3.6), x0 ∈ B(y, τ5κr1(y))

and r ∈ (0, τA∗
5κC∗

r1(y)). Assume that the structural functions b, d, e, f, g, h of (1.2) satisfy condi-

tions (i), (ii) and (iii) in Proposition 3.3, that c ∈ LC
loc
(Ω) with C ≥ d0 and C > pσ′. Let ǫ2, ǫ3, λ

be as in Proposition 3.3 and define

ǫ1 = min
{
1, p− p2σ′

C
}
,

k1 = k1(x0, r) = k1
(
B(x0, C∗r)

)

=
[
(C∗r)

p−1‖b+ e‖B,B(x0,C∗r);dx

] 1
p−1

+
[
(C∗r)

p‖c+ d+ f‖D,B(x0,C∗r);dx

] 1
p−1

+
[
(C∗r)

p‖g + h‖H,B(x0,C∗r);dx

] 1
p
,

Λ1 = C
1

(p−1)B
0 C

1−
d0

(p−1)B
∗ r1(y)

1−λ‖b+ e‖
1
p−1

B,B(y,r1(y));dx

+ C
1

(p−1)D
0 C

pD−d0
(p−1)D
∗ r1(y)

p
p−1

−λ‖c+ d+ f‖
1
p−1

D,B(y,r1(y));dx

+ C
1
pH
0 C

1−
d0
pH

∗ r1(y)
1−λ‖g + h‖

1
p

H,B(y,r1(y));dx
,

M1 = 1 + C
1
B
0

[
1 + r1(y)

p−1‖b‖B,B(y,r1(y));dx

]
+C

1
ε2H
0

[
1 + r1(y)

p‖h‖H,B(y,r1(y));dx

] 1
ε2

+ C
1

ε3D
0

[
1 + r1(y)

p‖d‖D,B(y,r1(y));dx

] 1
ε3 + C

p
ε1C
0

[
r1(y)

p‖c‖p
C,B(y,r1(y));dx

] 1
ε1 .

Then

k1(x0, r) ≤ Λ1r
λ

and, if (u,∇u) ∈W 1,p
Q (Ω) is a weak solution of (1.1) in Ω such that u ≥ 0 in B(x0, C∗r),

ess sup
z∈B(x0,τr)

(
u(z) + k1(x0, r)

)
≤ C ess inf

z∈B(x0,τr)

(
u(z) + k1(x0, r)

)
,(3.15)

where C = C4(C5M1)
C6M1, with C4, C5, C6 as in Proposition 3.1.

Theorem 3.11. (Hölder continuity, when γ, δ, ψ < p) Let 1 < p < ∞ and |Q| ∈ L
p/2
loc (Ω). Let

(u,∇u) be a weak solution of (1.1) in Ω where the functions A(x, z, ξ) and B(x, z, ξ) satisfy (1.2)
with γ, δ, ψ as in (3.14). Assume that the coefficient functions of (1.2) satisfy the same conditions
as in Theorem 3.10 with strict inequality. Let y ∈ Ω and suppose there is a function r1(x) as in
(2.13) which satisfies a local uniformity condition in B(y, r1(y)) with constant A∗ = A∗(y, r1(y)).

Then u is essentially Hölder continuous with respect to ρ in B(y, τ
2

5κr1(y)). The constants C and

µ in (3.13) depend on y, r1(y), A∗, κ as in (1.9), the Harnack constant C4(C5M1)
C6M1 which



appears in Theorem 3.10, λ as in Proposition 3.3; C depends also on ‖u‖pσ,B(y,r1(y));dx, while µ
is independent of (u,∇u).

Corollary 3.12. Let 1 < p < ∞ and |Q| ∈ L
p/2
loc (Ω), and suppose (1.2) holds with γ, δ, ψ as

in (3.14). Assume also that the coefficient functions of (1.2) satisfy the same conditions as in
Theorem 3.10 with strict inequality. Let r1 : Ω → (0,∞) be a function satisfying (2.13) with the
property that given any compact K ⊂ Ω there is a positive constant s0 such that s0 ≤ r1(y) ≤ 1

for every y ∈ K. Then if (u,∇u) ∈ W 1,p
Q (Ω) is a weak solution of (1.1) in Ω, u is essentially

locally Hölder continuous with respect to ρ in Ω with exponent µ that is independent of the weak
solution (u,∇u).

Theorem 3.13. (Harnack’s Inequality, when γ, δ, ψ > p) Let 1 < p <∞ and |Q| ∈ L
p/2
loc (Ω). Let

A,B be functions satisfying (1.2) with γ, δ, ψ satisfying (1.3) and restricted to

(3.16) γ, δ, ψ > p.

Fix y ∈ Ω and suppose there is a function r1(x) as in (2.13) which satisfies a local uniformity
condition in B(y, r1(y)) with constant A∗ = A∗(y, r1(y)). Let C∗ be as in (3.6), x0 ∈ B(y, τ5κr1(y))

and r ∈ (0, τA∗
5κC∗

r1(y)). Assume that the structural functions b, d, e, f, g, h of (1.2) satisfy

i) b ∈ LB0
loc
(Ω) with B0 ≥ pσ

pσ−σ−γ+1 and B0 ≥ d0pσ
p(p−1)σ−d0(γ−p)

> 0;

ii) e ∈ LE
loc
(Ω) with E ≥ max

{
p′σ′, d0

p−1

}
;

iii) h ∈ LH0
loc

(Ω) with H0 >
pσ

pσ−γ and H0 ≥ d0pσ
p2σ−d0(γ−p)

> 0;

iv) g ∈ LG
loc
(Ω) with G ≥ d0

p , G > σ′;

v) d ∈ LD0
loc

(Ω) with D0 >
pσ
pσ−δ and D0 ≥ d0pσ

p2σ−d0(δ−p)
> 0;

vi) f ∈ LF
loc
(Ω) with F ≥ d0

p , F > σ′;

vii) c ∈ LC
loc
(Ω) with C > pσ

σ(p+1−ψ)−1 and C ≥ d0pσ
(p+1−ψ)(pσ+d0)−d0

> 0.

Define

B = min

{
pσ

pσ
B0

+ (γ − p)
, E
}
, H = min

{
pσ

pσ
H0

+ (γ − p)
,G
}
, D = min

{
pσ

pσ
D0

+ (δ − p)
,F
}
.

Let k = k(x0, r), ǫ1, ǫ2, ǫ3, λ,Λ be as in Proposition 3.3 and define

M2 = 1 +C
1
B
0

[
1 +

r1(y)
p−1

|B
(
y, r1(y)

)
| 1B

‖b‖B0,B(y,r1(y));dx‖u‖
γ−p
pσ,B(y,r1(y));dx

]

+ C
1

ε2H
0

[
1 +

r1(y)
p

|B
(
y, r1(y)

)
| 1
H
‖h‖H0,B(y,r1(y));dx‖u‖

γ−p
pσ,B(y,r1(y));dx

] 1
ǫ2

+ C
1

ε3D
0

[
1 +

r1(y)
p

|B
(
y, r1(y)

)
| 1
D
‖d‖D0,B(y,r1(y));dx‖u‖

δ−p
pσ,B(y,r1(y));dx

] 1
ǫ3

(3.17)

+C
ψ−p+(pσ/C)
ǫ1(p+1−ψ)σ

0

[
r1(y)

p‖c‖
p

p+1−ψ
C,B(y,r1(y));dx

(
‖u‖pσ,B(y,r1(y));dx

+Λr1(y)
λ
) p(ψ−p)
p+1−ψ

] 1
ǫ1

,

If (u,∇u) ∈W 1,p
Q (Ω) is a weak solution of (1.1) in Ω and u ≥ 0 in B(x0, C∗r), then

ess sup
z∈B(x0,τr)

(
u(z) + k(x0, r)

)
≤ C ess inf

z∈B(x0,τr)

(
u(z) + k(x0, r)

)
,(3.18)

where k = k(x0, r) satisfies (3.10) and C = C4(C5M2)
C6M2 , with C4, C5, C6 as in Proposition 3.1.



Remark 3.14. In parts (i), (iii), (v) and (vii) of the assumptions of Theorem 3.13, the positivity

assumptions on d0pσ
p(p−1)σ−d0(γ−p)

, d0pσ
p2σ−d0(γ−p)

, d0pσ
p2σ−d0(δ−p)

and d0pσ
(p+1−ψ)(pσ+d0)−d0

are a consequence

of conditions (1.3) and (3.16) when d0 ≤ pσ′. It is also useful to note that d0 ≤ pσ′ is true with
equality in the classical Euclidean situation. In case d0 > pσ′, the positivity conditions of items
(i), (v), and (vii) further restrict the ranges of γ, δ, and ψ. See also part (1) of Remark 3.4.

Theorem 3.15. (Hölder continuity, when γ, δ, ψ > p) Let 1 < p < ∞ and |Q| ∈ L
p/2
loc (Ω).

Let (u,∇u) be a weak solution of (1.1) in Ω where the functions A(x, z, ξ) and B(x, z, ξ) satisfy
(1.2) with γ, δ, ψ as in (3.16) and (1.3). Assume that the coefficient functions of (1.2) satisfy
the same conditions as in Theorem 3.13 with strict inequality. Let y ∈ Ω and suppose there is a
function r1(x) as in (2.13) which satisfies a local uniformity condition in B(y, r1(y)) with constant

A∗ = A∗(y, r1(y)). Then u is essentially Hölder continuous with respect to ρ in B(y, τ
2

5κr1(y)).
The constants C and µ in (3.13) depend on y, r1(y), A∗, κ as in (1.9), the Harnack constant
C4(C5M2)

C6M2 which appears in Theorem 3.13, λ as in Proposition 3.3; C depends also on
‖u‖pσ,B(y,r1(y));dx.

Corollary 3.16. Let 1 < p < ∞ and |Q| ∈ L
p/2
loc (Ω), and suppose (1.2) holds with γ, δ, ψ as in

(3.16) and (1.3). Assume also that the coefficient functions of (1.2) satisfy the same conditions
as in Theorem 3.13 with strict inequality. Let r1 : Ω → (0,∞) be a function satisfying (2.13) with
the property that given any compact K ⊂ Ω there is a positive constant s0 such that s0 ≤ r1(y) ≤ 1

for every y ∈ K. Then if (u,∇u) ∈ W 1,p
Q (Ω) is a weak solution of (1.1) in Ω, u is essentially

locally Hölder continuous with respect to ρ in Ω.

We conclude the section with some comments concerning the rate growth of the Euclidean
volume of pseudometric balls B(x, r).

Definition 3.17. Let Θ ⋐ Ω and r1 : Ω → (0,∞) be a function satisfying (2.13). If q∗ satisfies
0 < q∗ <∞ and there are positive constants C7, α such that

(3.19) |B(x, r)| ≥ C7r
q∗

for all x ∈ Θ and all r < min{1, αr1(x)}, we will say that condition weak-Dq∗ holds on Θ.

A similar, but slightly stronger, condition called Dq∗ was introduced in Definition 1.7 in [MRW]
in order to derive some local boundedness results for weak solutions of equation (1.1); see Corol-
laries 1.8, 1.9 and 1.11 in [MRW].

Note that by Definition 2.4, if (Ω, ρ, dx) is a local homogeneous space, Θ ⋐ Ω and r1(x) satisfies
a local uniformity condition in Θ with constant A∗ = A∗(Θ) (see (2.6)), then condition weak-Dq∗

automatically holds with q∗ = d0 on Θ, for some constant C7 > 0 and with α = A∗/2. See the
Appendix for a proof of this result.

The fact that property (3.19) holds with q∗ = d0 for suitable families of pseudometric balls
B(x, r) with small radii is used repeatedly in the proofs of our results, starting from Proposition
3.3 (see Steps I and III of the proof in the Appendix) and in all the theorems and corollaries that
follow it.

It is interesting to note that in the proof of Proposition 3.3, only condition (3.19) with q∗ = d0
is used to estimate terms involving the structural coefficients b, c, d, h, while the local Doubling
Condition (2.4) is directly used to estimate terms involving some local averages of e, f, g (see Step
6 of the proof in the Appendix).

4. Some Calculus for Degenerate Sobolev Spaces

Lemma 4.1. Let Θ ⊂ Ω be an open set, (u,∇u) ∈W 1,p
Q (Ω) with u ∈ L∞(Θ) and let ε > 0. Let

m = ess inf
Θ

u, M = ess sup
Θ

u.

Then there exists a sequence {ϕj}j∈N ⊂ Liploc(Ω) ∩ L∞(Ω) such that (ϕj ,∇ϕj) ∈W 1,p
Q (Ω) and



i) (ϕj ,∇ϕj) → (u,∇u) in W 1,p
Q (Θ),

ii) ϕj(x) ∈ [m− ε,M + ε] for every x ∈ Ω and every j ∈ N.

Proof: By definition of W 1,p
Q (Ω), there exists a sequence {ϕ̂j}j∈N ⊂ Liploc(Ω) such that

(ϕ̂j ,∇ϕ̂j) converges to (u,∇u) in W 1,p
Q (Ω). By choosing a subsequence, we may assume that

(4.1)
ϕ̂j → u in Lp(Ω), in W 1,p

Q (Ω) and a.e. in Ω,√
Q∇ϕ̂j → √

Q∇u in [Lp(Ω)]n, and a.e. in Ω.

Now for every j ∈ N and x ∈ Ω define

(4.2) ϕj(x) =





ϕ̂j(x) if m− ε ≤ ϕ̂j(x) ≤M + ε,

M + ε if ϕ̂j(x) > M + ε,

m− ε if ϕ̂j(x) < m− ε.

This immediately yields that ϕj ∈ Liploc(Ω) and that

m− ε ≤ ϕj(x) ≤M + ε

for every j ∈ N and x ∈ Ω. Then ϕj ∈ L∞(Ω) for every j ∈ N. From (4.2) it follows that

(4.3) ∇ϕj(x) =
{
∇ϕ̂j(x) if m− ε < ϕ̂j(x) < M + ε,

0 otherwise

for each j ∈ N and almost every x ∈ Ω. Hence, |√Q∇ϕj | ≤ |√Q∇ϕ̂j | for every j ∈ N and a.e.

x ∈ Ω. We conclude that (ϕj ,∇ϕj) ∈W 1,p
Q (Ω) for every j ∈ N.

Since u(x) ∈ [m,M ] for a.e. x ∈ Θ and ϕ̂j → u for a.e. x ∈ Ω by (4.1), we have that
ϕ̂j(x) ∈ (m− ε,M + ε) for a.e. x ∈ Θ when j is large enough. It follows from (4.2) that one also
has ϕj(x) = ϕ̂j(x) pointwise a.e. in Θ when j is large enough. Therefore,

ϕj → u a.e. in Θ.

Moreover, by (4.3), ∇ϕj = ∇ϕ̂j a.e. in Θ when j is large enough. Hence, by (4.1),
√
Q∇ϕj →

√
Q∇u a.e. in Θ.

Since

|u(x)− ϕj(x)|p ≤ |u(x)− ϕ̂j(x)|p ≤ 2p−1
[
|u(x)|p + |ϕ̂j(x)|p

]

for a.e. x ∈ Θ and |u|p+|ϕ̂j |p → 2|u|p for a.e. x ∈ Ω and in L1(Ω) by (4.1), Lebesgue’s sequentially
dominated convergence theorem implies that

ϕj → u in Lp(Θ).

In a similar way, for a.e. x ∈ Θ we have

|
√
Q∇u(x)−

√
Q∇ϕj(x)|p ≤ 2p−1

[
|
√
Q∇u(x)|p + |

√
Q∇ϕj(x)|p

]

≤ 2p−1
[
|
√
Q∇u(x)|p + |

√
Q∇ϕ̂j(x)|p

]
.

Further, we have that |√Q∇u|p + |√Q∇ϕ̂j |p → 2|√Q∇u|p a.e. in Ω and in L1(Ω) by (4.1).
Lebesgue’s theorem gives √

Q∇ϕj →
√
Q∇u in [Lp(Θ)]n.

We conclude that

(ϕj ,∇ϕj) → (u,∇u) in W 1,p
Q (Θ).



Proposition 4.2. Let Θ ⊂ Ω be an open set, (u,∇u) ∈W 1,p
Q (Ω) with u ∈ L∞(Θ) and

m = ess inf
Θ

u, M = ess sup
Θ

u.

Let F ∈ C1
(
(m− ε0,M + ε0)

)
for some ε0 > 0. Then

(
F (u),∇(F (u))

)
∈W 1,p

Q (Θ) with

(4.4)
√
Q∇

(
F (u)

)
= F ′(u)

√
Q∇u

almost everywhere in Θ.

Proof: The proof is a straightforward adaptation of the techniques used in the proof of Lemma
4.1 in [MRW]. Fix any ε ∈ (0, ε0) and consider the sequence {ϕj}j≥1 ⊂ Liploc(Ω) ∩ L∞(Ω)
provided by Lemma 4.1. Notice that ϕj(x) ∈ [m − ε,M + ε] for every x ∈ Ω and every j, that
u(x) ∈ [m− ε,M + ε] for a.e. x ∈ Θ and that

sup
t∈[m−ε,M+ε]

|F (t)| <∞, sup
t∈[m−ε,M+ε]

|F ′(t)| <∞.

Arguing as in Lemma 4.1 in [MRW], it is easy to see that {F (ϕj)}j∈N ⊂ Liploc(Ω) ∩ L∞(Ω)

and {
(
F (ϕj),∇(F (ϕj))

)
}j∈N is a Cauchy sequence in W 1,p

Q (Θ). Thus, {
(
F (ϕj),∇(F (ϕj))

)
}j∈N

defines an element
(
F (u),∇(F (u))

)
of W 1,p

Q (Θ) that satisfies (4.4).

Corollary 4.3. Let Θ ⋐ Ω be an open set and fix a quasimetric ball B with B ⋐ Θ. Suppose
that for some t ∈ [1,∞], condition (2.12) holds for B and condition (2.11) holds for a particular

function η ∈ Lip0(B). Let θ ≥ 1, (u,∇u) ∈W 1,p
Q (Ω) with u ∈ L∞(Θ),

m = ess inf
Θ

u, M = ess sup
Θ

u,

and F ∈ C1
(
(m− ε0,M + ε0)

)
for some ε0 > 0. Then

(
ηθF (u),∇(ηθF (u))

)
∈ (W 1,p

Q )0(B) and
√
Q∇

(
ηθF (u)

)
= θηθ−1F (u)

√
Q∇η + ηθF ′(u)

√
Q∇u pointwise a.e. in Ω.

Proof: This is a simple consequence of Proposition 4.2 together with Proposition 2.2 in [MRW].

Remark 4.4. Let (u,∇u) ∈W 1,p
Q (Ω) be such that u ≥ m a.e. in an open set Θ ⊂ Ω, and assume

that F : (m− ε0,∞) → R is C1 with sup
(m−ε0,∞)

|F ′| <∞ for some ε0 > 0. Then the conclusions of

Proposition 4.2 and Corollary 4.3 still hold. We omit the proofs of these facts as they use ideas
similar to those used in the previous proofs.

5. The Inequality of John and Nirenberg

This section develops a local version of the inequality of John and Nirenberg adapted to the
class [cR]BMO(E) defined in the next paragraph. The arguments to follow are adaptations of
ones in [SW1], where R(x) is a small fixed multiple of dist(x, ∂Ω).

Let Ω be an open subset in Rn. Let ρ be a quasimetric in Ω and fix R : Ω → (0,∞). For each

x ∈ Ω and 0 < c <∞, we say that a ρ-ball B(y, t) is a cR(x)-ball if 0 < t < cR(x), B(y, γ∗t) ⊂ Ω,
and B(y, γ∗t) ⊂ B(x, cR(x)) where γ∗ is as in Lemma 2.2. It is useful to note that if 0 < c1 < c2
then a c1R(x)-ball B is also a c2R(x)-ball. Let E ⊂ Ω, E open. A function f ∈ L1

loc(Ω) is said to
belong to the class [cR]BMO(E) if

||f ||[cR]BMO(E) = sup
x∈E

sup
B

1

|B|

ˆ

B
|f(y)− fB |dy <∞,(5.1)

where the second supremum is taken over all cR(x)-balls B.
The main result of this section is as follows.



Proposition 5.1. Let (Ω, ρ, dx) be a local homogeneous space as in Definition 2.4. Let R : Ω →
(0,∞) satisfy R(x) ≤ min{R0(x)/(γ

∗)2, R1(x)/γ
∗} for all x, where R0 is as above Remark 2.1 and

R1 is as in Definition 2.4. Fix an open set E ⊂ Ω and assume that R satisfies a local uniformity
condition with respect to ρ in E with constant A∗ = A∗(R,E); see (2.6). Then there are positive
constants δ0 = δ0(R,E), C8, C9, cρ with δ0 < 1 and cρ > 1 such that for all x ∈ E, all δ0R(x)-balls
B, all f ∈ [cρR]BMO(E) and all α > 0,

|{y ∈ B : |f(y)− fB | > α}| ≤ C8e
−C9α

||f ||[cρR]BMO(E) |B|.(5.2)

Remark 5.2. The constants C8, C9 and cρ in Proposition 5.1 depend only on the quasimetric ρ,
while the dependence of δ0 on E occurs only through A∗. As the proof of Proposition 5.1 shows,
cρ = 8(γ∗)2κ5 and δ0 = A2

∗ min{A2
∗, (8κ

5)−1}/8(γ∗)3κ5, where κ is the constant in (1.9) and
γ∗ = κ+ 2κ2 as in Lemma 2.2.

The significance of Proposition 5.1 is its consequence for a special class of A2 weights. Given
0 < c <∞ and a set E ⊂ Ω, a nonnegative function w ∈ L1

loc(Ω) is said to be a [cR]A2(E) weight
if

||w||[cR]A2(E) = sup
x∈E

sup
B

( 1

|B|

ˆ

B
wdy

)( 1

|B|

ˆ

B
w−1dy

)
<∞,(5.3)

where the second supremum is taken over all cR(x)-balls B. We will use the following corollary
of Proposition 5.1 in the proof of Proposition 3.1.

Corollary 5.3. Under the hypotheses of Proposition 5.1, there are constants C8, C9 > 0 and
cρ > 1 such that for any open set E ⊂ Ω, there is a δ0 = δ0(R,E) > 0 for which

||ef ||[δ0R]A2(E) ≤
(
1 +

C8||f ||[cρR]BMO(E)

C9 − ||f ||[cρR]BMO(E)

)2

(5.4)

for every f ∈ [cρR]BMO(E) with ||f ||[cρR]BMO(E) < C9. The constants δ0, C8, C9, cρ are the
same as those in Proposition 5.1.

Except for simple changes, the proof of Corollary 5.3 is identical to the proof of [SW1, Corollary
61], and we refer the reader there for its proof.

Proof of Proposition 5.1: The proof is an adaptation to [cρR]BMO(E) of the one in [SW1,
Lemma 60]. We begin by recalling the “dyadic grids” defined in [SW3]. Note by (2.2) that the
quasimetric space (Ω, ρ) is separable since Ω is separable with respect to Euclidean distance in
Rn . Define Nℓ = {1, ..., ℓ} for each ℓ ∈ N, and let N∞ = N. Set λ = 8κ5 with κ as in (1.9).
Then for each m ∈ Z and every k ≥ m, there are points {xkj }nkj=1 ⊂ Ω (nk ∈ N ∪ {∞}) and Borel

sets {Qkj }nkj=1 satisfying

B(xkj , λ
k) ⊂ Qkj ⊂ B(xkj , λ

k+1) if j ∈ Nnk ,(5.5)

Ω = ∪nkj=1Q
k
j ,(5.6)

Qki ∩Qkj = ∅ if i, j ∈ Nnk and i 6= j,(5.7)

either Qkj ⊂ Qli or Q
k
j ∩Qli = ∅ if k < l, j ∈ Nnk and i ∈ Nnl .(5.8)

This dyadic grid of Borel sets depends on the integer m, and there may be different grids for each
m. We fix a single grid for each m ∈ Z and denote it by Fm:

Fm = {Qkj : k, j ∈ Z, k ≥ m and j ∈ Nnk}.(5.9)

For fixed m,k, j ∈ Z with k ≥ m and j ∈ Nnk we will refer to the Borel set Qkj ∈ Fm as the jth

“cube” at level k. For 0 < δ0 ≤ 1, we will call a cube Qkj ∈ Fm “δ0-local” if B(xkj , λ
k+1) satisfies



λk+1 < δ0R(x
k
j ). For each m ∈ Z and δ0 ∈ (0, 1] we define

• Fm,δ0 = {Q ∈ Fm : Q is δ0-local}, and(5.10)

• Em,δ0 = {Q = Qkj ∈ Fm,δ0 : B(xkj , λ
k+1) is an R(x)-ball for some x ∈ E}.

Set cρ = (γ∗)2λ and fix f ∈ [cρR]BMO(E) with ||f ||[cρR]BMO(E) = 1. Let fm be the discrete
expectation of f on the dyadic grid at level m:

fm(z) =
∑

j∈Nm

( 1

|Qmj |

ˆ

Qmj

fdy
)
χQmj (z).(5.11)

For the moment, we will assume each of the following.

• There are positive constants C ′
8, C

′
9 and δ1 with δ1 ≤ A∗λ

−1 such that for each m ∈ Z,
α > 0 and Q ∈ Em,δ1 , we have

|{y ∈ Q : |fm − fQ| > α}| ≤ C ′
8e

−C′
9α|Q|.(5.12)

Note that C ′
8, C

′
9 and δ1 are independent of m, and C ′

8, C
′
9 are also independent of E.

• For almost every y ∈ Ω,

fm(y) → f(y) as m→ −∞.(5.13)

Taking (5.12) and (5.13) temporarily for granted, let us now prove Proposition 5.1 by using a
packing argument and Fatou’s lemma. To begin, we will use (5.12) to derive its analogue where
the δ1-local cube Q is replaced by any δ0R(x)-ball, for any x ∈ E, provided δ0 is sufficiently small
in terms of δ1 above. Indeed, fix x ∈ E, set δ0 = A∗δ1/[(γ

∗)3λ], let B = B(z, r) be a δ0R(x)-ball
and let m ∈ Z with λm+1 < r. Choose k ∈ Z with k > m such that λk < r ≤ λk+1. As Ω = ∪jQkj ,
there is a nonempty collection G ⊂ Nnk such that

Qkj ∩B 6= ∅ for all j ∈ G, and
B ⊂ ∪j∈GQkj ⊂ ∪j∈GB(xkj , λ

k+1) ⊂ B(z, γ∗λr) = B∗ ⊂ B(x, (γ∗)2λδ0R(x)).(5.14)

Here, the third and fourth containments in (5.14) follow from (2.3) since λk+1 < λr. We now
prove that the set Em,δ1 is nonempty.

Lemma 5.4. With x,B,m, k, δ1,G and δ0 as above, Qkj ∈ Em,δ1 for every j ∈ G.

Proof of Lemma 5.4: It is enough to show that for each j ∈ G,

λk+1 < R(x) and B(xkj , γ
∗λk+1) ⊂ B(x,R(x)) (showing that B(xkj , λ

k+1) is(5.15)

an R(x)-ball), and

λk+1 < δ1R(x
k
j ) (showing that Qkj ∈ Fm,δ1).(5.16)

Fix j ∈ G. To see that (5.15) holds, we begin by noting that our choice of δ0 guarantees that
(γ∗)3λδ0 < 1. Due to our choice of k and using that B(z, r) is a δ0R(x)-ball we have

λk+1 < λr < λδ0R(x) < R(x).

Also, since xkj ∈ B∗, swallowing gives B(xkj , γ
∗λk+1) ⊂ B(x, (γ∗)3λδ0R(x)) ⊂ B(x,R(x)) estab-

lishing (5.15). Next, since R(x) satisfies the uniformity condition (2.6) on E with constant A∗

and xkj ∈ B(x,R(x)), A∗R(x) < R(xkj ). Our choice of δ0 then guarantees that

λk+1 < λr < δ1A∗R(x) < δ1R(x
k
j ),

giving (5.16) and proving the lemma.



Next, since xkj ∈ B∗ ∩ B(xkj , γ
∗λr), we have by the swallowing lemma, the local doubling

property (2.4) and the dyadic structure that

|B∗| ≤ |B(xkj , (γ
∗)2λr)| ≤ C0(γ

∗λ)2d0 |B(xkj , λ
k)| ≤ C ′|Qkj |

for any j ∈ G with C ′ = C0(γ
∗λ)2d0 . Therefore, for each j ∈ G,

|fB − fQkj
| ≤ |fB∗ − fB|+ |fB∗ − fQkj

|

=
∣∣∣
1

|B|

ˆ

B
(f − fB∗)dy

∣∣∣ +
∣∣∣

1

|Qkj |

ˆ

Qkj

(f − fB∗)dy
∣∣∣

≤ C0(γ
∗λ)d0 + C ′

|B∗|

ˆ

B∗
|f − fB∗ |dy

≤ C0(γ
∗λ)d0 + C ′ = C ′′(5.17)

since ||f ||[cρR]BMO(E) = 1 and B∗ is an R(x)-ball (due to our choice of δ0) with x ∈ E, and hence
B∗ is also a cρR(x)-ball.

Consequently, if y ∈ B and α > 2C ′′, then (5.17) and the standard triangle inequality imply
that |fm(y)− fQkj

| > α/2 provided |fm(y)− fB| > α. Since Qkj ∈ Em,δ1 for j ∈ G, the disjointness
in j of the Qkj and (5.12) yield

|{y ∈ B : |fm(y)− fB| > α}| ≤
∑

j∈G

|{y ∈ Qkj : |fm(y)− fQkj
| > α/2}|

≤
∑

j∈G

C ′
8e

−C′
9α/2|Qkj |

≤ C ′
8e

−C′
9α/2|B∗|, as ∪j∈G Qkj ⊂ B∗,

≤ C ′
8e

−C′
9α/2C0(γ

∗λ)d0 |B| by (2.4).

In case α ≤ 2C ′′, we simply use that |{y ∈ B : |fm(y) − fB| > α}| ≤ |B| and replace C ′
8 with

eC
′
9C

′′
if necessary. Hence, there is a constant C > 0 independent of x ∈ E such that for any

α > 0 and any δ0R(x)-ball B,

|{y ∈ B : |fm(y)− fB| > α}| ≤ Ce−C
′
9α/2|B|.(5.18)

Next we use the pointwise convergence of fm to f as m → −∞ and Fatou’s lemma. Set Em,α =
{y ∈ B : |fm(y)− fB| > α}. Then

|{y ∈ B : |f(y)− fB | > α}| =

ˆ

χ{y∈B : |f(y)−fB |>α}(z)dz

≤
ˆ

lim inf
m→−∞

χEm,α(z)dz

≤ lim inf
m→−∞

|Em,α|

≤ Ce−C
′
9α/2|B|.(5.19)

This proves (5.2) with C8 = C and C9 = C ′
9/2 in case ||f ||[cρR]BMO(E) = 1 and δ0 = A∗δ1/[(γ

∗)3λ].
The general case follows by replacing f and α by f/||f ||[cρR]BMO(E) and α/||f ||[cρR]BMO(E) as in
[SW1].

The proof now rests on the validity of (5.12) and (5.13). We first prove (5.13); the verification
of (5.12) is contained in Lemma 5.5 to follow. Given a fixed x ∈ Ω, the dyadic structure provides
a sequence {xm}−∞

m=−1 ⊂ Ω such that

(i) xm = xmjm for some jm ∈ Nnm, and

(ii) x ∈ Qm = Qmjm ⊂ B(xm, λ
m+1) for each m.



By standard homogeneous space theory (see the proof of Lemma 5.5 for further details), almost
every point x ∈ Ω is a Lebesgue point of f :

lim
r→0

1

|B(x, r)|

ˆ

B(x,r)
|f(y)− f(x)|dy = 0.(5.20)

Fix such an x. By Lemma 2.2, there existm0 and C such that B(xm, λ
m+1) ⊂ B(x,Cλm+1) ifm ≤

m0. Thus Qm ⊂ B(x,Cλm+1). Also, by (5.5), there exists m1 such that |Qm| ≈ |B(xm, λ
m+1)| ≈

|B(x,Cλm+1)| uniformly in m if m ≤ m1. By choosing r = Cλm+1, we obtain

lim
m→−∞

1

|Qm|

ˆ

Qm

|f(y)− f(x)|dy = 0.

But fm(x) = (1/|Qm|)
´

Qm
f(y)dy, so fm(x) → f(x) as m→ −∞. This proves (5.13).

The next lemma verifies (5.12).

Lemma 5.5. Let (Ω, ρ, dx) be a local homogeneous space as in Definition 2.4, and E be an
open set in Ω. Let R : Ω → (0,∞) satisfy R(x) ≤ min

{
R0(x)/(γ

∗)2, R1(x)/γ
∗
}

where R0 is
as above Remark (2.1) and R1 is as in (2.4). Furthermore, assume that R(x) satisfies a local
uniformity condition on E with constant A∗. Then there are positive constants C ′

8, C
′
9, δ1, cρ with

δ1 ∈ (0, A∗λ
−1] and cρ > 1 such that for every α > 0, m ∈ Z, and Q ∈ Em,δ1 ,

|{y ∈ Q : |fm(y)− fQ| > α}| ≤ C ′
8e

−C′
9α|Q|(5.21)

for all f ∈ [cρR]BMO(E) with ||f ||[cρR]BMO(E) = 1. The constants C ′
8, C

′
9 and cρ depend only

on ρ.

Proof: The proof is broken into five steps.

I : Recall the dyadic structure described in (5.5)–(5.8), and set cρ = (γ∗)2λ = 8(γ∗)2κ5. Let

f ∈ [cρR]BMO(E) with ||f ||[cρR]BMO(E) = 1. Fix m ∈ Z and a cube Q0 = Qkj ∈ Fm,λ−1 ; see

(5.10). Our first step compares the average of f on Q0 with its average on the related ρ-ball
B(xkj , λ

k+1). Indeed,
∣∣∣fB(xkj ,λ

k+1) − fQ0

∣∣∣ =
∣∣∣

1

|Q0|

ˆ

Q0

(f − fB(xkj ,λ
k+1))dx

∣∣∣

≤ 1

|B(xkj , λ
k)|

ˆ

B(xkj ,λ
k+1)

|f − fB(xkj ,λ
k+1)|dx.(5.22)

Thus, as Q0 is λ−1-local and R(xkj ) ≤ R1(x
k
j ), the local doubling condition (2.4) gives

1

|Q0|

ˆ

Q0

|f − fQ0 |dx ≤ 1

|Q0|

ˆ

Q0

|f − fB(xkj ,λ
k+1)|dx+ |fB(xkj ,λ

k+1) − fQ0 |

≤ 2

|B(xkj , λ
k)|

ˆ

B(xkj ,λ
k+1)

|f − fB(xkj ,λ
k+1)|dx , by (5.22),

≤ 2C0λ
d0

|B(xkj , λ
k+1)|

ˆ

B(xkj ,λ
k+1)

|f − fB(xkj ,λ
k+1)|dx.

Therefore, if B(xkj , λ
k+1) is also a cρR(x)-ball for some x ∈ E, we may write

1

|Q0|

ˆ

Q0

|f − fQ0 |dx ≤ 2C0λ
d0 := 2c0.(5.23)

Now, further restrict Q0 ∈ Em,λ−1 . Setting h = h(x,Q0) = (f(x)− fQ0)χQ0(x), (5.23) gives

1

|Q|

ˆ

Q
|h|dx ≤ 1

|Q0|

ˆ

Q0

|f − fQ0|dx ≤ 2c0(5.24)



for any dyadic cube Q for which Q0 ⊂ Q.

II : The dyadic maximal function on local cubes nearby E, acting on g ∈ L1
loc(Ω), is defined by

M∆
E g(x) = sup

1

|Q′|

ˆ

Q′
|g(y)|dy,(5.25)

where the supremum is taken over all cubes Q′ ∈ Em,A∗λ−1 such that x ∈ Q′. If x ∈ Ω is not a

member of any cube in Em,A∗λ−1 then we set M∆
E g(x) = 0. Next, we note the weak-type (1, 1)

inequality for M∆
E :

|{x ∈ Ω :M∆
E g(x) > α}| ≤ 1

α

ˆ

Ω
|g(x)|dx.(5.26)

This is a consequence of the analogous inequality in [SW1] for a larger dyadic maximal operator.

For α > 0, let Eα = {x ∈ Ω :M∆
E h(x) > α}. If α ≥ 2c0, then Eα ⊂ Q0. Indeed, ifM

∆
E h(x) > α

there is a cube Q′ ∈ Em,A∗λ−1 containing x such that

1

|Q′|

ˆ

Q′
|h|dy > 2c0.

Thus by the definition of h, Q′ must intersect Q0. Therefore, (5.24) and the dyadic structure give
that Q′ ( Q0, and so x ∈ Q0.

For α > 0, let Cα be the collection of all cubes Q ∈ Em,A∗λ−1 for which |h|Q > α. By the
above, if α ≥ 2c0 then Q ( Q0 for each Q ∈ Cα. Denote the collection of maximal cubes in Cα
by Sα = {Qα,j}. Then

(i) If α ≥ 2c0, the cubes of Sα are pairwise disjoint.

(ii) If α ≥ 2c0, then ∪Q∈Sα Q = Eα ⊂ Q0.

(iii) If 2c0 ≤ α < β and i, j are given then either Qβ,j ⊂ Qα,i or Qβ,j ∩Qα,i = ∅.
To see (i), note that if two cubes Qα,j , Qα,i intersect, the dyadic structure implies that one is
contained in the other, violating maximality. For (ii), let x ∈ Eα. Then there is a cube Q′ con-
taining x for which |h|Q′ > α and so Q′ ⊂ Qα,j for some j. Thus Eα ⊂ ∪jQα,j and (ii) follows.
(iii) follows from a similar argument as for (i) using the dyadic structure and maximality of the
cubes in Sα.

III : The local doubling condition (2.4) translates to a similar property for the Lebesgue measure

of dyadic cubes. Indeed, fix a λ−1-local cube Q = Qlj and denote its dyadic predecessor Ql+1
i by

Q1. By (5.5),

B(xlj , λ
l) ⊂ Q ⊂ B(xlj, λ

l+1) and(5.27)

B(xl+1
i , λl+1) ⊂ Q1 ⊂ B(xl+1

i , λl+2)(5.28)

where λl+1 < λ−1R(xlj) ≤ (γ∗λ)−1R1(x
l
j). Thus, as Q ⊂ Q1 and λl+2 < R1(x

l
j)/γ

∗, Lemma 10.2
of the appendix implies that

|B(xl+1
i , λl+2)| ≤ C0(γ

∗λ2)d0 |B(xlj , λ
l)|.(5.29)

Therefore, (5.27) and (5.28) together give

|Q1| ≤ C0(γ
∗λ2)d0 |Q| = c1|Q|.(5.30)

Next, restrict Q ∈ Em,A∗λ−1 . Then an inequality similar to (5.23) holds for Q1, the predecessor of
Q. Indeed, for such Q there is an x ∈ E such that (keeping the same labels as in (5.27) and (5.28))



λl+1 < min{R(x), A∗λ
−1R(xlj)} and B(xlj, γ

∗λl+1) ⊂ B(x,R(x)). Since xlj ∈ B(xl+1
i , λl+2), we

have that

B(xl+1
i , γ∗λl+2) ⊂ B(x, (γ∗)2λR(x)).

Also, since R(x) satisfies a local uniformity condition on E with constant A∗, it follows that
λl+1 < A∗λ

−1R(xlj) < λ−1R(x), giving λl+2 < R(x). This together with the containment above

shows that B(xl+1
i , λl+2) is a cρR(x)-ball. Therefore,

1

|Q1|

ˆ

Q1

|f − fQ1|dx ≤ 2c1(5.31)

using a familiar argument.

IV : For each α ≥ 2c0, define γ = γ(α) = 1 + (4c21/α). We claim that for all j,

|Eγα ∩Qα,j| ≤
1

2
|Qα,j|.(5.32)

Indeed, let Q be the dyadic predecessor of Qα,j. Then, Q ⊂ Q0 since Qα,j is a proper subcube of
Q0. The maximality of Qα,j then gives

|h|Q ≤ α.(5.33)

Set g = (h − hQ)χQ and fix x ∈ Eγα ∩ Qα,j. Then, since γ ≥ 1, (ii) and (iii) (see step II ) give
that x ∈ Qγα,i for some i and Qγα,i ⊂ Qα,j. Using this, we have

γα < |h|Qγα,i ≤ |g|Qγα,i + α.(5.34)

Consequently, for every x ∈ Eγα ∩ Qα,j, M∆
E g(x) > (γ − 1)α. Further, for each x ∈ Q ⊂ Q0 we

have

g(x) = h(x)− hQ = f(x)− fQ0 − (f − fQ0)Q

= f(x)− fQ.(5.35)

Therefore, by (5.26),

|Eγα ∩Qα,j| ≤ |{x :M∆
E g(x) > (γ − 1)α}|

≤ 1

(γ − 1)α

ˆ

Ω
|g|dx

=
1

(γ − 1)α

ˆ

Q
|f − fQ|dx

≤ 2c1
(γ − 1)α

|Q|,(5.36)

where the last inequality is due to (5.31). Inequality (5.30) combined with our choice of γ gives

|Eγα ∩Qα,j | ≤
2c21

(γ − 1)α
|Qα,j| ≤

1

2
|Qα,j |,(5.37)

proving (5.32).

V : For α > 0, define the distribution function ω(α) = |Eα ∩Q0|. We add (5.37) over j to obtain
a useful inequality for α ≥ 2c0 (note that ω(α) = |Eα| for α ≥ 2c0, and that γα = α+ 4c21):

ω(α+ 4c21) =
∑

j

|Eγα ∩Qα,j | ≤
1

2

∑

j

|Qα,j | =
1

2
|Eα| =

1

2
ω(α).(5.38)

We now iterate (5.38). Fix α ≥ 2c0. Then there is a k ∈ N such that α ∈ [2c0 + 4(k − 1)c21, 2c0 +
4kc21]. Therefore, there is a β ∈ [2c0, 2c0 + 4c21] for which

ω(α) ≤ 1

2k−1
ω(β) ≤ 2e−k log 2|Q0|(5.39)



as ω(s) ≤ |Q0| for s > 0. Since

k ≥ α− 2c0
4c21

,

we obtain

ω(α) ≤ C ′
8e

−C′
9α|Q0|(5.40)

where C ′
8 and C ′

9 depend on c0, c1. Finally, if α ∈ (0, 2c0) we use that ω(α) ≤ |Q0| to obtain a
similar estimate. Hence, for all α > 0,

|{x ∈ Q0 :M
∆
E [(f − fQ0)χQ0 ](x) > α}| ≤ C ′

8e
−C′

9α|Q0|.(5.41)

The proof will then be complete if we show that

|fm − fQ0 |χQ0 ≤M∆
E

[
(f − fQ0)χQ0

]
.(5.42)

Using the dyadic structure it is easy to see that (5.42) holds provided Qmi ∈ Em,A∗λ−1 whenever

Qmi ⊂ Q0. This proviso is true by further restricting the size of δ1. Set δ1 = min{A3
∗, A∗λ

−1} and
suppose Q0 = Qkj ∈ Em,δ1 . Omitting as we may the case when k = m, suppose that Qmi ⊂ Q0

and m < k. Recalling that γ∗ = κ+ 2κ2 < 8κ5 = λ, we have

B(xmi , γ
∗λm+1) ⊂ B(xmi ,

γ∗λk+1

λ
)

⊂ B(xmi , λ
k+1)

⊂ B(xkj , γ
∗λk+1) ⊂ B(x,R(x))

for some x ∈ E. Thus B(xmi , λ
m+1) is an R(x)-ball. Since Qkj ∈ Fm,δ1 and xmi , x

k
j ∈ B(x,R(x)),

the uniformity condition gives

λm+1 <
δ1
λ
R(xkj ) ≤

δ1
A∗λ

R(x) ≤ δ1
A2

∗λ
R(xmi ) ≤

A∗

λ
R(xmi ),(5.43)

and therefore Qmi ∈ Em,A∗λ−1 . This concludes the proof of both Lemma 5.5 and Proposition 5.1

with δ1 = min{A3
∗, A∗λ

−1}.

6. The Proof of Proposition 3.1

Proposition 3.1 will be proved using the results of three lemmas and Corollary 5.3. The lemmas
give mean-value estimates for positive and negative powers of weak solutions as well as a logarith-
mic estimate. In order to simplify their statements, we list now some assumptions to remain in
force for the rest of the section. We always assume that (Ω, ρ, dx) is a local homogeneous space as
in Definition 2.4, that the Sobolev inequality (2.8) is valid, that (2.10) holds for some τ ∈ (0, 1)
and s∗ > pσ′ with σ as in (2.8), and that (2.11) and (2.12) are valid for some t ≥ 1. Our first
lemma concerns positive powers of weak solutions.

Lemma 6.1. Noting the assumptions in the paragraph above, let (u,∇u) be a weak solution in
Ω of (1.1), where (1.2) holds with exponents γ, δ, ψ satisfying (3.5). Let s = (s∗/p)′ ∈ [1, σ′).
Fix x0 ∈ Ω, k > 0, ǫ1, ǫ2, ǫ3 ∈ (0, 1], a ρ-ball B(x0, r) with 0 < r < τ2r1(x0), set ū = |u| + k,
and assume that Z̄(B(x0, r/τ), ū) < ∞. If u ≥ 0 in B(x0, r) then for each α > 0 there exists

α1 ∈ [ασ−
1
2 , α] such that

ess sup
B(x0,τr)

ū ≤ C10

(
C11Z̄(B(x0, r), ū)

) pΨ0
α1 ||ūα1 ||

1
α1

s,B(x0,r);dx
.(6.1)

Here Ψ0 = σ
σ−s , C10 depends only on p, σ, s and on ǫ1, ǫ2, ǫ3 appearing in the definition (3.4) of

Z̄, while C11 depends on p, σ, s, ǫ1, ǫ2, ǫ3, a and the constants C1 from (2.8) and N,Cs∗ in (2.10).



Remark 6.2. i) α1 is defined by

α1 =





α if log σ
s

p−1
α ≤ −1

4

α if log σ
s

p−1
α ∈

[
K + 1

4 ,K + 3
4

]
for some K ∈ N ∪ {0},

α
(
σ
s

)− 1
2

if log σ
s

p−1
α ∈

(
K − 1

4 ,K + 1
4

)
for some K ∈ N ∪ {0}.

ii) We explicitly note that the constants C10, C11 in (6.1) are independent of (u,∇u), k,
B(x0, r), b, c, d, e, f , g, h, and α.

Proof: By [MRW, Theorem 1.2], the weak solution (u,∇u) satisfies

||ū||L∞(B(x0,r)) ≤ CZ̄
(
B(x0,

r

τ
), ū
)Ψ0 ||ū||sp,B(x0,

r
τ
);dx(6.2)

where ū = |u|+ k and C > 0 depends only on p, a and ψ. Therefore, as Z̄
(
B(x0, r/τ), ū

)
<∞ by

hypothesis, [MRW, Proposition 2.3] gives that ū is bounded on B(x0, r). The proof of the lemma
will be completed by following the proof of [MRW, Theorem 1.2], but now using a modified
test function that exploits boundedness of ū. As in [MRW], we may assume that u satisfies the
following modified structure conditions in terms of the functions b̄, d̄, and h̄ (see [MRW, (3.1)]):

ξ · A(x, z, ξ) ≥ a−1|
√
Q(x) ξ|p − h̄(x)z̄p,∣∣∣Ã(x, z, ξ)

∣∣∣ ≤ a|
√
Q(x) ξ|p−1 + b̄(x)z̄p−1,(6.3)

|B(x, z, ξ)| ≤ c|
√
Q(x) ξ|ψ−1 + d̄(x)z̄p−1

for all (x, z, ξ) ∈ Ω × R× Rn where A, Ã and B are as in (1.2) and z̄ = z + k. For simplicity, we

will often not indicate the dependence of A, Ã,B, etc. on their variables.
Choose a nonnegative η ∈ Lip0(B(x0, r)) and set v = ηpūq for q ∈ (1 − p, 0) ∪ (0,∞). By

Corollary 4.3, v is a feasible nonnegative test function for any value of q in the indicated range.
Corollary 4.3 implies that

∇v ·A(x, u,∇u) + vB(x, u,∇u) =
√
Q∇v · Ã+ vB

=
(
pηp−1ūq

√
Q∇η + qηpūq−1

√
Q∇ū

)
· Ã+ ηpūqB.(6.4)

We now use (6.4) to derive some pointwise estimates. If q > 0, we apply (6.3) to (6.4), giving

∇v ·A(x, u,∇u) + vB(x, u,∇u) ≥ qηpūq−1
[
a−1|

√
Q∇ū|p − h̄ūp

]

−pηp−1ūq|
√
Q∇η||Ã| − ηpūq|B|

≥ a−1qηpūq−1|
√
Q∇ū|p − qh̄ηpūq+p−1(6.5)

−apηp−1ūq|
√
Q∇η||

√
Q∇ū|p−1 − pηp−1b̄ūq+p−1|

√
Q∇η|

−cηp|
√
Q∇ū|ψ−1ūq − d̄ηpūq+p−1.

If q < 0 we arrange (6.4) differently. For the second term inside the parentheses on the right side
of (6.4), since q < 0, the first estimate of (6.3) gives

qηpūq−1
√
Q∇ū · Ã = qηpūq−1∇ū ·A

≤ −a−1|q|ηpūq−1|
√
Q∇ū|p + |q|ηpūq+p−1h̄.(6.6)

After estimating the other terms of (6.4) as before, we move the first term on the right of (6.6)
to the left and obtain

∇v · A(x, u,∇u) + vB(x, u,∇u) + a−1|q|ηpūq−1|
√
Q∇ū|p ≤(6.7)

|q|ηpūp+q−1h̄+ apηp−1ūq|
√
Q∇η||

√
Q∇ū|p−1 + pb̄ηp−1ūq+p−1|

√
Q∇η|

+cηpūq|
√
Q∇ū|ψ−1 + d̄ηpūq+p−1.



Since u is a weak solution of (1.1) and v is a feasible test function, we have that
ˆ

Ω
∇v · A+ vB =

ˆ

B(x0,r)
∇v · A+ vB = 0.

Integrating either (6.5) or (6.7) over B = B(x0, r), we obtain that for any q ∈ (1− p, 0) ∪ (0,∞),

|q|
 

B
ηpūq−1|

√
Q∇ū|pdx ≤ C

{
|q|

 

B
h̄ηpūp+q−1dx+

 

B
ηp−1ūq|

√
Q∇η||

√
Q∇ū|p−1dx

+
B
b̄ηp−1|

√
Q∇η|ūp+q−1dx+

 

B
cηpūq|

√
Q∇ū|ψ−1dx(6.8)

+
B
d̄ηpūp+q−1dx

}
,

where the constant C in (6.8) depends only on a, p. Now use Young’s inequality (10.1) with β = p′

and θ = p′|q|/(4C), where C is as in (6.8), on the second term of the right side of (6.8). This
gives

B
ηp−1ūq|

√
Q∇η||

√
Q∇ū|p−1dx ≤ |q|

4C B
|
√
Q∇ū|pηpūq−1dx(6.9)

+c2|q|1−p
 

B
|
√
Q∇η|pūq+p−1dx.

Here c2 depends only on p, a. Applying Young’s inequality (10.1) to the fourth term on the right

side of (6.8) with β = p
ψ−1 , β

′ = p
p+1−ψ and θ = |q|p

4(ψ−1)C yields

B
cηpūq|

√
Q∇ū|ψ−1dx =

B
|
√
Q∇ū|ψ−1ηψ−1ū

(ψ−1)(q−1)
p · cηp+1−ψū

q− (ψ−1)(q−1)
p dx

≤ |q|
4C B

|
√
Q∇ū|pηpūq−1dx+ c3|q|

1−ψ
p+1−ψ

B
c

p
p+1−ψ ηpūq+

ψ−1
p+1−ψ dx.(6.10)

Since under our hypotheses ψ ∈ [p, p+1− σ−1), the constant c3 can be chosen as to depend only
on p, a, σ. Inserting (6.9) and (6.10) into (6.8) and absorbing two terms, we obtain

|q|
 

B
ηpūq−1|

√
Q∇ū|pdx ≤ C

{
|q|1−p

 

B
|
√
Q∇η|pūp+q−1dx

+

 

B
b̄ηp−1|

√
Q∇η|ūp+q−1dx

+|q|
1−ψ
p+1−ψ

 

B
c

p
p+1−ψ ηpū

q+ ψ−1
p+1−ψ dx(6.11)

+|q|
 

B
h̄ηpūp+q−1dx+

 

B
d̄ηpūp+q−1dx

}
,

with C depending only on a, p, σ. This inequality is identical to [MRW, (3.8)] with µ = 0.
Therefore, we follow the proof of [MRW, Theorem 1.2] through steps 5 and 6 with Y = p+ q− 1,

t = p
p+1−ψ and T = 1−ψ

p+1−ψ . Note that when dealing with term III in step 5 of [MRW], the

exponent T + p may be negative for some values of ψ ∈ [p, p + 1− σ−1). Thus we replace |q|T+p
with the larger term (|q| + |q|−1)|T |+p to arrive at an analogous inequality to [MRW, (3.22)],
recalling the notation given in (3.1):

||ηū
Y
p ||pσ,B;dx ≤ C

(
|q|+ 1

|q|
)b̃∗

Z̄
{
||ηū

Y
p ||p,B;dx + r||ū

Y
p
√
Q∇η||p,B;dx

}
(6.12)

where B = B(x0, r), Z̄ = Z̄
(
B(x0, r), ū

)
and b̃∗ ≥ b∗ > 0 with b∗ as in [MRW, (3.22)]. We

explicitly note that C now depends on p, a, σ and on the constant C1 appearing in (2.8), while b̃∗
depends on p, σ and on ǫ1, ǫ2, ǫ3 that appear in the definition (3.4) of Z̄.



We now choose η = ηj , j ≥ 1, as in (2.10). Let Sj = supp ηj for j ≥ 1 and S0 = B = B(x0, r).
Recall that ηj = 1 on Sj+1 and B(x0, τr) ⊂ ∩jSj. Since s∗ > pσ′ and s′p = s∗, Hölder’s inequality
and (2.10) give

||ū
Y
p χSj+1 ||pσ,B;dx ≤ C

(
|q|+ 1

|q|
)b̃∗

Z̄N j ||ū
Y
p χSj ||sp,B;dx,(6.13)

which is analogous to inequality [MRW, (3.23)] and where C depends on p, a, σ, on the constants
C1 appearing in (2.8) and N,Cs∗ in (2.10). Now for ω 6= 0 and j ∈ N ∪ {0} define

Φ(j;ω) =
(

B(x0,r)
ūωχSjdx

)1/ω
.(6.14)

By (6.13), noting that Y = p+ q − 1 > 0 for all q ∈ (1− p, 0) ∪ (0,∞), we have

Φ(j + 1;Y σ) ≤ C
p
Y

(
|q|+ 1

|q|
) pb̃∗

Y
Z̄

p
Y N

jp
Y Φ(j; sY ).(6.15)

Inequality (6.15) will be iterated to finish the proof. Indeed, set X = σ/s > 1 and fix α1 > 0
as in Remark 6.2. Set qj = α1X j + 1− p and Yj = α1X j for each j ∈ N ∪ {0}.

Claim: We claim that qj ∈ (1− p, 0) ∪ (0,∞) for j ∈ N ∪ {0} and that

|qj |+
1

|qj|
≤ X j

[
α1X

1
2 + p− 1 +

1

(p− 1)(1 − X− 1
4 )

]
.(6.16)

We start noting that from (X 1
8 − X− 1

8 )2 ≥ 0 it follows that

(6.17) X 1
4 − 1 ≥ 1− X− 1

4 .

If logX
p−1
α ≤ −1

4 , then α1 = α ≥ (p− 1)X 1
4 . Thus for every j ∈ N ∪ {0} we have

qj = αX j + 1− p ≥ α+ 1− p > αX− 1
4 + 1− p ≥ 0

and hence, also using (6.17),

|qj|+
1

|qj|
≤ αX j + p− 1 +

1

α+ 1− p

≤ αX j + p− 1 +
1

(p− 1)(X 1
4 − 1)

≤ αX j + p− 1 +
1

(p− 1)(1 −X− 1
4 )
.

Since X > 1 and α = α1, (6.16) easily follows.

If logX
p−1
α > −1

4 , there exists a unique K ∈ N∪{0} such that either logX
p−1
α ∈ (K− 1

4 ,K+ 1
4)

or logX
p−1
α ∈ [K + 1

4 ,K + 3
4 ]. In the first case α1 = αX− 1

2 and

αXK− 1
4 < p− 1 < αXK+ 1

4 .

Thus if j ≤ K one has

qj = αX j− 1
2 + 1− p ≤ αXK− 1

2 + 1− p = αXK− 1
4X− 1

4 − (p− 1) < −(p− 1)(1− X− 1
4 ) < 0.

On the other hand, if j ≥ K + 1, we have

qj = αX j− 1
2 + 1− p ≥ αXK+ 1

2 + 1− p = αXK+ 1
4X 1

4 − (p− 1) > (p− 1)(X 1
4 − 1) > 0.

Thus qj ∈ (1− p, 0) ∪ (0,∞), and moreover for j ≤ K

(6.18) |qj |+
1

|qj|
≤ αX j + p− 1 +

1

(p − 1)(1− X− 1
4 )
,

while for j ≥ K + 1 we have

(6.19) |qj |+
1

|qj|
≤ αX j + p− 1 +

1

(p− 1)(X 1
4 − 1)

≤ αX j + p− 1 +
1

(p − 1)(1− X− 1
4 )
.



From the previous inequalities, since X > 1 and α = α1X
1
2 , (6.16) follows.

It remains to consider the case when logX
p−1
α ∈ [K + 1

4 ,K + 3
4 ] for some K ∈ N ∪ {0}. Then

we have α1 = α and

αXK+ 1
4 ≤ p− 1 ≤ αXK+ 3

4 .

Now if j ≤ K we have

qj = αX j + 1− p ≤ αXK + 1− p = αXK+ 1
4X− 1

4 − (p− 1) ≤ −(p− 1)(1 − X− 1
4 ) < 0,

while if j ≥ K + 1

qj = αX j + 1− p ≥ αXK+1 + 1− p = αXK+ 3
4X 1

4 − (p − 1) ≥ (p− 1)(X 1
4 − 1) > 0.

Hence also in this last case qj ∈ (1− p, 0) ∪ (0,∞) for every j ∈ N ∪ {0}, and for j ≤ K we have
(6.18), while for j ≥ K + 1 we have (6.19). The proof of the claim is complete.

Let c4 = p− 1 + ((p − 1)(1 − X− 1
4 ))−1. By (6.15) and (6.16), for each j ∈ N ∪ {0},

Φ(j + 1;α1sX j+1) ≤
[
CX−j

(α1X
1
2 + c4)

b̃∗X−j
Z̄X−jX b̃∗jX−j

N jX−j
] p
α1Φ(j;α1sX j).

Iterating this inequality we see that

Φ(j + 1;α1sX j+1) ≤
[
CΨ0(α1X

1
2 + c4)

b̃∗Ψ0X b̃∗Ψ1NΨ1Z̄Ψ0

] p
α1 Φ(0;α1s)(6.20)

for each j ∈ N∪{0} where we have set Ψ0 =

∞∑

j=0

X−j and Ψ1 =

∞∑

j=0

jX−j . Now, since the function

z
1
z achieves its maximum for z ∈ (0,∞) at z = e, we have

(α1X
1
2 + c4)

b̃∗Ψ0p
α1 ≤

(
2max{α1X

1
2 , c4}

) b̃∗Ψ0p
α1 =

[
(
max{2α1X

1
2 , 2c4}

) 1

2α1X
1
2

]2b̃∗X 1
2 Ψ0p

≤
[
max

{
e

1
e , (2c4)

1

2α1X
1
2

}]2b̃∗X
1
2 Ψ0p

≤ c5c
Ψ0p

α1
6 ,(6.21)

with c5, c6 depending on p, σ, s, ǫ1, ǫ2, ǫ3. Next, we set Φ(∞;∞) = lim sup
j→∞

Φ(j;α1sχ
j). Since the

right side of (6.20) is independent of j, we may allow j → ∞ in (6.20) and use (6.21) to obtain

Φ(∞;∞) ≤ C10

[
C11Z̄

]Ψ0p
α1 Φ(0;α1s),(6.22)

with C10 depending on p, σ, s, ǫ1, ǫ2, ǫ3, C11 depending on p, σ, s, ǫ1, ǫ2, ǫ3, a and both also depend-
ing on the constants C1 from (2.8) and N,Cs∗ in (2.10). Since B(x0, τr) ⊂ Sj for all j ≥ 1 we
have ess sup

B(x0,τr)
ū ≤ Φ(∞;∞), see for instance [GT], and therefore we conclude that

ess sup
B(x0,τr)

ū ≤ C10

[
C11Z̄

]Ψ0p
α1 ||ūα1 ||

1
α1

s,B(x0,r);dx
,(6.23)

which completes the proof of (6.1).

Lemma 6.3. Let the assumptions in the opening paragraph of this section hold, let s be as in
Lemma 6.1 and suppose that (u,∇u) ∈W 1,p

Q (Ω) is a weak solution in Ω of

div(A(x, u,∇u)) ≤ B(x, u,∇u)(6.24)



where A,B satisfy (1.2) with exponents γ, δ, ψ satisfying (3.5). Fix x0 ∈ Ω, k > 0, ǫ1, ǫ2, ǫ3 ∈ (0, 1]
and a quasimetric ρ-ball B(x0, r) with 0 < r < τ2r1(x0), set ū = |u| + k, and assume that
Z̄(B(x0, r/τ), ū) <∞. If u ≥ 0 in B(x0, r), then

||ūα||
1
α

s,B(x0,r);dx
≤ C10

(
C11Z̄(B(x0, r), ū)

) pΨ0
|α|

ess inf
B(x0,τr)

ū,(6.25)

where the constants C10, C11 can be chosen as in (6.1).

Proof: Since by our assumptions Z̄(B(x0, r/τ), ū) < +∞, B(x0, r) ⊂ B(x0, r/τ) and r/τ <
τr1(x0) < R1(x0), we have that Z̄ := Z̄(B(x0, r), ū) is also finite. See the comment following the
definition (3.4) of Z̄.

Following the same argument as in Lemma 6.1 but now with q < 1− p and using that (u,∇u)
is a weak solution of (6.24), applying Remark 4.4 we obtain the following inequality, similar to
(6.15):

[
Φ(j + 1;Y σ)

]Y
p ≤ C

(
|q|+ 1

|q|
)b̃∗

Z̄N j
[
Φ(j; sY )

] Y
p
,

with Z̄ = Z̄(B(x0, r), ū). Since Y = p+ q − 1 < 0 for any q ∈ (−∞, 1− p), we have

Φ(j + 1;Y σ) ≥ C
p
Y

(
|q|+ 1

|q|
) pb̃∗

Y
Z̄

p
Y N

jp
Y Φ(j; sY ).(6.26)

Let α < 0, set Yj = αX j and qj = αX j + 1 − p, where X = σ/s > 1 as in Lemma 6.1. Then
Yj < 0, qj < −(p− 1) and, with C as in (6.15), we have

Φ(j; sαX j) ≤
[
CX−j

(
|qj|+

1

|qj|
)b̃∗X−j

Z̄X−j
N jX−j

] p
|α|

Φ(j + 1; sαX j+1).(6.27)

Now note that

|qj|+
1

|qj|
≤ |α|X j + p− 1 +

1

p− 1
< |α|X j + p− 1 +

1

(p− 1)(1 −X− 1
4 )

≤ X j

[
|α|X 1

2 + p− 1 +
1

(p− 1)(1 − X− 1
4 )

]
= X j

[
|α|X 1

2 + c4

]
,

with c4 = p− 1 + ((p− 1)(1 − X− 1
4 ))−1 as in Lemma 6.1. Then from (6.27) we have

Φ(j;αsX j) ≤
[
CX−j

(|α|X 1
2 + c4)

b̃∗X−j
Z̄X−jX b̃∗jX−j

N jX−j
] p

|α|
Φ(j + 1;αsX j+1).

Iterating the previous inequality we obtain

Φ(j;αsX j) ≤
[
CΨ0(|α|X 1

2 + c4)
b̃∗Ψ0X b̃∗Ψ1NΨ1Z̄Ψ0

] p
|α|

Φ(∞;−∞),

where Φ(∞;−∞) = lim sup
j→∞

Φ(j;αsX j), Ψ0 =
∑∞

j=0X−j and Ψ1 =
∑∞

j=0 jX−j . Also using (6.21)

we conclude

Φ(j;αsX j) ≤ C10

[
C11Z̄

]Ψ0p
|α|

Φ(∞,−∞),

with C10, C11 as in (6.22). Since this holds for all j ∈ N ∪ {0}, we obtain

Φ(0, αs) ≤ C10

[
C11Z̄

]Ψ0p
|α|

Φ(∞,−∞).(6.28)

Since B(x0, τr) ⊂ Sj for every j ≥ 1 we have ess infB(x0,τr)ū ≥ Φ(∞;−∞), see [GT]; hence

||ūα||
1
α

s,B(x0,r);dx
≤ C10

[
C11Z̄

]Ψ0p
|α|

ess inf
B(x0,τr)

ū,(6.29)

which proves (6.25).



Lemma 6.4. Let the assumptions in the opening paragraph of this section hold, and suppose that
(u,∇u) ∈W 1,p

Q (Ω) is a weak solution in Ω of

div(A(x, u,∇u)) ≤ B(x, u,∇u)(6.30)

where A,B satisfy (1.2) with exponents δ, γ, ψ as in (3.5). Furthermore, suppose that the Poincaré
inequality (2.9) holds. Fix x̂ ∈ Ω, k > 0, ǫ1, ǫ2, ǫ3 ∈ (0, 1] and let ū = |u|+ k and w = log ū. Fix
a quasimetric ball B(x̂, bl/τ) for b > 1 as in (2.9) and 0 < l < τr1(x̂)/b. If u ≥ 0 in B(x̂, bl/τ),
then

B(x̂,l)
|w − wB(x̂,l)| dx ≤ C12Z̄(B(x̂, bl/τ), ū),(6.31)

where Z̄
(
B(x̂, bl/τ), ū

)
may be infinite and where C12 depends on a, p, σ, on ǫ1, ǫ2, ǫ3 in the defi-

nition (3.4) of Z̄, on b, C2 in (2.9), on d0, C0 in (2.4) and on Cs∗ , τ,N in (2.10).

Proof: We can assume that Z̄ := Z̄
(
B(x̂, bl/τ), ū

)
is finite, otherwise (6.31) is trivial. Let η = η1

be as in (2.10) relative to B(x̂, bl/τ), and set v = ηpū1−p. Applying Remark 4.4 on the quasimetric

ball B(x̂, bl/τ), we have that v ∈W 1,p
Q,0(Ω) with supp v ⊂ B(x̂, bl/τ) and using (6.3) we have

∇v · A+ vB ≤ a−1(1− p)ηpū−p|
√
Q∇ū|p + (p − 1)h̄ηp

+apηp−1|
√
Q∇η|ū1−p|

√
Q∇ū|p−1 + pηp−1b̄|

√
Q∇η|(6.32)

+cηpū1−p|
√
Q∇ū|ψ−1 + ηpd̄

a.e. in Ω. We integrate over B(x̂, bl/τ) and use the facts that (u,∇u) is a weak solution of (6.30)
and that v is a feasible nonnegative test function, obtaining that the left side of the resulting
inequality is nonnegative. Also, we move the resulting first term on the right side to the left side
and estimate the third and fifth terms on the right in ways like those used to estimate similar
terms in (6.8). Then we obtain, as in (6.11) with q = 1− p,

B(x̂, bl
τ
)
ηpū−p|

√
Q∇ū|pdx ≤ C

{

B(x̂, bl
τ
)
|
√
Q∇η|pdx+

 

B(x̂, bl
τ
)
h̄ηpdx(6.33)

+
B(x̂, bl

τ
)
ηp−1b̄|

√
Q∇η| dx+

 

B(x̂, bl
τ
)
ηpd̄ dx

+
B(x̂, bl

τ
)
c

p
p+1−ψ ηpū

p(ψ−p)
p+1−ψ dx

}
,

with C depending only on a, p, σ. Repeating steps 5 and 6 in the proof of [MRW, Theorem 1.2]
we obtain

B(x̂, bl
τ
)
ηpū−p|

√
Q∇ū|pdx ≤ CZ̄p

{

B(x̂, bl
τ
)
|
√
Q∇η|pdx+

1

lp

 

B(x̂, bl
τ
)
ηpdx

}
(6.34)

≤ CZ̄p
{

B(x̂, bl
τ
)
|
√
Q∇η|pdx+

1

lp

}

analogous to [MRW, (3.21)] with Y = 0, noting that 0 ≤ η ≤ 1 on B(x̂, blτ ). We recall that here

Z̄ = Z̄(B(x̂, bl/τ), ū) and we note that C depends on a, p, σ and on ǫ1, ǫ2, ǫ3 appearing in the
definition (3.4) of Z̄.

Since η is the function η1 in (2.10) relative to B(x̂, bl/τ), then η ∈ Lip0(B(x̂, bl/τ)) ∩ Lip(Ω)
and η ≡ 1 on B(x̂, bl). Recalling that bl < r1(y), we apply the Poincaré inequality (2.9) to



w = log ū (see Remark 4.4) and get

1

|B(x̂, l)|

ˆ

B(x̂,l)
|w − wB(x̂,l)|dx ≤ Cl

( 1

|B(x̂, bl)|

ˆ

B(x̂,bl)
|
√
Q∇w|pdx

)1/p

≤ Cl
( 1

|B(x̂, bl)|

ˆ

B(x̂,bl/τ)
ηp|
√
Q∇w|pdx

)1/p

= Cl
|B(x̂, bl/τ)|1/p
|B(x̂, bl)|1/p

(

B(x̂,bl/τ)
ηpū−p|

√
Q∇ū|pdx

)1/p

≤ Cl
( |B(x̂, bl/τ)|

|B(x̂, bl)|
) 1
p
Z̄
[( 

B(x̂,bl/τ)
|
√
Q∇η|pdx

) 1
p
+

1

l

]
(6.35)

where the last line is obtained using (6.34). Also, C in (6.35) depends on a, p, σ, ǫ1, ǫ2, ǫ3 and on

the constants b, C2 appearing in (2.9). In (6.35), use Hölder’s inequality with exponents s∗
p ,

s∗
s∗−p

together with (2.4) and (2.10) to obtain

1

|B(x̂, l)|

ˆ

B(x̂,l)
|w − wB(x̂,l)|dx ≤ ClZ̄

( |B(x̂, bl/τ)|
|B(x̂, bl)|

)1/p[(

B(x̂,bl/τ)
|
√
Q∇η|s∗dx

) 1
s∗

+
1

l

]

≤ CZ̄τ−
d0
p

[τN
b

+ 1
]

= C12Z̄,(6.36)

where C12 depends on a, p, σ, ǫ1, ǫ2, ǫ3, b, C2, on the constants d0, C0 in (2.4) and Cs∗ , τ,N in
(2.10).

Proof of Proposition 3.1: We will use the notation and assumptions of Proposition 3.1 and
divide the proof into steps.

Step 1. We have B(x0, C∗r) ⋐ B(y, τ2r1(y)). Indeed if ξ ∈ B(x0, C∗r), then

ρ(ξ, y) ≤ κ(ρ(ξ, x0) + ρ(x0, y)) < κ
(
C∗r +

τ

5κ
r1(y)

)
<
(τA∗

5
+
τ

5

)
r1(y) <

τ

2
r1(y).

Step 2. By using Lemmas 6.1 and 6.3, let us show that for every α > 0 there exists α1 ∈
[ασ−1/2, α] such that

(6.37) ess sup
B(x0,τr)

ū ≤ C10

[
C11Z̄

(
B(x0, r), ū

)] pψ0
α1 ‖ūα1‖

1
α1

s,B(x0,r);dx

and that for every α2 < 0

(6.38) ‖ūα2‖
1
α2

s,B(x0,r);dx
≤ C10

[
C11Z̄

(
B(x0, r), ū

)] pψ0
|α2| ess inf

B(x0,τr)
ū,

with C10, C11 and ψ0 independent of (u,∇u), k,B(x0, r), y, b, c, d, e, f, g, h, α, α1 , α2.
Indeed, by our assumptions, r1 satisfies a local uniformity condition with respect to ρ on

B = B(y, r1(y)) with constant A∗. Since x0 ∈ B(y, r1(y)) we have r1(x0) > A∗r1(y), so that
r < τA∗

5κC∗
r1(y) < τ2r1(x0). Moreover τ−1 < C∗, so that r/τ < C∗r and B(x0, r/τ) ⊂ B(x0, C∗r).

Thus by (3.7) we conclude that Z̄(B(x0, r/τ), ū) ≤ M < +∞, and hence all the assumptions of
Lemmas 6.1 and 6.3 are satisfied.

Step 3. We start implementing the ideas of Section 5. Let

R(ξ) = min

{
16(γ∗)4κ5

A2
∗ min{A2

∗, (8κ
5)−1}r,

τ2A∗

40κ6(γ∗)4b
r1(ξ)

}
for ξ ∈ Ω, and let B = B(x0, r).

Let us show that if ξ ∈ B(y, r1(y)) then R(ξ) = 16(γ∗)4κ5

A2∗ min{A2∗,(8κ5)−1}
r. Indeed for every ξ ∈

B(y, r1(y)) we have A∗r1(y) < r1(ξ) by our assumptions on r1. Since r ∈ (0, τA∗
5κC∗

r1(y)) with



C∗ as in (3.6), we obtain

16(γ∗)4κ5

A2
∗ min{A2

∗, (8κ
5)−1}r <

16τ(γ∗)4κ4

5C∗A∗ min{A2
∗, (8κ

5)−1}r1(y) =
τ2A2

∗

40κ6(γ∗)4b
r1(y) <

τ2A∗

40κ6(γ∗)4b
r1(ξ).

Note that by the second restriction above on R(ξ), we have R(ξ) < r1(ξ)
(γ∗)4 <

r1(ξ)
(γ∗)2 for every ξ ∈ Ω,

which meets some of the requirements of Proposition 5.1. Moreover, since R(ξ) is constant on
B, it satisfies a local uniformity condition on B with respect to ρ for any constant in (0, 1], in
particular for A∗. Thus R(ξ) satisfies the requirements in the statement of Proposition 5.1 and
consequently can be used in Corollary 5.3. Hence there are constants C8, C9, cρ = 8κ5(γ∗)2,

δ0 =
A2

∗ min{A2
∗,(8κ

5)−1}
8κ5(γ∗)3 (cf. Remark 5.2 for the values of cρ and δ0) such that (5.4) holds for every

function f ∈ [cρR]BMO(B) with ‖f‖[cρR]BMO(B) < C9.
Step 4. We claim that if ξ ∈ B and B(z, t0) is a cρR(ξ)–ball then

(6.39)
i) B(z, t0) ⊂ B

(
z,

b

τ
t0

)
⊂ B(x0, C∗r),

ii) 0 < t0 <
b

τ
t0 < C∗r <

τA∗

5κ
r1(y) < r1(z)

Since ξ ∈ B and B(z, t0) is a cρR(ξ)–ball (see the definition above (5.1)), we have

(6.40) t0 < cρR(ξ) =
128(γ∗)6κ10

A2
∗ min{A2

∗, (8κ
5)−1}r =

2γ∗cρ
δ0

r

and B(z, γ∗t0) ⊂ B(ξ, cρR(ξ)) = B
(
ξ,

2γ∗cρ
δ0

r
)
. Thus, also using the swallowing property of the

pseudometric balls as described in Lemma 2.2,

B(z, t0) ⊂ B
(
z,

b

τ
t0

)
⊂ B

(
z,

2γ∗cρb

δ0τ
r
)
⊂ B

(
ξ,

2(γ∗)2cρb

δ0τ
r
)

⊂ B
(
x0,

2(γ∗)3cρb

δ0τ
r
)
= B

(
x0, C∗A∗r

)
⊂ B(x0, C∗r).

Since by Step 1 we have B(x0, C∗r) ⊂ B(y, r1(y)) and since r1 satisfies a local uniformity condition
with respect to ρ with constant A∗ on that set, we conclude that A∗r1(y) < r1(z). Hence, also
using (6.40),

0 < t0 <
b

τ
t0 <

2bγ∗cρ
τδ0

r =
A∗

(γ∗)2
C∗r < C∗r <

τA∗

5κ
r1(y) < r1(z).

Here the next-to-last inequality is due to the relation between r and r1(y) that we noted earlier.
The proof of our claim is complete.

Step 5. Now we show that w = log ū is a function in [cρR]BMO(B), where as above B =
B(x0, r). Let ξ ∈ B and consider a cρR(ξ)–ball B(z, t0). By Step 4, Lemma 6.4 and condition
(3.7) we conclude that

B(z,t0)
|w(ζ)− wB(z,t0)| dζ ≤ C12Z

(
B
(
z,

b

τ
t0

)
, ū
)

≤ C12M,

and thus, by the definition given in (5.1), we have ‖w‖[cρR]BMO(B) ≤ C12M .

Now we choose α = C9
2sC12M

, where C9 is as in Proposition 5.1 and where s is as in Lemmas

6.1 and 6.3 and also (6.37). Then the corresponding α1 from inequality (6.37) satisfies α1 ∈
[ασ−1/2, α]. Then we have

‖sα1w‖[cρR]BMO(E) ≤ sα1C12M ≤ sαC12M ≤ C9

2
,

and by Step 3 we can use Corollary 5.3 to conclude that

(6.41) ‖esα1w‖[δ0R]A2(B) ≤ (1 + C8)
2.



Step 6. We notice here that x0 ∈ B(x0, r) and that B(x0, r) is a δ0R(x0)–ball, and use this
fact in conjunction with (6.41). We start by recalling that since x0 ∈ B(y, r1(y)), Step 3 shows

that R(x0) =
16(γ∗)4κ5

A2∗ min{A2∗,(8κ5)−1}
r. Now a simple calculation gives 0 < r < γ∗r < 2γ∗r = δ0R(x0),

B(x0, γ
∗r) ⊂ B(x0, 2γ

∗r) = B(x0, δ0R(x0)) and B(x0, γ∗r) ⊂ B(x0, r1(x0)) ⊂ Ω.
Since B(x0, r) is a δ0R(x0)–ball with x0 ∈ B(x0, r), by (6.41) and definition (5.3) we have

(

B(x0,r)
esα1w dζ

)(
 

B(x0,r)
e−sα1w dζ

)
≤ (1 + C8)

2,

and thus we conclude

(6.42) ‖ūα1‖
1
α1

s,B(x0,r);dx
≤ (1 + C8)

2
sα1 ‖ū−α1‖

− 1
α1

s,B(x0,r);dx

Step 7. Now we use (6.37), (6.38) with α2 = −α1 < 0 and (6.42) to finish the proof:

ess sup
B(x0,τr)

ū ≤ C10

[
C11Z̄

(
B(x0, r), ū

)] pψ0
α1 ‖ūα1‖

1
α1

s,B(x0,r);dx

≤ C10(1 + C8)
2
sα1

[
C11Z̄

(
B(x0, r), ū

)] pψ0
α1 ‖ū−α1‖

− 1
α1

s,B(x0,r);dx

≤ C2
10(1 + C8)

2
sα1

[
C11Z̄

(
B(x0, r), ū

)] 2pψ0
α1 ess inf

B(x0,τr)
ū.

Since C8 + 1 ≥ 1, Z̄
(
B(x0, r), ū

)
≥ 1 and α1 ≥ ασ−1/2, we see that

ess sup
B(x0,τr)

ū ≤ C2
10

[
(1 + C8)

1
spΨ0C11Z̄

(
B(x0, r), ū

)] 2pψ0√σ
α ess inf

B(x0,τr)
ū

which, recalling the definition of α given in Step 5, is inequality (3.8), with C4 = C2
10, C5 =

(1 + C8)
1

spΨ0C11 and C6 = 4
√
σpΨ0sC12/C9.

7. The Proof of Theorem 3.7

Let (u,∇u) be a weak solution of (1.1) in Ω and let x0 ∈ B = B(y, τ
2

5κr1(y)). For r > 0

(sufficiently small so that B(x0, r) ⊂ Ω), define

M(r) = ess sup
B(x0,r)

u, m(r) = ess inf
B(x0,r)

u, and ωx0(r) =M(r)−m(r).

We will refer to ωx0(r) as the oscillation of u in B(x0, r). Now, let r ∈ (0, τ
2A∗

5κC∗
r1(y)), where C∗

is as in (3.6), and set M0 =M(C∗r), m0 = m(C∗r), noting that M0 and m0 are finite by [MRW,
Theorem 1.2] and Proposition 3.3 as B(x0, C∗r) ⊂ B(y, τ2r1(y)). Denote

(u1,∇u1) = (M0 − u,−∇u) and (u2,∇u2) = (u−m0,∇u).
Clearly (u1,∇u1), (u2,∇u2) ∈ W 1,p

Q (Ω) and u1, u2 ≥ 0 in B(x0, C∗r). For (x, z, ξ) ∈ Ω × R × Rn,
let

A1(x, z, ξ) = −A(x,M0 − z,−ξ), A2(x, z, ξ) = A(x, z +m0, ξ),

Ã1(x, z, ξ) = −Ã(x,M0 − z,−ξ), Ã2(x, z, ξ) = Ã(x, z +m0, ξ), and

B1(x, z, ξ) = −B(x,M0 − z,−ξ), B2(x, z, ξ) = B(x, z +m0, ξ).

It is not difficult to see that (u1,∇u1) and (u2,∇u2) are respectively weak solutions in Ω of

div
(
A1(x, u,∇u)

)
= B1(x, u,∇u), and(7.1)

div
(
A2(x, u,∇u)

)
= B2(x, u,∇u).



We now check that these equations satisfy (1.2) for coefficients which satisfy (i) − (iv) of
Proposition 3.3. The calculations are simple and we only provide an example. Let us show that
A1 satisfies item (ii) of (1.2) for appropriately modified definitions of g, h. Indeed, since A satisfies
(1.2), we have

ξ ·A1(x, z, ξ) = −ξ ·A(x,M0 − z,−ξ)
≥ a−1|

√
Q(x)ξ|p − h(x)|M0 − z|p − g(x)

≥ a−1|
√
Q(x)ξ|p − 2p−1h(x)|z|p − (g(x) + 2p−1h(x)|M0|p).

Setting h1(x) = 2p−1h(x) and g1(x) = g(x) + 2p−1|M0|ph(x) it follows that A1(x, z, ξ) satisfies
(1.2)(ii) with h, g there replaced by h1, g1 respectively. Furthermore, h1, g1 ∈ LH

loc(Ω) since |M0| <
∞ and both h, g ∈ LH

loc(Ω) by hypothesis. Other verifications are similar using the modified
functions

h2(x) = 2p−1h(x), g2(x) = g(x) + 2p−1|m0|ph(x),
e1(x) = e(x) + 2p−1|M0|p−1b(x), e2(x) = e(x) + 2p−1|m0|p−1b(x), and

f1(x) = f(x) + 2p−1|M0|p−1d(x), f2(x) = f(x) + 2p−1|m0|p−1d(x)

with

b1(x) = b2(x) = 2p−1b(x),

c1(x) = c2(x) = c(x), and

d1(x) = d2(x) = 2p−1d(x).

Therefore both (u1,∇u1) and (u2,∇u2) are weak solutions of equations satisfying the hypothe-
ses of Theorem 3.5. As a consequence, u1, u2 satisfy

ess sup
z∈B(x0,τr)

u1(z) + k1(x0, r) ≤ Ĉ1

[
ess inf
z∈B(x0,τr)

u1(z) + k1(x0, r)
]
, and(7.2)

ess sup
z∈B(x0,τr)

u2(z) + k2(x0, r) ≤ Ĉ2

[
ess inf
z∈B(x0,τr)

u2(z) + k2(x0, r)
]
.(7.3)

Here k1 = k1(x0, r) and k2 = k2(x0, r) are defined as k in Proposition 3.3 using the structural
coefficient functions b1, c1, d1, e1, f1, g1, h1 and b2, c2, d2, e2, f2, g2, h2 respectively. By Proposition
3.3,

kj(x0, r) ≤ Λjr
λ, j = 1, 2,(7.4)

with λ exactly as in Proposition 3.3 and Λ1,Λ2 defined as Λ in Proposition 3.3 using instead the
structural coefficients related to A1, A2, B1, B2. Each of Ĉ1, Ĉ2,Λ1,Λ2 depends on p, ψ, M0, m0,
||u||pσ,B̃;dx, ||b||B,B̃;dx, ||c||C,B̃;dx, ||d||D,B̃;dx, ||e||B,B̃;dx, ||f ||D,B̃;dx, ||g||H,B̃;dx, ||h||H,B̃;dx, C0, d0, s,

a, and N , where B̃ = B(y, r1(y)). It is important to also note that λ is independent of u, and that

when ψ ∈ (p, p+ 1− σ−1) the dependence of Ĉ1, Ĉ2,Λ1,Λ2 on ||u||pσ,B;dx occurs through M1,M2

of Proposition 3.3 and through M0, m0, see [MRW, Theorem 1.2]. Moreover Ĉ1, Ĉ2,M1,M2 are
independent of ||u||pσ,B;dx,M0,m0 when ψ = p.

Setting C = max{Ĉ1, Ĉ2} and rewriting (7.2) and (7.3) in terms of M(r) and m(r) gives

M0 −m(τr) + k1(x0, r) ≤ C
(
M0 −M(τr) + k1(x0, r)

)
, and(7.5)

M(τr)−m0 + k2(x0, r) ≤ C
(
m(τr)−m0 + k2(x0, r)

)
.

Adding the inequalities in (7.5), rearranging and inserting the oscillation ωx0 , we obtain

ωx0(τr)(C + 1) ≤ (C − 1)
(
ωx0(C∗r) + (k1 + k2)

)

and so

ωx0(τr) ≤
C − 1

C + 1

(
ωx0(C∗r) + Λ̂rλ

)
, 0 < r <

τA∗

5κC∗
r1(y),(7.6)



where we have used estimate (7.4) and set Λ̂ = Λ1 + Λ2. Define R = C∗r, R0 = τ2A∗
6κ r1(y) and

Λ̂0 = Λ̂C−λ
∗ . Recall that τ < 1 < C∗. Then (7.6) and the monotonicity of ωx0 imply that for

every ν ≤ τ/C∗, one has

ωx0(νR) ≤
C − 1

C + 1

(
ωx0(R) + Λ̂0R

λ
)

for all R ∈ (0, R0].(7.7)

We now iterate (7.7) using powers of ν to obtain essential Hölder continuity of u. Indeed, for
any ν ≤ τ/C∗ and j ≥ 1, we have

ωx0(ν
jR0) ≤

(C − 1

C + 1

)j{
ωx0(R0) + Λ̂0R

λ
0

j−1∑

i=0

[C + 1

C − 1
νλ
]i}

.(7.8)

Now choose ν ≤ τ
C∗

such that C+1
C−1ν

λ ≤ 1
2 to obtain

∞∑

i=0

[C + 1

C − 1
νλ
]i

≤ 2. Then (7.8) gives

ωx0(ν
jR0) ≤

(C − 1

C + 1

)j[
ωx0(R0) + 2Λ̂0R

λ
0

]
.(7.9)

Now let 0 < R ≤ R0ν and choose j ∈ N such that νj+1R0 < R ≤ νjR0. This choice implies that

j + 1 >
ln
(
R
R0

)

ln ν
.(7.10)

Combining (7.10) with (7.9) we obtain

ωx0(R) ≤
C + 1

C − 1

( R
R0

)µ(
ωx0(R0) + 2Λ̂0R

λ
0

)
,(7.11)

where µ =
ln C−1

C+1

ln ν > 0. Thus there are positive constants c7, µ independent of x0 such that

ωx0(R) ≤ c7R
µ if 0 < R ≤ R0ν.(7.12)

As a consequence of (7.12), u is essentially Hölder continuous with respect to ρ inB = B(y, τ
2

5κr1(y)).
To see this, first note that since u ∈ L∞(B), there is a set Ey ⊂ B with |Ey| = 0 such that

|u(x)| ≤ ||u||L∞(B)(7.13)

for all x ∈ B \ Ey. Choosing x,w ∈ B \ Ey, there are two cases to consider.

Case I: ρ(x,w) < νR0
2 . Applying (7.12) in the ball B(x, 2ρ(x,w)) we obtain

|u(x) − u(w)| ≤ ωx(2ρ(x,w)) ≤ c72
µρ(x,w)µ.(7.14)

Case II: ρ(x,w) ≥ νR0
2 . Then

|u(x)− u(z)| ≤ 2||u||L∞(B) ≤
2µ+1||u||L∞(B)

νµRµ0
ρ(x,w)µ.(7.15)

Setting c8 = max{c72µ, 2
µ+1‖u‖L∞(B)

νµRµ0
} and combining estimates, it follows that u is essentially

Hölder continuous with respect to ρ in B, which completes the proof.



8. Proof of Corollary 3.9

Fix a compact set K ⊂ Ω. By hypothesis, there is a positive constants s0 depending only
on K such that s0 ≤ r1(y) ≤ 1 for all y ∈ K. As a result, the constants Λ and M of Propo-

sition 3.3 can be chosen larger so that they depend only on K and S =
⋃

y∈K

B(y, r1(y)) ⋐ Ω.

More precisely, this is achieved by replacing in those definitions all instances of |B(y, r1(y))| with
inf
y∈K

|B(y, r1(y))| > 0, expanding all norms calculated on B(y, r1(y)) so that they are calculated

over S, and replacing r1(y) itself by s0 and 1 as appropriate. Moreover, since S̄ is a compact subset
of Ω, r1 satisfies a local uniformity condition on every ball B(y, r1(y)) with y ∈ K, with a uniform
constant A∗ = A∗(S). In fact, one can choose A∗ = s′0 where s′0 satisfies 0 < s′0 ≤ r1(y) ≤ 1
for all y ∈ S. Combining these observations with Theorem 3.5, it follows that any weak solution
(u,∇u) of (1.1) in Ω satisfies the Harnack inequality (3.11) when x0 ∈ K and where the constant
C1 there is chosen to depend only on K and S via the norms of structural coefficients and the
Lpσ(S) norm of u.

Fix now a weak solution (u,∇u) of (1.1) in Ω. Working through the proof of Theorem 3.7
with the observations above, one sees that ν (see (7.8)) can now be chosen to depend only on
K and S as C there depends only on these quantities, and τ/C∗ depends only on K,S through
C∗ = C∗(A∗). As a result, for every y ∈ K we have the estimate

sup
z,w∈B(y,r)\Ey

|u(z)− u(w)|
ρ(z, w)µ

≤ c9,(8.1)

where r = τ2

5κs0 and the constants c9, µ are independent of y and Ey is as in the proof Theorem
3.7. We now cover K with a finite collection of ρ-balls of the form B(yj,

r
2κ) and set E =

⋃
Eyj .

Then |E| = 0, and for x, z ∈ K \ E there are two cases to consider:

Case I: ρ(x, z) < r
2κ . We claim that there exists yj ∈ K such that both x, z ∈ B(yj, r). Indeed,

choose yj such that x ∈ B(yj,
r
2κ). Then

ρ(z, yj) ≤ κ(ρ(z, x) + ρ(x, yj)) < r.

Since x, z ∈ B(yj, r) \Eyj , we may apply (8.1) to obtain

|u(x)− u(z)| ≤ c9ρ(x, z)
µ.

Case II: ρ(x, z) ≥ r
2κ . Arguing as at the end of the proof of Theorem 3.7, we have

|u(x)− u(z)| ≤ 2||u||L∞(S) ≤
2µ+1κµ

rµ
||u||L∞(S)ρ(x, z)

µ.

Combining both cases, it follows that u is essentially Hölder continuous in K and, therefore,
essentially locally Hölder continuous in Ω.

9. Proofs of results in Subsection 3.3

Proof of Theorems 3.10, 3.11 and of Corollary 3.12. For every w ∈ [0,∞) and every
α ∈ (0, p] we have

(9.1) wα ≤ 1 + wp.



Now, if A(x, z, ξ) and B(x, z, ξ) satisfy the structural assumptions (1.2) with γ, δ, ψ satisfying
(3.14), then by (9.1) they also satisfy the modified structural conditions

(9.2)





(i) A(x, z, ξ) =
√
Q(x)Ã(x, z, ξ),

(ii) ξ · A(x, z, ξ) ≥ a−1
∣∣∣
√
Q(x) ξ

∣∣∣
p
− h(x)|z|p − (g(x) + h(x)),

(iii)
∣∣∣Ã(x, z, ξ)

∣∣∣ ≤ a
∣∣∣
√
Q(x) ξ

∣∣∣
p−1

+ b(x)|z|p−1 + (b(x) + e(x)),

(iv)
∣∣∣B(x, z, ξ)

∣∣∣ ≤ c(x)
∣∣∣
√
Q(x) ξ

∣∣∣
p−1

+ d(x)|z|p−1 + (c(x) + d(x) + f(x))

for every x ∈ Ω, every z ∈ R and every ξ ∈ Rn. Thus, in order to conclude, it is sufficient to
apply Theorems 3.5, 3.7 and Corollary 3.9 using the new structural conditions (9.2), i.e. with
γ = δ = ψ = p and with e, f , g replaced respectively by b+ e, c+ d+ f and g + h.

Proof of Theorems 3.13, 3.15 and of Corollary 3.16. As is clear from their proofs, in
order to obtain Theorems 3.5, 3.7 and Corollary 3.9, one needs the structural assumptions (1.2)
to hold with γ = δ = p and ψ ∈ [p, p+1− σ−1) not for every (x, z, ξ) ∈ Ω×R×Rn, but only for
(x, z, ξ) = (x, u(x),∇u(x)) for almost every x ∈ Ω, where u is the weak solution of equation (1.1)
under consideration.

If A(x, z, ξ) and B(x, z, ξ) satisfy the structural assumptions (1.2) with γ, δ, ψ > p, then we can
write

(9.3)





(i) A(x, z, ξ) =
√
Q(x)Ã(x, z, ξ),

(ii) ξ ·A(x, z, ξ) ≥ a−1
∣∣∣
√
Q(x) ξ

∣∣∣
p
−
(
h(x)|z|γ−p

)
|z|p − g(x),

(iii)
∣∣∣Ã(x, z, ξ)

∣∣∣ ≤ a
∣∣∣
√
Q(x) ξ

∣∣∣
p−1

+
(
b(x)|z|γ−p

)
|z|p−1 + e(x),

(iv)
∣∣∣B(x, z, ξ)

∣∣∣ ≤ c(x)
∣∣∣
√
Q(x) ξ

∣∣∣
ψ−1

+
(
d(x)|z|δ−p

)
|z|p−1 + f(x).

Now, by replacing z with u(x) in (9.3) we can conclude the proof through the application of
Theorems 3.5, 3.7 and Corollary 3.9. This is done using the modified structural conditions (9.3)
that correspond to (1.2) with γ = δ = p and with h, b, d replaced by h1 = h|u|γ−p, b1 = b|u|γ−p
and d1 = d|u|δ−p respectively. Indeed, note that the map B0 7→ pσB0

pσ+(γ−p)B0
is increasing and hence

pσB0

pσ+(γ−p)B0
≥ max{p′σ′, d0

p−1} since B0 ≥ max{ pσ
pσ−σ−γ+1 ,

d0pσ
p(p−1)σ−d0(γ−p)

}. Thus we conclude that

B = min
{ pσB0

pσ + (γ − p)B0
, E
}
≥ max

{
p′σ′,

d0
p− 1

}

and, since B ≤ E , we have e ∈ LB
loc(Ω). Moreover for any compact subset Θ ⊂ Ω with positive

measure

‖b1‖B,Θ,dx ≤ ‖b1‖ pσB0
pσ+(γ−p)B0

,Θ,dx
=

(

Θ
bB|u|(γ−p)B dx

) 1
B

≤
(

Θ
b

pσB0
pσ+(γ−p)B0 |u|

(γ−p)pσB0
pσ+(γ−p)B0 dx

) pσ+(γ−p)B0
pσB0

.

By using Hölder’s inequality with conjugate exponents q = pσ+(γ−p)B0

pσ and q′ = pσ+(γ−p)B0

(γ−p)B0
we

obtain

(9.4) ‖b1‖B,Θ,dx ≤
(

Θ
bB0 dx

) 1
B0

(

Θ
|u|pσ dx

) γ−p
pσ

= ‖b‖B0,Θ,dx
‖u‖γ−p

pσ,Θ,dx
< +∞,

and hence b1 = b|u|γ−p ∈ LB
loc(Ω).



For H and D as defined in Theorem 3.13, one can prove in a similar way that H,D ≥ d0
p , that

H,D > σ′, that g, h1 = h|u|γ−p ∈ LH
loc(Ω), and that f, d1 = d|u|δ−p ∈ LD

loc(Ω) with

(9.5) ‖h1‖H,Θ,dx ≤ ‖h‖H0,Θ,dx
‖u‖γ−p

pσ,Θ,dx
and ‖d1‖D,Θ,dx ≤ ‖d‖D0,Θ,dx

‖u‖δ−p
pσ,Θ,dx

.

Finally, if M is defined as in the statement of Proposition 3.3 (with b, d, h replaced by b1, d1, h1
respectively) and M2 is as in (3.17), then (9.4) and (9.5) imply that M ≤M2.

Thus we can conclude by applying Theorems 3.5, 3.7 and Corollary 3.9.

10. Appendix

Theorem 10.1. (Young’s Inequality) Let a1, a2, θ > 0 and β, β′ ≥ 1 satisfy 1
β + 1

β′ = 1. Then

a1 a2 ≤ θ
aβ1
β

+
1

θβ
′/β

aβ
′

2

β′
.(10.1)

Lemma 10.2. Let (Ω, ρ, dx) be a local homogeneous space and γ∗ be as in (2.3). Fix x, y ∈ Ω,
λ ≥ 1, t > 0, l ∈ Z, and k ∈ N ∪ {0}. Then if t ≤ λl+k < R1(x)/γ

∗ and B(y, t) ∩B(x, λl+k) 6= ∅,
we have

|B(y, t)| ≤ C0(γ
∗λk)d0 |B(x, λl)|.(10.2)

Proof: The swallowing property (2.3) gives B(y, t) ⊂ B(x, γ∗λl+k), and since γ∗λl+k < R1(x),
we have that

|B(y, t)| ≤ |B(x, γ∗λl+k)| ≤ C0

(γ∗λl+k
λl

)d0 |B(x, λl)| = C0(γ
∗λk)d0 |B(x, λl)|.

Proposition 10.3. Let (Ω, ρ, dx) be a local homogeneous space, see Definition 2.4, let Θ ⋐ Ω
and assume r1(x) is a function as in (2.13) that satisfies a local uniformity condition in Θ with
constant A∗ = A∗(Θ), see (2.6). Then condition weak-Dq∗, see Definition 3.17, holds with q∗ = d0
on Θ, for some constant C7 > 0 and with α = A∗/2.

Proof: Since Θ ⋐ Ω is compact, we can cover it with a finite number of pseudometric balls
B(y1, r1(y1)), . . . , B(yP , r1(yP )) with y1, . . . , yP ∈ Θ. Let x ∈ Θ, r ∈

(
0, A∗

2 r1(x)
)
and choose

yk ∈ {y1, . . . , yP } such that x ∈ B(yk, r1(yk)). Then, conditions (2.6) and (2.13) imply that

0 < r < A∗
2 r1(x) <

r1(yk)
2 < R1(yk). Using (2.4) we conclude that

|B(yk, r1(yk))| ≤ C0

(
r1(yk)

r

)d0
|B(x, r)|.

It now follows that condition weak-Dq∗ holds with q∗ = d0, α = A∗/2 and

C7 =
1

C0
min

k=1,...,N

{ |B(yk, r1(yk))|
(r1(yk))d0

}
.

Proof of Proposition 3.3. Step 1. We start by recalling that if x0 ∈ B
(
y, τ5κr1(y)

)
, r ∈(

0, τA∗
5κC∗

r1(y)
)
and C∗ is as in (3.6), then B(x0, C∗r) ⋐ B(y, r1(y)); see Step 1 of the proof of

Proposition 3.1. Since by the definition of C∗ we have 0 < C∗r < r1(y) ≤ R1(y), Definition 2.4
gives

|B(y, r1(y))| ≤ C0

(
r1(y)

C∗r

)d0
|B(x0, C∗r)|.



Step 2. We now prove (3.10). By Step 1 and the definition of k(x0, r),

k(x0, r) =

[
(C∗r)

p−1

|B(x0, C∗r)|
1
B
‖e‖B,B(x0 ,C∗r);dx

] 1
p−1

+

[
(C∗r)

p

|B(x0, C∗r)|
1
D
‖f‖D,B(x0,C∗r);dx

] 1
p−1

+

[
(C∗r)

p

|B(x0, C∗r)|
1
H
‖g‖H,B(x0,C∗r);dx

] 1
p

≤
[(

C0r1(y)
d0

|B(y, r1(y))|

) 1
B
(C∗r)

p−1−
d0
B ‖e‖B,B(y,r1(y));dx

] 1
p−1

+

[(
C0r1(y)

d0

|B(y, r1(y))|

) 1
D
(C∗r)

p−
d0
D ‖f‖D,B(y,r1(y));dx

] 1
p−1

+

[(
C0r1(y)

d0

|B(y, r1(y))|

) 1
H
(C∗r)

p−
d0
H ‖g‖H,B(y,r1(y));dx

] 1
p

.

Thus, by the definitions of λ, Λ and the fact that C∗r < r1(y),

k(x0, r) ≤
(

C0

|B(y, r1(y))|

) 1
(p−1)B

r1(y)
1−λ(C∗r)

λ‖e‖
1
p−1

B,B(y,r1(y));dx

+

(
C0

|B(y, r1(y))|

) 1
(p−1)D

r1(y)
p
p−1

−λ
(C∗r)

λ‖f‖
1
p−1

D,B(y,r1(y));dx

+

(
C0

|B(y, r1(y))|

) 1
pH
r1(y)

1−λ(C∗r)
λ‖g‖

1
p

H,B(y,r1(y));dx
= Λrλ.

Step 3. If B(x, l) ⊆ B(x0, C∗r) and 0 < l ≤ C∗r, then B(x, l) ⋐ B(y, r1(y)) and 0 < l < r1(y) ≤
R1(y). As in Step 1 we conclude that

|B(y, r1(y))| ≤ C0

(
r1(y)

l

)d0
|B(x, l)|.

Also note that since r1 satisfies a local uniformity condition on B(y, r1(y)) with respect to ρ with
constant A∗ and since x0 ∈ B(y, r1(y)), then A∗r1(y) < r1(x0). Thus, from

0 < l ≤ C∗r < A∗r1(y) < r1(x0) ≤ R1(x0)

and B(x, l) ⊂ B(x0, C∗r), we deduce by Definition 2.4 that

|B(x0, C∗r)| ≤ C0

(
C∗r

l

)d0
|B(x, l)|.

Step 4. We are now going to prove that Z̄(B(x, l), ū) ≤ M , with M as in the conclusion of
Proposition 3.3. Using the definition of Z̄ given in (3.4) and equations (3.3), we have

Z̄(B(x, l), ū) ≤ 1 + lp−1‖b‖p′σ′,B(x,l);dx +
lp−1

kp−1
‖e‖p′σ′,B(x,l);dx(10.3)

+

(
lp‖c

p
p+1−ψ ū

p(ψ−p)
p+1−ψ ‖ pσ′

p−ǫ1
,B(x,l);dx

) 1
ǫ1

+

(
lp‖h‖ pσ′

p−ǫ2
,B(x,l);dx

+
lp

kp
‖g‖ pσ′

p−ǫ2
,B(x,l);dx

) 1
ǫ2

+

(
lp‖d‖ pσ′

p−ǫ3
,B(x,l);dx

+
lp

kp−1
‖f‖ pσ′

p−ǫ3
,B(x,l);dx

) 1
ǫ3

.



Step 5. Recalling the conditions on B and by Step 3, we have by Hölder’s inequality that

lp−1‖b‖p′σ′,B(x,l);dx ≤ lp−1‖b‖B,B(x,l);dx =
lp−1

|B(x, l)| 1B
‖b‖B,B(x,l);dx

≤ C
1
B
0 r1(y)

d0
B lp−1−

d0
B

|B(y, r1(y))|
1
B

‖b‖B,B(y,r1(y));dx

≤ C
1
B
0 r1(y)

p−1‖b‖B,B(y,r1(y));dx
.

The terms including norms of h and d are treated in a similar way, also recalling the definitions
of ǫ2, ǫ3. Thus we obtain

lp‖h‖ pσ′
p−ǫ2

,B(x,l);dx
≤ C

1
H
0 r1(y)

p‖h‖H,B(y,r1(y));dx
,

lp‖d‖ pσ′
p−ǫ3

,B(x,l);dx
≤ C

1
D
0 r1(y)

p‖d‖D,B(y,r1(y));dx
.

Step 6. Again using the conditions on B, Step 3 and the definition of k = k(x0, r), we have

lp−1

kp−1
‖e‖p′σ′,B(x,l);dx ≤ lp−1

(C∗r)p−1‖e‖B,B(x0 ,C∗r);dx
‖e‖B,B(x,l);dx

=
lp−1

(C∗r)p−1

|B(x0, C∗r)|
1
B

‖e‖B,B(x0,C∗r);dx

‖e‖B,B(x,l);dx

|B(x, l)| 1B

≤ lp−1

(C∗r)p−1

|B(x0, C∗r)|
1
B

|B(x, l)| 1B
≤ C

1
B
0

(
l

C∗r

)p−1−
d0
B

≤ C
1
B
0 .

The terms involving g and f can be estimated in a similar way, giving

lp

kp
‖g‖ pσ′

p−ǫ2
,B(x,l);dx

≤ C
1
H
0 and

lp

kp−1
‖f‖ pσ′

p−ǫ3
,B(x,l);dx

≤ C
1
D
0 .

Step 7. We estimate the remaining term

I := lp‖c
p

p+1−ψ ū
p(ψ−p)
p+1−ψ ‖ pσ′

p−ǫ1
,B(x,l);dx

= lp

(

B(x,l)
c

p2σ′
(p+1−ψ)(p−ǫ1) ū

p2σ′(ψ−p)
(p+1−ψ)(p−ǫ1)dx

) p−ǫ1
pσ′

starting with an application of Hölder inequality with conjugate exponents

q =
(σ − 1)(p + 1− ψ)(p − ǫ1)

p(ψ − p)
> 1, q′ =

(σ − 1)(p + 1− ψ)(p − ǫ1)

(σ − 1)(p + 1− ψ)(p − ǫ1)− p(ψ − p)
,

where we will associate q with ū and q′ with c; note also that q > 1 due to the definition of ǫ1
(see Proposition 3.3). Thus, also recalling the conditions on c, we obtain

I ≤ lp

(

B(x,l)
c

p2σ
(σ−1)(p+1−ψ)(p−ǫ1)−p(ψ−p)dx

) (σ−1)(p+1−ψ)(p−ǫ1)−p(ψ−p)
pσ(p+1−ψ)

(

B(x,l)
ūσpdx

) ψ−p
(p+1−ψ)σ

= lp‖c‖
p

p+1−ψ
p2σ

(σ−1)(p+1−ψ)(p−ǫ1)−p(ψ−p) ,B(x,l);dx
‖ū‖

p(ψ−p)
(p+1−ψ)

pσ,B(x,l);dx

≤ lp‖c‖
p

p+1−ψ
C,B(x,l);dx

‖ū‖
p(ψ−p)
(p+1−ψ)

pσ,B(x,l);dx
=

lp

|B(x, l)|
p

(p+1−ψ)C+
ψ−p

σ(p+1−ψ)

‖c‖
p

p+1−ψ
C,B(x,l);dx‖ū‖

p(ψ−p)
(p+1−ψ)

pσ,B(x,l);dx,



where the last inequality follows from the second part of the minimum in the definition of ǫ1.
Thus, by the first display in Step 3,

I ≤ l
p−

d0p
(p+1−ψ)C−

d0(ψ−p)
σ(p+1−ψ) (C0r1(y)

d0)
p

(p+1−ψ)C+
ψ−p

σ(p+1−ψ)

|B(y, r1(y))|
p

(p+1−ψ)C+
ψ−p

σ(p+1−ψ)

‖c‖
p

p+1−ψ
C,B(y,r1(y));dx

‖ū‖
p(ψ−p)
(p+1−ψ)

pσ,B(y,r1(y));dx

≤ r1(y)
pC

pσ+(ψ−p)C
(p+1−ψ)σC
0

|B(y, r1(y))|
pσ+(ψ−p)C
(p+1−ψ)σC

‖c‖
p

p+1−ψ
C,B(y,r1(y));dx

[
‖u‖pσ,B(y,r1(y));dx + k(x0, r)|B(y, r1(y))|

1
pσ

] p(ψ−p)
(p+1−ψ)

,

where we have used the facts that l < r1(y) and p − d0p
(p+1−ψ)C − d0(ψ−p)

σ(p+1−ψ) ≥ 0, due to the first

condition on C in item (iv) of Proposition 3.3. Finally, since C∗r < r1(y), Step 2 applies to k(x0, r)
and we have

I ≤ r1(y)
pC

pσ+(ψ−p)C
(p+1−ψ)σC
0 ‖c‖

p
p+1−ψ
C,B(y,r1(y));dx

[
‖u‖pσ,B(y,r1(y));dx

+ Λr1(y)
λ
] p(ψ−p)

(p+1−ψ)
.

Step 8. It is now sufficient to insert the estimates from Steps 5,6,7 into inequality (10.3) to
conclude the proof.
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