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HARNACK’S INEQUALITY AND HOLDER CONTINUITY FOR WEAK
SOLUTIONS OF DEGENERATE QUASILINEAR EQUATIONS WITH
ROUGH COEFFICIENTS

D. D. MONTICELLﬂ, S. RopNevl] axp R. L. WHEEDEN]

ABSTRACT. We continue to study regularity results for weak solutions of the large class of second
order degenerate quasilinear equations of the form
div(A(z,u, Vu)) = B(z,u, Vu) for z € Q

as considered in our paper [MRW]. There we proved only local boundedness of weak solutions.
Here we derive a version of Harnack’s inequality as well as local Hélder continuity for weak solu-
tions. The possible degeneracy of an equation in the class is expressed in terms of a nonnegative
definite quadratic form associated with its principal part. No smoothness is required of either the
quadratic form or the coefficients of the equation. Our results extend ones obtained by J. Serrin
[S] and N. Trudinger [T] for quasilinear equations, as well as ones for subelliptic linear equations
obtained in [SWIJ, 2].

1. Introduction

1.1. General Comments. Our main goal is to prove Harnack’s inequality and local Holder
continuity for weak solutions u of quasilinear equations of the form

(1.1) div(A(z,u, Vu)) = B(z,u, Vu)

in an open set 2 C R"™. The vector-valued function A and the scalar function B will be assumed
to satisfy the same structural conditions as in our earlier paper [MRW], where we proved that
weak solutions are locally bounded. The possible degeneracy of equation (L)) is expressed in
terms of a matrix Q(x), that may vanish or become singular, associated with the functions A, B.
More precisely, given p with 1 < p < co and an n X n nonnegative definite symmetric matrix Q(x)
satisfying |Q| € Lf 0/ - (€), we assume the following structural conditions: For (z,z,£) € QxR xR",
there is a vector A(x, z,€) with values in R™ such that for a.e. z € Q and all (z,¢) € R x R",

((i) Az, 2,€) = VQ)A(x, 2,€),

(1) € A(,28) 2 a W—S‘L—h D)2 - g(a),

(%) ‘sz§‘<a‘\/—§‘ +b \zhl+e()

() |BG20)| < cw|Va@E + @) + (@),

where a,v,1%,d > 1 are constants, and b,c,d,e, f,g,h are nonnegative measurable functions of
x € (.

(1.2)
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The sizes of the exponents are restricted to the ranges
(1.3) ye(l,o(p—1)+1), vel,p+1-—0ct), §e(1,po),
where o > 1 is a constant that measures the gain in integrability in a naturally associated Sobolev
estimate (see (2.8]) below). For the classical Euclidean metric |z — y|, nondegenerate () and
1 < p < n, the Sobolev gain factor o is n/(n — p). Furthermore, the functions b, ¢, d, e, f, g, h will
be assumed to lie in certain Lebesgue or Morrey spaces, and to satisfy the minimal integrability
conditions

9P / !
ce LTTTUN(Q), ee I (),  feLiP(q),
op po

loc loc loc

be LI V(Q),  de L(Q).

loc loc

(1.4)

Here and elsewhere we use a prime to denote the dual exponent, for example, 1/p+1/p’ = 1 when
1 < p < 0o, with the standard convention that 1 and oo are dual exponents.
The quadratic form associated with Q(x) will be denoted

(1.5) Qr,8) = (Qx)€,8), (2,6) € 2 xR",

and we note that Q(x,£) may vanish when £ # 0, i.e., Q(z) may be singular (degenerate).
As in [MRW] and following [SW1 2], our weak solutions are pairs (u, Vu) which belong to an
appropriate Banach space Wé?’p (©) obtained by isomorphism from the degenerate Sobolev space

Wé’p (), defined as the completion with respect to the norm

1
1.6 oy = rq vu)ddr )"
(16) lullygroy = ( [ P o+ [ Qo vwtar)

of the class of functions in Lip,.(€2) with finite Wé’p (©) norm. Technical facts about these Banach
spaces are given in [MRW], [SW1l 2] with weighted versions in [CRW], and some of them will be
recalled below. For now, we mention only that when @ is degenerate, it is important to think of
an element of the Banach space quz’p () as a pair (u, Vu) rather than as just the first component
u, due to the possibility that Vu may not be uniquely determined by w. Nonuniqueness of Vu
causes us little difficulty since our primary regularity results concern estimates of w rather than
Vu. Except for the need to consider a pair, the notions of weak solution, weak supersolution and
weak subsolution that we will use are standard, namely, we say that a pair (u, Vu) € Wé’p (Q)
satisfies

(1.7) div(A(z,u,Vu)) =(<,>) B(z,u,Vu) forz el

in the weak sense if for every nonnegative test function ¢ € Lip(2), the corresponding integral
expression

(1.8) /Q (Vo A(z,u, Vu) + ¢B(z,u, Vu)| dz = (>, <)0

holds. The integrals in (L8] converge absolutely due to (L2)—(T4); see [MRW], Proposition 2.5,
Corollary 2.6, Proposition 2.7].

Our results and analysis are carried out in the context of a quasimetric p on 2, that is, p :
Q2 x Q — [0,00) and satisfies the following for all z,y,z € (:

e plz,y) = ply,z) (symmetry),
e p(zr,y) =0 < x =y (positivity),
(1.9) o p(z,y) <kl[p(z, z) + p(y, )] (triangle inequality),

where £ > 1 is independent of z,y, z € ). In particular, we will assume that appropriate Sobolev-
Poincaré estimates hold and that Lipschitz cutoff functions exist for the class of quasimetric p-balls
defined for z € Q and r > 0 by

(1.10) B(z,r) = {yeQ:p(x,y) <r}.



We will refer to B(x,r) as the p-ball of radius r > 0 and center z. All p-balls lie in © by their
definition, and they are assumed to be open with respect to the usual Euclidean topology. The
estimates we need are summarized in §2.

1.2. Some Known Results. In the standard elliptic case when Q(z) = Identity and p(z,y) =
|z — y| is the ordinary Euclidean metric, regularity results including Harnack’s inequality and
local Hoélder continuity for weak solutions of (ILI]) were derived in [S] and [T] under structural
conditions more restrictive than (L2]). Obtaining analogues of these results in the degenerate case
is our main concern.

In the degenerate (or subelliptic) case, Harnack’s inequality and Holder continuity have been
studied in [SWIl 2] for linear equations with rough coefficients and nonhomogeneous terms, and
those results are included among the ones we derive here. Moreover, in the degenerate quasilinear
case, and under the same structural assumptions as in ([.2]), local boundedness of weak solutions
is proved in [MRW]. In fact, a rich variety of local boundedness estimates is given there depending
on the strength and type of condition imposed on the coefficients, but still without any assumption
about their differentiability.

In order to describe a known estimate in the degenerate quasilinear case, we now record (without
listing the precise technical data) a fairly typical form of the local boundedness estimates proved
in [MBW] in case y =6 =pand ¢ € [p,p+1—0c71): If (u, Vu) € Wé’p(Q) is a weak solution of
() in a p-ball B(y,r), then for any k > 0, there are positive constants 7, C, and Z such that

_ 1 P
(1.11) esssup (Ju(x)|+k) <CZ | —— lu(x)| + k) dx | .
zeB(y,7r) ( ) ‘B(y7 T)’ B(y,r) ( )

Here, 7 and C are independent of u, k, B(y,7),b,c,d, e, f,g and h, but Z generally depends on all
these quantities in very specific ways described in [MRW] and later in this paper. The richness
of boundedness estimates that we mentioned above results from estimating Z under various as-
sumptions on the coefficients. In fact, the estimates in Corollaries 1.8-1.11 of [MRW] offer only
a sample of those which are possible. Understanding Z, removing its dependence on u and some
of the other data, and generalizing the mean-value estimates which lead to (ILII]) are important
ingredients in deriving the regularity results in this paper, where in the broad sense we follow the
Moser method.

In order to state our results carefully, including (LI1I), we must describe the technical back-
ground, which is considerable. This is done in the next section.

2. TECHNICAL BACKGROUND AND HYPOTHESES

Our principal results are axiomatic in nature and based mainly on the existence of appropriate
Sobolev-Poincaré inequalities and Lipschitz cutoff functions in a space of homogeneous type. In
this section, we describe the setting for our work and list our main assumptions.

2.1. Homogeneous Spaces. Let 2 C R” be an open set and p be a quasimetric defined on 2
satisfying (L9). We will make two a priori assumptions relating the p-balls defined in (II0) and
the Euclidean balls

D(z,r) = {yeQ:|z—y|<r}

Note that D(x,r) is the intersection with  of the ordinary Euclidean ball with center x and
radius 7, and recall that all p-balls are also subsets of ). As we already mentioned, we will always
assume that every B(x,r) is an open set according to the Euclidean topology. Second, we will
always assume that

(2.1) forall z € Q, |z —y| — 0 if p(z,y) — 0.



As a consequence of ([2Z.]), for every = € Q there exists Ry(x) > 0 such that the Euclidean closure
B(z,r) of B(z,r) satisfies B(x,r) C Q for all 0 < r < Ryp(x). See Lemma 2.1 of [MRW] for this
result.

Remark 2.1. Since p-balls are assumed to be open sets, the converse of (2.1)) automatically holds:
(2.2) forall x,y € Q, p(z,y) = 0 if |x —y| — 0.
Furthermore, since p-balls are open, every p-ball has positive Lebesgue measure.

As is well-known, the triangle inequality (I.9) implies that p-balls have the following swallowing
property (see e.g. [CW1], Observation 2.1] for the simple proof):

Lemma 2.2. Ifx,y € Q, 0 <t <r and B(y,t) N B(xz,r) # 0, then
(2.3) B(y,t) € B(z,7"r)
where v* = k + 2x% with k as in (L3).

Remark 2.3. The constant v* in the conclusion of Lemma can be decreased if we only
require information about the center of the smaller ball. Indeed, if x,y € Q, 0 <t < r, and
B(y,t) N B(xz,r) # 0, then y € B(z,2xr) by (L9).

Definition 2.4. We call the triple (2, p,dz) a local homogeneous space if Lebesgue measure
1s locally a doubling measure for p-balls, i.e., if there are constants Cy,dy > 0 and a function
Ry :Q — (0,00) such that if z,y € Q, 0 <t <r < Ryi(z) and B(y,t) N B(xz,r) # 0, then

r\ 4o
(2.4) |B(z, )| < Co(;) [B(y,t)|.

This notion generalizes that of a symmetric general homogeneous space as defined in [SW1 p.
71]. Also, due to the swallowing property, (24) has an equivalent form: There are constants
Cj,c > 0 such that if z,y € 2,0 <t <r < ¢Ry(z) and B(y,t) C B(z,r), then

7\ do
(2.5) Bla.)| < C(3) 1B
for the same dp and R;(z) as in (2.4).

Remark 2.5. By a result of Korobenko-Maldonado-Rios (see [KMR]), the validity of the local
doubling condition (Z4) for some exponent dy > 0 and function Ri(x) > 0 is a consequence of
two conditions that will be introduced below: the local Sobolev inequality (28] and the existence

of appropriate sequences of Lipschitz cutoff functions, supported in pseudometric balls with small
radius and adapted to the matriz Q, as described in (ZI0).

We will usually require that R(z), as well as similar functions we will use to restrict sizes of
radii, satisfies the local comparability condition described in the next definition.

Definition 2.6. Let E C Q). We say that a function f : Q — (0,00) satisfies a local uniformity
condition with respect to p in E if there is a constant A, = A.(f,E) € (0,1) such that for all
x € E and all y € B(z, f(z)),

fly) _ 1
(2.6) A, < o) < e
Condition (Z.6]) is automatically true in case f is bounded above on E and also has a positive
lower bound on E. This condition will be helpful in our proof of the John-Nirenberg estimate
using techniques related to those in [SW1]. It is not required in [SW1] since there, Ry(z), Ry ()
(and Ra(x) in §2.2 below) are chosen to be the same fixed multiple of the Euclidean distance
dist(z,09Q) and so (Z.6) holds with f(z) = Ro(x) = Ri(z) = Re(x) on any set E satisfying

E C Q. In some proofs to follow we will choose E to be a specific quasimetric ball B(z,7).



2.2. Poincaré-Sobolev Estimates and Cutoff Functions. Let p and @ be as in (I.2]), and
recall that p € (1,00) and |Q| € L} O/ CQ(Q). Before we state the Sobolev and Poincaré estimates that
we require, let us make a few more comments about the Sobolev space Wé’p (©). A fuller discussion
can be found in [MRW], [SW2], and [CRW]. Let Lipg ,(€2) denote the class of locally Lipschitz
functions with finite Wé’p (©) norm; see (LO). The space Wé’p (©) is by definition the Banach
space of equivalence classes of sequences in Lipg ,(€2) which are Cauchy sequences with respect
to the norm (LG). Here two Cauchy sequences are called equivalent if they are equiconvergent in
Wi (Q).

To further describe Wé’p (), we consider the form-weighted space consisting of all (Lebesgue)
measurable R™-valued functions f(x) defined in €2 for which

(2.7) 1] 2r,0) = {/QQ(:v,f(ﬂc))g dw}; < 0.

By identifying any two measurable R"-valued functions f and g with [|f — g||zr,g) = 0, [27)
defines a norm on the resulting Banach space of equivalence classes. We denote this Banach
space of equivalence classes by L£P(2,Q). If {wy} = {wi}2, € Wé’p(Q), meaning that {wy}
is a Cauchy sequence of Lipg ,(£2) functions with respect to (ILG), then there is a unique pair
(w,v) € LP(Q2) x LP(2,Q) such that wy — w in LP(Q) and Vw, — v in LP(Q,Q). The pair
(w, v) represents the particular equivalence class in Wé’p (Q) containing {wy}. The space Wé’p (Q)
is defined to be the collection of all pairs (w,v) that represent equivalence classes in Wé’p (Q).

Thus, Wé?’p(Q) is the image of the isomorphism 7 : Wé’p(Q) — LP(Q2) x LP(Q, Q) defined by
J ({wr}]) = (w,v),

where [{wy}] denotes the equivalence class in Wé’p (Q) containing {wy}. Therefore, Wé?’p (Q) is
a closed subspace of LP(2) x LP(€2,Q) and hence a Banach space as well. Since Wé’p (©) and
Wé’p () are isomorphic, we will often refer to elements (w, v) of Wé’p () as elements of Wé’p (Q).
Interestingly, v is generally not uniquely determined by w for pairs (w,v) in Wé’p (Q), i.e., the
projection
P:WY(Q) — LP(Q)

defined by P((w,v)) = w is not always an injection; see [FKS] for an example. However, we will
generally abuse notation and denote pairs in Wé’p (Q) by (w, Vw) instead of (w,v).

(Wé’p )o(2) will denote the space analogous to W(}?’p (©) but where the completion is formed

by using Lipschitz functions with compact support in 2. A typical element of (Wé’p )o(Q2) may
be thought of as a pair (w,Vw) € LP(Q) x LP(Q,Q) for which there is a sequence {wy} C
Lipg »(2) N Lipp(£2) such that wy — w in LP(Q) and Vw, — Vw in LP(Q, Q). Here we again
adopt the abuse of notation Vw for the second component v of a pair (w, v).

We can now state the Sobolev-Poincaré estimates that we will assume. We say that a local
Sobolev inequality holds in 2 if there exists a function Ry : © — (0, 00) and constants C; > 0 and
o > 1 such that for every p-ball B(y,r) with 0 < r < Ra(y), the inequality

1

1 po 1 b 1
28 _— pad po < C L v _d >
(2.8) (’B(yﬂ“)‘/B(y,r) |wl m) < 1[r<‘B(y’T)’ B(yw)y\/@ wl® x)

1 / Z
o — wPdzx
<’B(y774)‘ B(y,r) ‘ ‘ ) ]
holds for all (w, Vw) € (Wé’p)o(B(y,T))-



We say that a local Poincaré inequality holds in €2 if there are constants Cy > 0 and b > 1 such
that for every p-ball B(y,r) with 0 < r < Ra(y), the inequality

1

1 1 »
(2.9) —_ lw —wp(ylde < Cor 7/ I/ QVw|Pdx )"
\B(y,r)] B(y,r) Bl.r) <‘B(y7 []T')‘ B(y,br) >
1
holds for all (w, Vw) € Wé’p(Q), where wp(, ) = T5—— wdz.

|B(ya T)| B(y,r)

Remark 2.7. It is easy to see that [2.8) and (29) hold as stated, that is, for all (w,Vw) in
(Wé’p)o(B(y, r)) or Wé’p(Q) respectively, provided they hold for all w in Lipg ,(2) N Lipo(B(y,))
or Lipg p(2) respectively.

As in [MRW], we ask for two more structural requirements related to our collection of quasimet-
ric p-balls { B(z,7) }r>0.0eq. The first of these is the existence of appropriate sequences of Lipschitz
cutoff functions (called “accumulating sequences of Lipschitz cutoff functions” in [SW1]). Specif-
ically, for the function Rj related to the Poincaré-Sobolev estimate (2.8), we assume there are
positive constants s*,Cs«, 7 and N, with po’ < s* < oo and 7 < 1, such that for every p-ball
B(y,r) with 0 < < Ra(y), there is a collection of Lipschitz functions {n;}72, satisfying

(suppm C B(y,r)

0<n; <1 forallj

B(y,tr) C {z € B(y,r) :nj(x) =1} for all j
suppn;+1 C {z € B(y,r) :nj(x) =1} forall j

1/s* )
1 . N7 ‘
—_— ; < Cgx for all j.
\(\B@,mr/my,ﬁmw dw) = G foralld

This condition is slightly weaker than the corresponding one in [SW1]; see [MRW] p. 149] for a

fuller discussion. We note that since s* > po’, there is a number s’ > ¢’ such that s* = ps’. The

exponent s = Sf*p dual to s’ satisfies 1 < s < o and plays an important role in our results.

(2.10)

Remark 2.8. As already mentioned in Remark[2.3, conditions (2.8) and (ZI0) imply the validity
of the local doubling condition ([24)) for some positive exponent dy (see [KMR]). It is important to
note that the smaller the exponent dy in (Z4) can be chosen, the weaker the required assumptions
of local integrability on the coefficients b, c,d, e, f, g, h in (L2) will be in the theorems to follow. See
the statements of Proposition[3.3, of Theorems (3.4, 3.7, (310, [3.11), [3.13, [3.13 and of Corollaries
(7.9, (312, [3.10.

Our last requirement is that the following pair of inequalities hold simultaneously: There
exists ¢ € [1,00] such that for every p-ball B(y,r) with 0 < r < Ry(y), there is a constant
C3 = C3(B(y,r)) > 0 such that

1/pt
(2.11) (/ 1/ QVnP! dx) < oo and
B(y,r)

, 1/pt! 1/p
@) ([ 1) T <l = o [ VavsPds s [ (i)
B(y,r) Q Q Q

for all n € {n;}, {n;} as in ZI0), and all f € Lip;oc(?). As usual, t’ denotes the dual exponent of
t. In case t or ' is infinite, we simply replace the relevant term in (2.I1)) or (Z.12]) by an essential
supremum.

Remark 2.9. These inequalities are used in [MRW] to derive a product rule for elements of
Wé’p(Q). They also imply that functions in Wé’p(Q), which are generally not compactly supported,
have sufficiently high local integrability in case the Sobolev inequality (2.8) holds only for compactly



supported Lipschitz functions. See [MRW, Section 2, p. 162] for these results. It is useful to note
that (ZI1)) is automatically satisfied for every t with 1 <t < s*/p by (210). However, (Z11) may
also hold for larger values of t independently of (ZI0). See [MRW. p. 150] for details. In fact, if
(ZII) holds with t = oo then [2I2) (with t' = 1) is trivial due to the form of the Wé’p(Q) norm

(L4).

In order to simplify notation when combining hypotheses, we fix a single function ry : Q —
(0, 00) satisfying

(2.13) ri(z) < min{Ry(z), Ri(x), Re(x),1}, x€Q,

where Ry is as described below (2Z1]), R; is as in Definition 24l and Ry is as in (2.8)), (2:9)), (210),
1), and ET2).

3. HARNACK’S INEQUALITY

We begin this section by recalling some notations of [MRW]. Given a measurable set E and a
measurable function f on F, we write

(31) ez = (737 ), rf<w>rpdx);:(E\f(x)\pdm);, and

(32) s = ([ |f<x>|pdw);.

In some cases when context is clear, the set E may be dropped from the left hand side in (B.1I)

and (3.2)).

Given a function u and constants k, €1, €2, €5 with £ > 0 and €1, €2, €3 € (0, 1], we denote

= |ul+F, b = btk e,

(3.3) — h+kPg, d = d+krf.

S

Here, b,c,d, e, f, g, h denote the coefficients in (I.2]). Furthermore, for each p-ball B(y,r), define

(34) Z=Z(B(y,r),u) = L+ 177l 00 5y

1 L L
v P JJ(wip) €1 PIE €2 P €3
* (T ler= =@ =0l pe gy )+ A\ et pya )\ 2y )

p—€1 p—eg’ p—e3’

where the exponents p, ), o are as usual; see (L2) and (2.8). It is important to note that Z is not
monotone in its first argument due to the normalized norms appearing in its definition. However,
if Z(B,u) < oo, then Z(B',u) < oo whenever B’ C B = B(y,r) with r < Ry(y).

3.1. Standing Assumptions. In order to state our main results efficiently, we list here several
standing assumptions to remain in effect for the rest of this paper. As above, Q will always
denote a bounded domain in R™, p denotes a quasimetric on €2, and Q(z) denotes a measurable
symmetric nonnegative definite matrix defined in Q. We always assume the triple (2, p, dx)
defines a local homogeneous space in the sense of Definition 2.4 Note that this ensures that
the local doubling condition (2.4]) is satisfied. We also assume the validity of the local Sobolev
and Poincaré inequalities (2.8) and (2.9) and the existence of accumulating sequences of Lipschitz
cutoff functions satisfying (2.10) for a fixed 7 € (0,1) and s* > po’. Here ¢’ denotes the dual
exponent to the Sobolev gain factor o of (2.8). Lastly, we assume that each of (2.11]) and (2.12))
holds for some ¢ € [1,00]. We can now state our core Harnack result. Under certain conditions,
it will spawn other versions of Harnack’s inequality that will lead to continuity of weak solutions.



3.2. Main Results.

Proposition 3.1. Let 1 < p < oo and |Q(x)| € LIZ)O/CQ(Q). Assume that the functions A, B of (L))
satisfy (L2) with

(3.5) y=b0=p, Yepp+tl-ot)

Fiz y € Q and suppose there is a function r(z) as in (ZI3) that satisfies a local uniformity
condition in B(y,r1(y)) with constant A, = A.(y,m1(y)); see ([26]). Let

128bk10(y*)8
TA2 min{A2, (8xk°)~1}’
where b is from (Z3). For zo € B(y, Zr1(y)) and r € (0, STH%* 1(y)), define
¢ ={(z,l) : B(x,l) € B(xg,Csr) and 0 < [ < Cyr}.

Let (u,Vu) € WIP(Q) be a weak solution of (LI)). Assume that €1,€e2,e3 € (0,1] and k > 0 are
such that

(3.6) C, =

(3.7) sup Z(B(z,l),u) = M < oo,
(z,l)ee
where Z is defined by B.4) and 4 = |u| + k. If u >0 in B(zg,Cysr), then the Harnack inequality
(3.8) esssup u(z) < C4 [C’5Z(B(a:0,r),ﬂ)]CGM ess inf u(z)
z€B(xg,7T) z€B(xg,TT)
holds with

i) Cy4 depending on p, o, s, €1, €2, €3,
ii) C5 depending on a,p,o,s,€1,¢€2,€3, C1 in (Z8), N,Cs in (2I0), on the pseudometric p,
iii) Cgs depending on a,p,o,s,€1,¢€2,€3, Co, b in (Z9), 7, N,Cs« in (ZI0), Co,do in Z4) and

on the pseudometric p.
Remark 3.2. Since under the hypotheses of Proposition [31] one has (xo,r) € €, we obtain

(3.9) ess sup u(z) < C’4[C’5M]CGM ess inf (z)
2€B(z0,TT) z€B(xg,7T)

with Cy, Cs, Cg independent of (u,Vu),b,c,d, e, f, g, h,k,y,xo,r, M.

A proof of Proposition Bl is given in §6. The next proposition provides explicit integrability
conditions on structural coefficients and choices of €1, 3,3 and k that ensure condition ([B.7) is
satisfied. It also provides a decay condition on k essential for proving Holder continuity of weak
solutions to (III); see Theorem [B.7] and its proof.

loc

fix y € Q and suppose there is a function ri(x) as in 2I3) which satisfies a local uniformity
condition in B(y,r1(y)) with constant A, = A.(y,r1(y)). Let Cy be defined as in ([B.0) and

assume that
i) b,e € LE () with B > max {p'o’, I% ;
ii) h,g € LJL(Q) with H > %2 3 > o';
(

i) d, f € LP (Q withD>%°,D>J’;

Proposition 3.3. Let 1 < p < o0, |Q| € Lp/z(Q), andp € [p,p+1—oc1). Let (u,Vu) € Wé’p(Q),

. d
iv) c € LS (Q) with C > - )(Opp;rdo) % > 0and C > W
For every xy € B( ) and r € (0, 5;% 1(y )), define

k= k(zg,7) = k(B(xo,C*r))

1 1

1
= [y Mells puocma] "+ [(CrV I lp s eya] ™ + [(CorPIgl s ey



Then

(3.10) k(xo,7) < Ar,
where A\, A are nonnegative numbers independent of xo,r of the form
) do 1 do do
- = -4~ )
A mm{ p—1B p—1 P D Py and
1 q__dp
A o= ORI ) N el

BByrl( )) dx
_dg__

1 P
- o e 22—
Cor P e "y (y)7 Hf‘fDByn (v))sda

1 q_do
pH pH 1-X
+ CO C* Tl( ) HngH B y Tl(y)) -dr’
Moreover, with €1, €2 and €3 defined by

po(p+1—1)—p— (p2c/C) e o o o
o b = {5} a =i {1,

B) is satisfied with

1 1 6
M= 14 CF (1410 bl s yias| +Co™™ (14710 Wl s, oyt |

€1 = min {1,

_1_ 1
+ 057 [ WP Nl g, 5]

Y—p+(po/C)

p(¥=p) | €1
€ —y)o g o
—i—C'ol(p+1 ; [ 1(y)? HCHpHyn (v));dz <” HPUB(yh(y)) +An(y) >p+ ] ’

where Cy is as in (2.4)).
Proposition B.3] is proved in the appendix.

Remark 3.4. (1) In part (iv), the assumption that (p+171/1§l(0ppoa+do)fdo > 0 follows from the

condition ¥ € [p,p+1—0~1) provided dy < po’; also, in the classical Euclidean situation,
the condition dy < po’ is true with equality. If it is the case that dy > po’, this condition
further restricts ¢ € [p,p+ 1 — do+po) Clp+1—01h).

(2) The constants N\, A, M in Proposition [3.3 are independent of xo,r. Moreover X is inde-
pendent of y. The constant M depends on u only through |[ull,e By (y)):dzs and it is
independent of u when ¥ = p.

(3) The strict inequalities in (i), (7it1) and (iv) guarantee that €1, €2, €3 > 0; moreover X\ > 0
if all the inequalities in (i), (ii), (iii) are strict.

Combining Propositions B.1] and B3] we obtain the following theorem.

Theorem 3.5. (Harnack’s Inequality, when v =6 = p and ¢ > p) Let 1 < p < oo and |Q| €
Lp/Q(Q). Let A, B be functions satisfying (L2) with v, 4,1 restricted to

loc
y=d=p, vepptl-ol)
Fiz y € Q and suppose there is a function ri(x) as in ZI3) which satisfies a local uniformity
condition in B(y,r1(y)) with constant Ay = Ax(y,r1(y)). Let Cy be as in (3.6), xo € B(y, 5:71(y))

and r € (0, 5;‘40 1(y)). Assume that the structural functions b,c,d,e, f,g,h of (L2) and €1, €9, €3

and k = k(xo,r) are as in Proposition [3.3. If (u,Vu) € Wé’p(Q) is a weak solution of (LI in
and u >0 in B(zg, Cyr), then
(3.11) ess sup (u(z)+ k(xo,r)> < C essinf <u(z) + k(xo,r)>,

z€B(zo,7T) z€B(zo,7T)



with C = C4(CsM)“M | M as in Proposition and Cy,Cs5,Cq as in Proposition [31] with
€1, €2, €3 given in Proposition [3.3. The constant C depends on ||ul|pe, B(y,ri (y)):de Oy when ¥ > p
and only through M.

The proof of Theorem follows by simply combining Propositions B.Il B.3] and is left to the
reader. Theorem [B.5] will allow us to prove Holder continuity of weak solutions to (LI). First we
recall the notions of Hélder continuity that we will use.

Definition 3.6. Let w: Q) — R and S C Q. We say that w is:

(1) essentially Holder continuous with respect to p in S if there are positive constants C, p

such that
(3.12) ess sup [w(z) = w(z)l
z,x€S p(Z, x)ﬂ

(2) essentially locally Holder continuous with respect to p in S if for every compact set
K C S, there are positive constants C, u such that

|w(z) — w(@)|

<C.

3.13 ess sup
( ) z,2€K p(z, )k

In these definitions, the notion of Holder continuity of a function is relative to the quasimetric
p. Classical Holder continuity with respect to the usual Euclidean metric then follows by impos-
ing a Fefferman-Phong containment condition on the family of quasimetric p-balls. Recall that a
Fefferman-Phong condition holds if there are positive constants C, e such D(z,r) C B(z,Cr®) for
x € Q and r > 0 sufficiently small (in terms of x). Several references impose this condition for
such a purpose; see [FP] and [SW1] for further discussion.

Our study of Holder continuity of weak solutions begins with the case when the exponents
v, 9,1 are restricted as in (B.5]).

Theorem 3.7. (Holder continuity, wheny =06 =p and ) > p) Let 1 < p < oo and |Q| € LfO/f(Q).
Let (u, Vu) be a weak solution of (L)) in Q where the functions A(x,z,&) and B(x, z,§) satisfy
(L2 with 7,6, as in BH). Assume that the coefficient functions of (IL2)) satisfy conditions (i)-
(iv) of Proposition[3.3 with strict inequality. Lety €  and suppose there is a function r1(x) as in
2I3) which satisfies a local uniformity condition in B(y,r1(y)) with constant A, = Ax(y,7r1(y)).
Then u is essentially Hélder continuous with respect to p in B(y, %rl(y)) The constants C and
in BI3) depend on y,r1(y), A«, K as in (L), the Harnack constant Cy(CsM )M which appears

in Theorem[33, A as in Proposition [3.3; C' depends also on ||ulpe, B(y,r, (y)):de -

Remark 3.8. We explicitly note that yu in the previous Theorem depends on ||ullpe, B(y,r (y)):de
only through M, and thus it depends on wu itself only if ¥ > p.

Theorem [B.7is proved in §7. The next result gives sufficient conditions for essential local Holder
continuity of solutions in Q.

Corollary 3.9. Let 1 < p < oo and |Q] € Lfo/cz(Q), and suppose ([L2)) holds with ~y,6,% as in
BE). Assume also that the coefficient functions of (L2) satisfy conditions (i)-(iv) of Proposition
[Z.3 with strict inequality. Let r1 :  — (0,00) be a function satisfying (2.I3]) with the property
that given any compact K C Q there is a positive constant sy such that sy < ri(y) <1 for every
y € K. Then if (u,Vu) € Wé’p(Q) is a weak solution of (1) in Q, u is essentially locally Hélder

continuous with respect to p in §2.

A brief proof of Corollary B.9] can be found in §8.



3.3. Some consequences. The following results are concerned with some of the possible cases
when the exponents 7, §, ¢ are allowed to vary in the ranges given in (L3)).

In particular, Theorems 310l and 31T and Corollary are devoted to the case when v, §,1 <
p. We consider the case when ~,d,7» > p and satisfy (3] in Theorems B.I3] and and in
Corollary See §9 for their proofs.

Of course, similar results can be obtained for other choices of 7, d, 1 in the ranges given in (L.3))
but we won’t list them here. Such results can all be derived from Theorems [B.5] B.7land Corollary
We leave the details to the interested reader.

Theorem 3.10. (Harnack’s Inequality, when 7,0, < p) Let 1 < p < oo and |Q| € Lfo/f(Q). Let
A, B be functions satisfying (L2) with v, 9,1 restricted to

(3.14) 7,0,% € (1, p).

Fiz y € Q and suppose there is a function r1(x) as in (2I3]) which satisfies a local uniformity
condition in B(y,r1(y)) with constant A = A.(y,71(y)). Let C be as in [B.8), zo € B(y, £-r1(y))
and r € (0, 5;‘463‘ r1(y)). Assume that the structural functions b,d,e, f,g,h of ([([L2) satisfy condi-

tions (i), (ii) and (iii) in Proposition [3.3, that c € LS (Q) with C > dy and C > po’. Let €, €3, A
be as in Proposition [3.3 and define

' {1 p20-/}
€6 = minsl,p— ,
C
1 1

ki = ki(xo,r) = k1(B(xo,Cir))
= [ b+ ells sy con) "+ [(Crlle+d+ Ll pieo oy

p—1

=

+ [CrPllg + hllyy pay o]
d

0B A ohE
A o= CFTIEC, TR (y)- A||b+Bstw_fs(yn(y))dac

1 pD=dg

F OO )T N e dt S5
1 q_do

FCPO ) g Bl

1

1 eoH e
M= 14 CF (L ral ™ Wl i yas) + i L+ WPl |
1 4

) 1 P
+ C52" [1 + Tl(?/)pHdHD,B(y,n(y));@] TG {Tl( ) HCHC B(y,r1(y)) dx} o

Then
ki (wo,7) < Ayr?

and, if (u,Vu) € Wé’p(ﬂ) is a weak solution of (1)) in Q such that uw >0 in B(xg, Cyr),

(3.15) ess sup ) (u(z) + kl(xo,r)> < C ess inf <u(z) + k1 (330,7“))7

z€B(zo,Tr z€B(zo,7T)

where C = Cy(CsMy) M| with Cy, Cs,Cs as in Proposition [31

Theorem 3.11. (Holder continuity, when 7,0,9% < p) Let 1 < p < oo and |Q| € Lfo/f(Q). Let
(u, Vu) be a weak solution of (LI in Q where the functions A(z,z,&) and B(x, z,£) satisfy (L2)
with v,9,v as in (BI4]). Assume that the coefficient functions of (IL2)) satisfy the same conditions
as in Theorem with strict inequality. Let y € Q and suppose there is a function ri(x) as in
2I3) which satisfies a local uniformity condition in B(y,r1(y)) with constant A, = Ax(y,r1(y)).
Then u is essentially Holder continuous with respect to p in B(y, g—zrl (y)). The constants C' and

p in BI3) depend on y,71(y), A, & as in (LH), the Harnack constant Cy(CsMy)“sM1 which



appears in Theorem [Z10, A as in Proposition [3.3; C depends also on ||ulpe, By,r (y)):de, While p
is independent of (u, Vu).

Corollary 3.12. Let 1 < p < oo and |Q] € Lfo/f(Q), and suppose (L2 holds with v,9,v as
in BI4). Assume also that the coefficient functions of (L2) satisfy the same conditions as in
Theorem [310 with strict inequality. Let r1 :  — (0,00) be a function satisfying (2.13]) with the
property that given any compact K C  there is a positive constant sg such that so < r1(y) <1
for every y € K. Then if (u,Vu) € Wé’p(Q) is a weak solution of (LI)) in Q, u is essentially
locally Hélder continuous with respect to p in § with exponent i that is independent of the weak
solution (u, Vu).

Theorem 3.13. (Harnack’s Inequality, when 7,0, > p) Let 1 < p < oo and |Q| € Lfo/f(Q). Let
A, B be functions satisfying (L2)) with v, 0,1 satisfying (L3)) and restricted to

(3.16) v,0,% > p.

Fiz y € Q and suppose there is a function r1(x) as in (2I3) which satisfies a local uniformity
condition in B(y,r1(y)) with constant Ay = A«(y,71(y)). Let Cy be as in (3.0), o € B(y, £:71(y))
and r € (0, %Tl (y)). Assume that the structural functions b,d,e, f,g,h of (L2) satisfy

B, . lod dopo .
1) be Llooc(Q) with By > Z#’Hl and By > Wfdo(v—p) > 0;
ii) e € LY () with & > max {p'c’ ,p Tl
i) h e L} (Q) with Ho > 2% and 7—[0 > s > 0;
iv) g € LY (Q) with G > d—O g > o';
v) d € LY°(Q) with Dy > L7 and Dy > #{)’(‘g_p) > 0;
vi) f € Lf (Q) with F > do , F>o';
dopo
Vll) (XS Lloc(Q) with C > W and C > (p+171/J)(0ppo+do)fdo > 0.

. po . po po
_ _ po _ __pr gl p_ o F [
B mm{po—i-(’y ) 5},7‘[ mm{%—‘;—i—(’y—p)’g} mln{DO o= p) ]-'}

Let k = k(xo,r),€1,€2,€3,\, A be as in Proposition and define

L ri(y)P! -
My = 1+ C’OB 1+ WHZ)HBmB(%Tl (y))§d5’3”uH;¢7,IE3(y,r1 (y));dz]
_ 1
1 €
+ Cosff‘ 1+ B (y,?“(ly():) ‘% ||hH7-lo,B(y,r1(y));d:v||u‘|;;%(y7r1(y));dg;]
e g
(3.17) +Cp®" |1+ deHDO,B(y,n( da:HUHpU By (1):d ]
Y—p+(po/C) p(—p)

+C e1(p+1—7)o
0

€1
A pFi=v
@Il T . e (1o sy + Ari@))? ]
If (u,Vu) € Wé’p(Q) is a weak solution of (L) in Q and u >0 in B(xg, Cyr), then

(3.18) ess sup (u(z) + k(mo,r)> < C essinf <u(z) + k‘(ﬂ:o,r)>,

z€B(xo,7T) z€B(xo,7T)

where k = k(xq,7) satisfies (10) and C = Cy4(CsMy)CsM2 | with Cy, Cs, Cs as in Proposition [31.



Remark 3.14. In parts (i), (iii), (v) and (vii) of the assumptions of Theorem[313, the positivity

dopo dopo 0po dopo
assumptions on 2—To—do(1—p)’ PPo—do(1—p)’ p o—do(0—p) and PF1—0)(potdo)—do are a consequence

of conditions ([L3) and BI6) when dy < po’. It is also useful to note that dy < po’ is true with
equality in the classical Euclidean situation. In case dy > po’, the positivity conditions of items
(i), (v), and (vii) further restrict the ranges of vy, 0, and . See also part (1) of Remark [3.

Theorem 3.15. (Hélder continuity, when ~,6,¢ > p) Let 1 < p < oo and |Q| € Lp/Q(Q)

loc

Let (u, Vu) be a weak solution of (L)) in Q where the functions A(z,z,&) and B(x,z,§) satisfy
(C2) with ~,6,v as in BI6) and (L3). Assume that the coefficient functions of (L2) satisfy
the same conditions as in Theorem [Z13 with strict inequality. Let y € Q and suppose there is a
function r1(z) as in (ZI3)) which satisfies a local uniformity condition in B(y,r1(y)) with constant
A, = Ai(y,m1(y)). Then u is essentially Holder continuous with respect to p in B(y, g—zrl(y))
The constants C and p in BI3) depend on y,r1(y), As, £ as in (L), the Harnack constant
Cy(CsMo)sM2 ywhich appears in Theorem [313, \ as in Proposition [3.3; C depends also on

lwllpo, By (4))sda -

Corollary 3.16. Let 1 < p < oo and |Q] € Lfo/f(Q), and suppose ([L2)) holds with ~,d,v as in
BI6) and ([L3). Assume also that the coefficient functions of (L2)) satisfy the same conditions
as in Theorem [F13 with strict inequality. Let r1 : Q — (0,00) be a function satisfying [ZI3]) with
the property that given any compact K C Q there is a positive constant sg such that so < r1(y) <1
for every y € K. Then if (u,Vu) € Wé’p(Q) is a weak solution of (L)) in 2, u is essentially

locally Hélder continuous with respect to p in €.

We conclude the section with some comments concerning the rate growth of the Euclidean
volume of pseudometric balls B(x,r).

Definition 3.17. Let © € Q and 1 : Q — (0,00) be a function satisfying ZI3). If ¢* satisfies
0 < ¢* < 0o and there are positive constants Cy, o such that

(3.19) |B(z,r)| > Cor?
for all x € © and all r < min{1, ari(x)}, we will say that condition weak-Dg« holds on ©.

A similar, but slightly stronger, condition called Dy+ was introduced in Definition 1.7 in [MRW]
in order to derive some local boundedness results for weak solutions of equation (LI]); see Corol-
laries 1.8, 1.9 and 1.11 in [MRW].

Note that by Definition 241 if (€2, p, dz) is a local homogeneous space, © € 2 and r1(x) satisfies
a local uniformity condition in © with constant A, = A.(©) (see (Z6])), then condition weak-D -
automatically holds with ¢* = dy on ©, for some constant C; > 0 and with @ = A, /2. See the
Appendix for a proof of this result.

The fact that property ([B.I9) holds with ¢* = dy for suitable families of pseudometric balls
B(z,r) with small radii is used repeatedly in the proofs of our results, starting from Proposition
B3] (see Steps I and III of the proof in the Appendix) and in all the theorems and corollaries that
follow it.

It is interesting to note that in the proof of Proposition B3] only condition (BI9) with ¢* = dj
is used to estimate terms involving the structural coefficients b, ¢, d, h, while the local Doubling
Condition (24)) is directly used to estimate terms involving some local averages of e, f, g (see Step
6 of the proof in the Appendix).

4. SOME CALCULUS FOR DEGENERATE SOBOLEV SPACES

Lemma 4.1. Let © C Q be an open set, (u,Vu) € Wé’p(Q) with u € L>®(©) and let € > 0. Let

m = ess inf wu, M = ess sup u.
© e

Then there exists a sequence {@;}jen C Lip;,.(£2) N L>(Q2) such that (pj, V;) € Wé’p(Q) and



1) (ij’ VQD]) - (u’ VU) in Wcljp(@)}
ii) j(x) € [m —¢e,M +¢€] for every x € 2 and every j € N.

Proof: By definition of Wé’p (), there exists a sequence {¢;}jen C Lipy.(€2) such that
(¢4, V) converges to (u, Vu) in Wé’p(Q). By choosing a subsequence, we may assume that
Pj = u in LP(Q), in Wé’p(Q) and a.e. in (2,
VQV$; — VQVu  in [LP(Q)]", and a.e. in Q.
Now for every j € N and z € €2 define

(4.1)

Pj(x) if m—e<@j(x) <M +e,
(42) (p](.%') ={M+¢ if gbj(x) > M +e,
m—e if ¢j(x) <m—e.

This immediately yields that ¢; € Lip,,.(€2) and that
m—e<gjz) <M+e
for every j € N and z € Q. Then ¢; € L*(Q) for every j € N. From (2] it follows that

VQJ(x) if m—€<¢j(£ﬂ)<M—}—6,
0 otherwise

(4.3) Vi) = {

for each j € N and almost every z € Q. Hence, |[v/QVp;| < [V/QV ;| for every j € N and a.e.
x € Q. We conclude that (¢, Vy,) € Wé’p(Q) for every j € N.

Since u(x) € [m,M] for a.e. z € © and ¢; — u for a.e. x € Q by (@I, we have that
Qj(z) € (m—e,M +¢) for a.e. x € © when j is large enough. It follows from (£2) that one also
has ¢;(x) = ¢;(x) pointwise a.e. in © when j is large enough. Therefore,

©j —u a.e. in ©.

Moreover, by @3), Vy; = V¢; a.e. in © when j is large enough. Hence, by (1)),
VQVe; = /QVu a.e. in ©.

Since
u(z) = ()P < |u(z) — ¢ (@) <207 [u(@)]P + |§5(2)[F]

for a.e. € © and |u[P+|@;|P — 2|ul? for a.e. x € Q and in L1(Q) by (@), Lebesgue’s sequentially
dominated convergence theorem implies that

0 —u in LP(©).
In a similar way, for a.e. z € © we have

VQVu(z) = VOV (@) < 227 [|V/QVu(@)P + [VQVp;(x)]
< 27HIVQVu@)P + [V QVe;(a)].
Further, we have that |\/QVulP + [\/QV$;[P — 2|y/QVulP ae. in Q and in L'(Q) by @I).

Lebesgue’s theorem gives

VOV = /QVu i [LP(O)]".
We conclude that

(v, V;) = (u, Vu) in Wé’p(@).



Proposition 4.2. Let © C Q be an open set, (u, Vu) € Wé’p(Q) with u € L>*(©) and

m = ess inf wu, M = ess sup u.
e e

Let F € C'((m — g9, M +&9)) for some g9 > 0. Then (F(u),V(F(u))) € Wé’p(@) with
(4.4 VAV (F()) = F'(u)/QVu

almost everywhere in ©.

Proof: The proof is a straightforward adaptation of the techniques used in the proof of Lemma
4.1 in [MRW]. Fix any € € (0,e0) and consider the sequence {¢;};>1 C Lip},.(£2) N L*(£)
provided by Lemma A1l Notice that ¢;(z) € [m —e, M + ¢] for every € Q and every j, that
u(z) € [m —e, M + ¢] for a.e. x € © and that

sup  |F(t)| < oo, sup  |F'(t)] < oo.
tem—e,M+e] tem—e,M+e]
Arguing as in Lemma 4.1 in [MRW], it is easy to see that {F(¢;)}jen C Lipj,(£2) N L>(£)
and {(F(¢;), V(F(g;)))}jen is a Cauchy sequence in Wé’p(G). Thus, {(F(¢;), V(F(¢))))}jen
defines an element (F(u), V(F(u))) of Wé’p(@) that satisfies (4.4]).

Corollary 4.3. Let © € Q be an open set and fix a quasimetric ball B with B € ©. Suppose
that for some t € [1,00], condition (2I2) holds for B and condition (2ZI1)) holds for a particular

function n € Lipy(B). Let 0 > 1, (u,Vu) € Wé’p(Q) with u € L*(0),

m = ess inf u, M = ess sup wu,
o e

and F € CY((m — 9, M + 20)) for some ey > 0. Then (n°F(u),V(n’F(u))) € (Wé’p)o(B) and

N (nGF(u)) = 0’ F(u)/QVn + 0P F'(u)\/QVu  pointwise a.e. in Q.
Proof: This is a simple consequence of Proposition [£.2] together with Proposition 2.2 in [MRW].

Remark 4.4. Let (u,Vu) € Wé’p(Q) be such that w > m a.e. in an open set © C (), and assume
that F : (m —¢gg,00) — R is C* with sup |F'| < oo for some eg > 0. Then the conclusions of

(m—eg,00)

Proposition [{.9 and Corollary [{.3 still hold. We omit the proofs of these facts as they use ideas
similar to those used in the previous proofs.

5. THE INEQUALITY OF JOHN AND NIRENBERG

This section develops a local version of the inequality of John and Nirenberg adapted to the
class [cR]BMO(FE) defined in the next paragraph. The arguments to follow are adaptations of
ones in [SW1], where R(z) is a small fixed multiple of dist(z, 02).

Let © be an open subset in R™. Let p be a quasimetric in Q and fix R : Q — (0,00). For each
x € Qand 0 < ¢ < oo, we say that a p-ball B(y,t) is a cR(x)-ball if 0 < ¢t < ¢R(z), B(y,v*t) C Q,
and B(y,v*t) C B(z,cR(x)) where v* is as in Lemma It is useful to note that if 0 < ¢; < ¢
then a ¢; R(z)-ball B is also a coR(z)-ball. Let E C €, E open. A function f € L}, () is said to
belong to the class [cR]BMO(FE) if

1
(5.1) [f|lcriBrMO(E) = Sup sup —/ |f(y) — fBldy < oo,
zeE B ’B‘ B

where the second supremum is taken over all cR(x)-balls B.
The main result of this section is as follows.



Proposition 5.1. Let (€2, p,dx) be a local homogeneous space as in Definition[2.J) Let R : Q1 —
(0,00) satisfy R(x) < min{Ro(x)/(v*)?, R1(z)/v*} for all z, where Ry is as above Remark[Z1] and
Ry is as in Definition 2] Fix an open set E C Q and assume that R satisfies a local uniformity
condition with respect to p in E with constant A, = A.(R, E); see [2.0)). Then there are positive
constants &g = 0o(R, ), Cy, Cy, ¢, with o < 1 and c, > 1 such that for all v € E, all §oR(x)-balls
B, all f € [c,RIBMO(E) and all o > 0,

_Cga

Tt
(5.2) {y € B : |f(y) — fp| > a}| < Cgeeorinro®) | B|.

Remark 5.2. The constants Cg,Cy and c, in Proposition [21] depend only on the quasimetric p,
while the dependence of 5y on E occurs only through A,. As the proof of Proposition [5.1 shows,
c, = 8(v*)*k® and &y = A?min{A?, (8xk5)71}/8(v*)3K5, where K is the constant in ([LI) and
v =k + 262 as in Lemma [Z2.

The significance of Proposition [B.1] is its consequence for a special class of Ay weights. Given

0 < ¢ < oo and aset E C Q, anonnegative function w € L, () is said to be a [cR]A2(E) weight
if

_ 1 1 -1
(5.3) |[wl{eRr) A0 () = Sup sup <|B| /dey) <|B| /Bw dy) < 00,

where the second supremum is taken over all cR(x)-balls B. We will use the following corollary
of Proposition [(.1]in the proof of Proposition [B.11

Corollary 5.3. Under the hypotheses of Proposition [51, there are constants Cg,Cy > 0 and
¢, > 1 such that for any open set E C 1, there is a 6o = do(R, E) > 0 for which

2
Csl| fllie,riBrO(E)
Co — 1 fllic,riBMO(E)

(5.4) e 5o 1Az () < (1 +

for every f € [c,RIBMO(E) with ||f|lic,riBmo(e) < Co. The constants &y, Cs, Cy, c, are the
same as those in Proposition [51.

Except for simple changes, the proof of Corollary [(5.3]is identical to the proof of [SW1, Corollary
61], and we refer the reader there for its proof.

Proof of Proposition 5.1k The proof is an adaptation to [c, R]BMO(E) of the one in [SW1,,
Lemma 60]. We begin by recalling the “dyadic grids” defined in [SW3]. Note by (2.2]) that the
quasimetric space (€2, p) is separable since (2 is separable with respect to Euclidean distance in
R™ . Define Ny = {1,...,¢} for each £ € N, and let N, = N. Set A = 8x° with x as in (LJ).
Then for each m € Z and every k > m, there are points {x?}?ﬁl C Q (nr € NU{oo}) and Borel

sets {QF}7%, satisfying

(5.5) B(zh, \F) c QF c B(ah, M) if j € N,

(5.6) Q= Uik QF,

(5.7) QFNQY=0ifi,j € Ny, and i # j,

(5.8) either Q? C Qlor Qé“ NQL=0ifk<1l,j €N, andi€cN,,.

This dyadic grid of Borel sets depends on the integer m, and there may be different grids for each
m. We fix a single grid for each m € Z and denote it by Fp;:

(5.9) F={Q} : k,j€Z, k>mand j€N,,}.

For fixed m,k,j € Z with K > m and j € N,,, we will refer to the Borel set Q;‘? € F,, as the j*®
“cube” at level k. For 0 < §p < 1, we will call a cube Q;‘? € Fm “bo-local” if B(xf, AEF1Y satisfies



Mt < 50R(3:;?). For each m € Z and §y € (0, 1] we define
(5.10) o Fms, =1Q € F @ Q is dp-local}, and
o s =1Q = Q? € Fmso - B(x?, Mty s an R(z)-ball for some z € E}.

Set ¢, = (v*)?\ and fix f € [c,R]BMO(E) with [ flle,mBrO(E) = 1. Let f™ be the discrete
expectation of f on the dyadic grid at level m:

1
5.11 f™(z) = —m/ fdy ) xqm(2)-
(5.11) (=3 (g [, Fdv)xer @)
]eNm J J
For the moment, we will assume each of the following.

e There are positive constants C§, Cj and & with §; < A" such that for each m € Z,
a>0and Q € &, , we have

(5.12) Hy € Q : |f™— fol > a}| < Che=%?|Q].

Note that Cg, Cg and 0; are independent of m, and C§, Cy are also independent of E.
e For almost every y € €Q,

(5.13) M (y) — f(y) as m — —oo.

Taking (5.12]) and (5.13]) temporarily for granted, let us now prove Proposition [5.1] by using a
packing argument and Fatou’s lemma. To begin, we will use (512)) to derive its analogue where
the d1-local cube @ is replaced by any g R(x)-ball, for any « € E, provided ¢y is sufficiently small
in terms of §; above. Indeed, fix z € E, set 5o = A.01/[(7*)3)], let B = B(z,7) be a §oR(x)-ball
and let m € Z with A™*! < r. Choose k € Z with k > m such that \¥ < r < Mt AsQ = Uij,
there is a nonempty collection G C N,,, such that

Q?ﬂB # () for all j € G, and
(5.14) B C UjegQf C UjegB(ah, \**1) € B(z,v*Ar) = B* C B(, (v*)*AéR(x)).
Here, the third and fourth containments in (5.I4) follow from ([23)) since A**! < Ar. We now
prove that the set &, 5, is nonempty.

Lemma 5.4. With z, B, m,k,1,G and &y as above, Q;“ € Em,s, for every j€G.

Proof of Lemma [5.4} It is enough to show that for each j € G,

(5.15) Mt < R(z) and B(x?,v*)\kJrl) C B(z, R(x)) (showing that B(:Ué?, PURRDET
an R(z)-ball), and
(5.16) AL < 51R(x§-“‘) (showing that Qf € Fmno)-

Fix j € G. To see that (5.I5]) holds, we begin by noting that our choice of §p guarantees that
(7*)3Adp < 1. Due to our choice of k and using that B(z,r) is a doR(x)-ball we have

MNHL <\ < Ao R(z) < R(x).

Also, since xé“ € B*, swallowing gives B(x?,w*)\k“) C B(z, (v*)3\6oR(z)) C B(z,R(z)) estab-
lishing (B.I5]). Next, since R(z) satisfies the uniformity condition (Z.6) on E with constant A,
and w? € B(z,R(x)), AxR(z) < R(x;“) Our choice of dp then guarantees that

AL < Ar < 61 A.R(z) < 51 R(2),

giving (5.I6]) and proving the lemma.



Next, since xé“ € B*N B(m?,w*)\r), we have by the swallowing lemma, the local doubling

property (2.4) and the dyadic structure that
|B*| < |B(}, (7")°Ar)| < Co(y*A)*®|B(f, A")| < C'|QF|
for any j € G with C" = Cy(y*))?%. Therefore, for each j € G,
[f = forl < |fpe = fol+ [f5 = forl
1 / 1
— | [ ¢ fmds] +| o [ 7= Fu)ay
151 J,U 1] + g Jo 0 =9
Co(y*N)% + C' /
< f— 1B
BT ST
(5.17) < Co(y N+ ="

dy

since || f||jc,riBmo(z) = 1 and B* is an R(z)-ball (due to our choice of dy) with € F, and hence
B* is also a c,R(x)-ball.

Consequently, if y € B and a > 2C"”, then (B.I7) and the standard triangle inequality imply
that |f™(y) — fQ;c| > /2 provided |f™(y) — fp| > «. Since Q? € Ems, for j € G, the disjointness

in j of the Qf and (BI12)) yield
{yeB : [f™y) —fol >}l < D> HyeQl : /™) — forl > /2}|
J
JjEG
< D Crem Qs

j€eg
Che™ 2B, as Ujeg Qf C B,
< Cie“2Co(y* ) |B| by @3).

In case o < 2C", we simply use that [{y € B : |f"(y) — fg| > a}| < |B| and replace C§ with
eCoC" if necessary. Hence, there is a constant C' > 0 independent of x € E such that for any
a > 0 and any dgR(x)-ball B,

(5.18) {y € B : [f™(y) - fol > a}| < Ce /B,

Next we use the pointwise convergence of f™ to f as m — —oo and Fatou’s lemma. Set E,, o =

{ye B : |f™y)— fsl > a}. Then

IN

{yeB : [fly)—fel>a}| = /X{yeB;|f(y)fB|>a}(Z)dZ
< /limianEma(z)dz
m——0o0 ’
<

liminf |Ey, o
m—r—0o0

IN

(5.19) Ce%2?|B|.
This proves (5.2)) with Cs = C and Cy = C§/2 in case || ||, ripmo(s) = 1 and o = A.61/[(v*)?A].

The general case follows by replacing f and a by f/||fllc,rBrmo(E) and /|| f|lic,riBMO(E) a8 in
[SW1].

The proof now rests on the validity of (5.12) and (5.13]). We first prove (5.13)); the verification
of (5.12) is contained in Lemma [5.5] to follow. Given a fixed x € Q, the dyadic structure provides

a sequence {x,,}, > ; C Q such that
(1) Tm = . for some j, € Ny,,, and

(i) =€ Qm=Q} C Blrm, AL for each m.



By standard homogeneous space theory (see the proof of Lemma for further details), almost
every point x € () is a Lebesgue point of f:
1

5.20 lim ———— — f(x)|dy = 0.
(5.20) 8 B o, 1)~ S

Fix such an z. By Lemma[2.2] there exist mg and C such that B(z,,, \™™1) C B(x, CA™ 1) if m <
mo. Thus Q,, C B(x, CA™*1). Also, by (5.5)), there exists m; such that |Q,,| = |B(z, \™ )| ~
|B(z, CA™1)| uniformly in m if m < my. By choosing » = CA™*!, we obtain

ml_1>moo |Q1m| Ou |f(y) — f(x)|dy = 0.

But f™(z) = (1/|Qml) me y)dy, so f™(x) = f(x) as m — —oo. This proves (5.13)).

The next lemma verifies (5.12)).

Lemma 5.5. Let (2, p,dx) be a local homogeneous space as in Definition and E be an
open set in Q. Let R : Q — (0,00) satisfy R(xz) < min{Ro(z)/(v*)? Ri(z)/v*} where Ry is
as above Remark (2.1) and Ry is as in [2.4]). Furthermore, assume that R(x) satisfies a local
uniformity condition on E with constant A,. Then there are positive constants Cg, Cy,d1,c, with
51 € (0, A7 and cp > 1 such that for every a >0, m € Z, and Q € &5,

(5.21) {yeQ : 1f"(y) - fol > a} < Cye™ Q)
for all f € [c,RIBMO(E) with ||f|lic,rimoE) = 1. The constants Cg, Cq and c, depend only
on p.

Proof: The proof is broken into five steps.

I: Recall the dyadic structure described in (G.5)-(5.8), and set ¢, = (v*)2\ = 8(v*)*x°. Let
f € [e,RIBMO(E) with ||f|lic,ripmoE) = 1. Fix m € Z and a cube Qo = Q? € Fa-1; see

. Our first step compares the average of f on @)y with its average on the related p-ball
B(:U?,)\]H‘l). Indeed,

1
\m /Qo(f = ey aerny)de
1

| B2, X)| Jpat awy

Thus, as QO is A"1-local and R(x ) < Ri(x ), the local doubling condition (2.4) gives

m /Qo |f - fQ0|d$ m/ |f = fB(x’?7)\k+1)|dx + |fB(I;§7>\k+1) — fQo|

T w1y = Qo

(5.22) |[f = Ik ary ld.

IN

= k )\k )l / k AR+ fB(If’AkHﬂdx by @22),

200/\d0

= k \kt1
|B(z7, A¥H1) B(xh Ne+1)

|f - fB(z§,Ak+1)|d$-
Therefore, if B(ac;?, ALY s also a ¢, R(z)-ball for some z € E, we may write
1
(5.23) —/ |f = fooldz < 2CoA™ := 2¢.
Qol Jq,

Now, further restrict Qo € &, y-1. Setting h = h(z, Qo) = (f(x) — fQo)xqQ. (), (B.23) gives

1 1
24 — hld — — d
(5.24) ,Q‘/qus@o‘/%u Jouldz < 26



for any dyadic cube @ for which Qo C Q.

II: The dyadic maximal function on local cubes nearby F, acting on g € L}OC(Q), is defined by
A 1
(5.25) Mg g(z) =sup —- [ |g(y)ldy,
Q' Jgr

where the supremum is taken over all cubes Q" € &, 4,\-1 such that z € Q". If z € Q is not a
member of any cube in &, 4, -1 then we set Mﬁg(m) = 0. Next, we note the weak-type (1,1)
inequality for M EA:

(5.26) {z€Q: Mig(z) > a}| < é/g 19(2)|dz.

This is a consequence of the analogous inequality in [SWI] for a larger dyadic maximal operator.

For a > 0, let B, = {zx € Q: M2h(x) > a}. If @ > 2¢g, then E, C Qo. Indeed, if M2h(z) > «
there is a cube Q' € &, 4,,-1 containing x such that

Q /(;2
| /| , ‘ ’

Thus by the definition of h, @’ must intersect QQy. Therefore, (5.24)) and the dyadic structure give
that Q" C Qq, and so x € Q.

For a > 0, let C, be the collection of all cubes @ € &, 4,\-1 for which |h|g > a. By the
above, if a > 2¢g then @ C Qg for each Q € Cy. Denote the collection of maximal cubes in C,,
by So = {Qa,;}. Then

(1) If o > 2¢g, the cubes of S, are pairwise disjoint.
) If a > 2¢, then Uges, @ = E4 C Q.
(vit) If 2c) < o < B and i, are given then either Qg ; C Qq,; or Qp ;N Qu; = 0.
To see (i), note that if two cubes Qq;, Qa, intersect, the dyadic structure implies that one is
contained in the other, violating maximality. For (ii), let « € F,. Then there is a cube Q" con-
taining x for which |h|gr > a and so Q' C Qq,; for some j. Thus E, C UjQ4; and (ii) follows.

(iii) follows from a similar argument as for (i) using the dyadic structure and maximality of the
cubes in S,,.

IIT: The local doubling condition (2.4]) translates to a similar property for the Lebesgue measure
of dyadic cubes. Indeed, fix a A~!-local cube Q = Qé and denote its dyadic predecessor Qi“ by

Q1. By .5),
(5.27) B(z5, ) € Q € B(2},A'*1") and
(5.28) Bzt AH) € Q) < B(alt AH?)

where A1 < A_lR(xé») < (7*)\)_1}21(332). Thus, as @ C @ and \*2 < Rl(ac;)/w*, Lemma [0.2]
of the appendix implies that

(5.29) | B A2 < Coly* A1) |B(af, M)
Therefore, (5.27) and (5.28]) together give
(5.30) Q1] < Co(v* X*)*1Q| = c1|Q].

Next, restrict Q € &, 4,x-1. Then an inequality similar to (5.23]) holds for Q1, the predecessor of
Q. Indeed, for such @ there is an x € E such that (keeping the same labels as in (5.27) and (5.28]))



A < min{R(z), AN R(zh)} and B(ah,7*A™) € B(z, R(x)). Since 4 € Bz A2, we
have that

B(x;™, " X*?) € B(z, (v")*AR(x)).

Also, since R(x) satisﬁes a local uniformity condition on E with constant A, it follows that
A< ANTIR(2h) < APR(x), giving A2 < R(z). This together with the containment above

shows that B(:Ui“, M+2) s a ¢, R(z)-ball. Therefore,

1
. — — d
(5.31) \er/Ql f — foulde < 261

using a familiar argument.
IV: For each a > 2cg, define v = y(a) = 1+ (4¢2/a). We claim that for all j,

1
(5.32) |E7a N Qa,j| < §|Qa,j|-

Indeed, let @ be the dyadic predecessor of @, ;. Then, @) C Qg since @, ; is a proper subcube of
Qo. The maximality of (), ; then gives

(5.33) hlg < a.

Set g = (h — hg)xq and fix x € E,, N Qq,j. Then, since v > 1, (ii) and (iii) (see step IT) give
that © € Qyq,; for some i and Qyq,; C Qq,;. Using this, we have

(534) fya < ’h‘Q'yai S ’g‘Qﬂ/a,i + Q.

Consequently, for every z € E o N Qq,j, Eg( x) > (v — 1)a. Further, for each z € Q C Qo we
have

9(x) =h(z) —hqg = f(x) = fo, — (f = fao)q
(5.35) — @) - fo.
Therefore, by (5.20]),

[Eya NQajl < Kz MEg > (v = Da}l
< 1 / |glda
= - [ If — foldx
(v — 1)@ /Q | a
2
5.36 < —lQl
where the last inequality is due to (5.31]). Inequality (IBBIII) combined with our choice of 7y gives
2¢2
(537) ‘E'yoz N Qa,j’ < (7 —1_ ) ’QO&,]’ =9 ’Qa,]‘
proving (5.32)).

V': For a > 0, define the distribution function w(a) = |E, N Qg|. We add (B.37)) over j to obtain
a useful inequality for a > 2¢y (note that w(a) = |Eq| for a > 200, and that ya = a + 4¢?):

1
(5.38) w(o + 4¢?) Z\EWHQW]< Z\wa \Ea\:iw(a).

We now iterate (5.38)). Fix a > 2c. Then there is a k € N such that a € [2¢o +4(k — 1)¢?, 2¢o +
4kc3]. Therefore, there is a 38 € [2co, 2¢o + 4cF] for which

(539) w(0) < srgw(B) < 267H1°82|Qo)



as w(s) < |Qol for s > 0. Since

k> o — gco’
4ct
we obtain
(5.40) w(@) < Cge™ Qo

where C§ and C{ depend on ¢, c;. Finally, if a € (0,2¢) we use that w(a) < [Qo| to obtain a
similar estimate. Hence, for all a > 0,

(5.41) {z € Qo: ME((f = fao)xqul(x) > a}| < Cge™%*|Qol.
The proof will then be complete if we show that
(5'42) ‘fm - fQo‘XQo < ]wEA (f - fQo)XQo :

Using the dyadic structure it is easy to see that (5.42) holds provided Qj" € &,, 4,-1 Whenever
Q™ C Qo. This proviso is true by further restricting the size of ;. Set §; = min{A2, 4,A"!} and
suppose Qg = Q;‘? € Ems,- Omitting as we may the case when k = m, suppose that Q" C Qo
and m < k. Recalling that v* = k + 2x? < 8x° = ), we have
'7* )\k—l—l
)

C B}, A

C B(m?,’y*)\kﬂ) C B(z, R(x))
for some z € E. Thus B(z", \™*1) is an R(z)-ball. Since Q? € Fms, and x’[“,xé“ € B(z, R(x)),
the uniformity condition gives
01 0 & ! «
~ Blag) < A*AR(x) =< @R(ﬂn) < R@D),
and therefore Q" € &, 4, -1. This concludes the proof of both Lemma and Proposition (.1
with §; = min{A32, A,\71}.

B(z",y"A™*) < B(al",

A
(5.43) AT < o1

6. THE PROOF OF PROPOSITION [3.1]

Proposition B will be proved using the results of three lemmas and Corollary 5.3l The lemmas
give mean-value estimates for positive and negative powers of weak solutions as well as a logarith-
mic estimate. In order to simplify their statements, we list now some assumptions to remain in
force for the rest of the section. We always assume that (€2, p, dx) is a local homogeneous space as
in Definition 2.4] that the Sobolev inequality (2.8]) is valid, that (ZI0) holds for some 7 € (0, 1)
and s* > po’ with ¢ as in ([2.8)), and that (211) and [2I2) are valid for some ¢ > 1. Our first
lemma concerns positive powers of weak solutions.

Lemma 6.1. Noting the assumptions in the paragraph above, let (u, Vu) be a weak solution in
Q of (1.1), where [L2)) holds with exponents v,d,v satisfying B.5). Let s = (s*/p)’ € [1,07).
Fizxg € Q, k > 0, e1,€e2,e3 € (0,1], a p-ball B(xg,r) with 0 < r < 72r(x0), set © = |u| + k,
and assume that Z(B(zo,r/7),4) < oo. If u > 0 in B(xg,r) then for each o > 0 there exists

o € [ozafé,a] such that

P¥o 1
(6.1) esssup 0 < Cio(CrZ(Blaor),m) “ lla™|7y

B(xo,TT)

Here Oy = =Z—, C1o depends only on p,o,s and on €1, €9, €3 appearing in the definition (B.4) of

o—s’

Z, while C11 depends on p, 0,5, €1, €2, €3,a and the constants Cy from [Z8) and N,Cy in ZI0).



Remark 6.2. i) aq is defined by

—

p—

|—=

@ if log
ap =14 @ if log

°(3)
ii) We explicitly note that the constants Ch9,C11 in (61) are independent of (u,Vu), k,
B(xg,7), b, ¢, d, e, f, g, h, and c.

Proof: By [MRW] Theorem 1.2], the weak solution (u, Vu) satisfies

_ = T, %o, _
(6.2) Nl o0 < CZ(Blwo, 2, 8) 1l 228

I e

L
M IA
|

R

P

«|Q ®l|q

| for some K € NU {0},

«

N

+L K+
1
1

NS NN

ifloggl%lE(K— K+ 1) for some K € NU{0}.

where @ = |u| 4+ k and C' > 0 depends only on p,a and . Therefore, as Z(B(zo,r/7),u) < oo by
hypothesis, [MRW| Proposition 2.3] gives that @ is bounded on B(zg, ). The proof of the lemma
will be completed by following the proof of [MRW, Theorem 1.2], but now using a modified
test function that exploits boundedness of w. As in [MRW]|, we may assume that @ satisfies the
following modified structure conditions in terms of the functions b, d, and h (see [MRW], (3.1)]):

§ : A(xazag) 2 a_l‘ V Q(.%') S‘p - B(x)2p7
(6.3 Aw,20| < alvQ@ & +b)z ",

Bz, 2,6 < oV/Q(x) ¢V +d(w)z" !

for all (z,z,€) € Q@ x R x R” where A, A and B are as in (I2) and z = z + k. For simplicity, we
will often not indicate the dependence of A, A, B, etc. on their variables.

Choose a nonnegative n € Lipo(B(xo,7)) and set v = nPu? for ¢ € (1 —p,0) U (0,00). By
Corollary 3] v is a feasible nonnegative test function for any value of ¢ in the indicated range.
Corollary 3] implies that

Vo - A(z,u, Vu) + vB(z,u,Vu) = +/QVv-A+uvB
(6.4) = (pnp_lﬂq VOV + qnpﬂq_lJ@Vﬂ) - A+ nPalB.
We now use (6.4)) to derive some pointwise estimates. If ¢ > 0, we apply (6.3)) to (6.4]), giving
Vo - A(z,u, Vu) + vB(x,u, Vu) > qnPul™! [afly\/évmp — Bap]
—pn? 'l [\/QV||A| — nPul|B
o g QY — ghyratt !
—apr~ [/ Q|| QVaP Tt — pr~ bu P/ Q|
—enP|\/QV Y al — dpPattrl.

If ¢ < 0 we arrange (6.4]) differently. For the second term inside the parentheses on the right side
of (6.4)), since g < 0, the first estimate of (6.3]) gives

aPa? '\ QVu-A = @Put'Vi- A
(6.6) —a"gnPa? [/ QValP + |glnPat h.

After estimating the other terms of (6.4]) as before, we move the first term on the right of (6.6])
to the left and obtain

(6.7) Vo - Az, u, Vu) + vB(x,u, Vu) + o g|nPad ™| /QValP <

lglnPaP T R+ apr el |/ Q V| [/ QV P! + pbyP TLat TP\ /QVn|
+enPud|\/QValv ! + dnPad Pl

(6.5)

v

IN



Since u is a weak solution of (L)) and v is a feasible test function, we have that
/Vv-A—}—sz/ Vv-A+vB =0.
Q B(zo,r)

Integrating either (G.5]) or ([6.7]) over B = B(zg,r), we obtain that for any ¢ € (1 — p,0) U (0, c0),

g ]é Pt Qvapds < o{l ]é e ]i Vet QY| QVaplds
(6.8) + P HNQVn|a i e —i—][ enPud)\/QValY " da
B B

+ anap-i-q— 1 dr } ,
B

where the constant C' in (6.8]) depends only on a,p. Now use Young’s inequality (I0.]) with 8 = p/
and 6 = p'|q|/(4C), where C is as in (6.8]), on the second term of the right side of (G.8]). This
gives

(6.9) Qv < L | gy
B B

—i—cQ\q]lp][ I/ QVn|PadtPdz.
B

Here co depends only on p,a. Applying Young’s inequality (I0.1]) to the fourth term on the right
side of [B) with 8 = 21, 8/ = P and 0 = % yields

(¥=1)(g=1) _ ==
enPul|\/QVal|Ytdr = 1/QVal*~ln¥ g > AR T TR
B B
(6.10) < Jl% IVQVaPPal e + calq|7FF Pt dg.
B B

Since under our hypotheses ¥ € [p,p+1—0~!), the constant c3 can be chosen as to depend only
on p,a,o. Inserting (6.9) and (6.10) into (6.8]) and absorbing two terms, we obtain

\CI’][ Pt~V QVaPdr < C{!Q\l_p][ OVl e
B B
+][ Enp_1|\/§V77|ﬂp+q_1dx
B

(6-11) +|q|p:1—bw ][ Cp+f—w77pﬂq+p+wl%lwdx
B

—Hq!][ hnPaPtaLdy +][ anﬁp”’ldm},
B B

with C depending only on a,p,o. This inequality is identical to [MRW| (3.8)] with u = 0.
Therefore, we follow the proof of [MRW| Theorem 1.2] through steps 5 and 6 with Y =p+¢q—1,

t = p+f—w and T = pisz. Note that when dealing with term IIT in step 5 of [MRW], the

exponent T 4 p may be negative for some values of 1) € [p,p+ 1 —o~!). Thus we replace |¢|7+?
with the larger term (|g| + |¢|~1)I71*? to arrive at an analogous inequality to [MRW] (3.22)],
recalling the notation given in (B.1]):

x LN\b- [, ¥ ¥
612 W sz < C(lal )" Z {1 s+l VRVl )

where B = B(wzo,7), Z = Z(B(xo,r),u) and b, > b, > 0 with b, as in [MRW], (3.22)]. We

explicitly note that C' now depends on p,a,o and on the constant C; appearing in (2.8)), while by
depends on p,o and on €1, €3, €3 that appear in the definition (3.4]) of Z.



We now choose n =1n;,j > 1, as in ([ZI0). Let S; = supp n; for j > 1 and Sy = B = B(xo, 7).
Recall that n; = 1 on Sj41 and B(zg,7r) C N;S;. Since s* > po’ and s'p = s*, Holder’s inequality
and (2.I0) give

Y 1\ be X
(613 I8y llsz < Ol )" 2V x5, g5

which is analogous to inequality [MRW, (3.23)] and where C' depends on p, a, o, on the constants
C; appearing in (2.8) and N, Cs+ in ([2I0). Now for w # 0 and j € N U {0} define

(6.14) O(jw) = < ﬁ“’xgjdx> 1/w.

B(zo,r)

By (6.13)), noting that Y =p+¢—1> 0 for all ¢ € (1 —p,0) U (0,00), we have
LN

(6.15) B(j+1;Yo)<CF (yq\ + —) Y ZENFo(); sY).

lq|

Inequality (6.15]) will be iterated to finish the proof. Indeed, set X = o/s > 1 and fix a; > 0
as in Remark 6.2l Set ¢j = oy X7 +1 —p and Y; = oy &7 for each j € N U {0}.
Claim: We claim that ¢; € (1 —p,0) U (0,00) for j € NU {0} and that

1
(=11 - X7)
We start noting that from (X% - X_%)2 > 0 it follows that

1 .
J

1 1
(6.17) XT—1>1-X"1.
If logy 222 < —1 then g = a > (p— 1)X%. Thus for every j € N U{0} we have

o — 14

qj:a)(j+1—p2a+1—p>azl’_i—i—l—pZO

and hence, also using (6.17]),
1

: 1
J+— < aXi4p—14——
\qj\+|qj| < aXl+p +a+1_p

T < az’\,’j—}—p—l—i— —.
(p—1)(X1-1) (p—1)(1—-X"1)

Since X > 1 and a = «;, (6.10) easily follows.
If logy =1 > — 1, there exists a unique K € NU{0} suclh that either logy 224 € (K —1, K +1)
or logy % € [K 4+ 1, K + 3]. In the first case oy = aX "2 and

< aXl4p—-1+

aXE-1 < p—1<axi+s,
Thus if j < K one has
g=aX 2 +1-p<aXf 24l _p=aXfixi—(p-1)<—(p—1)(1—Ax"1)<0.
On the other hand, if j > K + 1, we have
G =aX3 41 -p>aXEti 41 —p=aXETiXi—(p—1)> (p— 1)(Xi—1)>0.
Thus ¢; € (1 —p,0) U (0,00), and moreover for j < K

1 , 1
(6.18) lgj| + — < aX? +p—-1+ —,
|41 (p—1)(1—x~4)
while for j > K + 1 we have
1 , .
(6.19) lgj| + —= < aX! +p—1+ <aXl4p—1+ .
S (p— 1) (X1 —1) (p— 1)(1 — x~7)



From the previous inequalities, since X > 1 and @ = a1 X 7 (6.16) follows.
It remains to consider the case when logy % € [K + 1, K + 3] for some K € NU{0}. Then
we have a1 = o and

oz/'l,’KJri gp—lgaXK‘Lg.
Now if 7 < K we have
qj:a/l’j—i—l—pgaXK—i—l—p:aXK*iX*i—(p—l)g—(p—l)(l—/l’*i)<0,
while if j > K 4+ 1
g=aXi +1—-p>aXfH 41 p=aXKTixi —(p—1)> (p—1)(Xi —1) > 0.

Hence also in this last case ¢; € (1 —p,0) U (0, 00) for every j € N U {0}, and for j < K we have
(618]), while for j > K + 1 we have ([6.19). The proof of the claim is complete.

Let cs =p— 1+ ((p—1)(1 — X~1))~1. By (6I5) and (6I6), for each j € N U {0},
j 7 Y — —_q 7 . —a . —a L .
B(j + L aps A3t < [C’“(alxé )b X AT pbed X iX J]alfb(j;alsX]).
Iterating this inequality we see that

~ ~ P
(6.20) O+ L apsX7 ) < [C%(OQX%—1—04)5’*‘1’0/1’5’*\1’1]\/‘1’12‘1’0}al@(O;als)

o

oo
for each j € NU{0} where we have set ¥y = Z X7 and U = Zj/l’fj. Now, since the function
j=0 J=0
2+ achieves its maximum for z € (0,00) at z = e, we have

.1
_ _ 2b,. X2 ¥
bx¥op b Wop [ . ] p

(a1X%+C4) a < (Qmax{alX%,C4}) a = (max{QalX%,QC4})2a1X%

(6.21)

IN

1 T
maX{eE,(204)2a1X2 } !

s 1
1 2b+ X2 Wop Vop
«@
< C5Cg ~

with ¢5, cg depending on p, 0, s, €1, €2, €3. Next, we set ®(00; 00) = limsup ®(j; a1sx?). Since the
Jj—o0

right side of (6.20]) is independent of j, we may allow j — oo in (6.20]) and use ([6.2I]) to obtain

Yop

(6.22) ‘P(OO;OO) S ClO [C’llZ}a_l@(O;als),

with C1g depending on p, 0, s, €1, €2, €3, C11 depending on p, g, s, €1, €2, €3, a and both also depend-
ing on the constants C; from ([2.8) and N, Cs« in (ZI0). Since B(xg,7r) C S; for all j > 1 we

have ess sup 4 < ®(00;0), see for instance |[GT], and therefore we conclude that
B(zo,77)

Yop 1

v ARG
(6.23) s sup < Clo[CnZ} I N

which completes the proof of (6.1).

Lemma 6.3. Let the assumptions in the opening paragraph of this section hold, let s be as in
Lemma[6.1 and suppose that (u, Vu) € Wé’p(Q) is a weak solution in Q of

(6.24) div(A(z,u, Vu)) < B(z,u, Vu)



where A, B satisfy (L2)) with exponents 7,0, satisfying B.0). Fixxzg € Q, k >0, €1,¢€2,€e3 € (0,1]
and a quasimetric p-ball B(xo,r) with 0 < r < 72ri(x), set & = |u| + k, and assume that
Z(B(zo,7/T),u) < 0o. If u >0 in B(xg,r), then

p¥o

1
2 u®||> _ < Z(B 1)) ! ess inf @
(6.25) ||u H&B(mﬂ,);dx < 010(011 ( (mo,?“),u)) eBs(sIO{rTlr)u,

where the constants Chg,C11 can be chosen as in (6.1).

Proof: Since by our assumptions Z(B(xo,r/7),4) < +00, B(zg,7) C B(zo,r/7) and r/7 <
7r1(z0) < Ri(z0), we have that Z := Z(B(xo,7), %) is also finite. See the comment following the
definition (B4 of Z.

Following the same argument as in Lemma but now with ¢ < 1 — p and using that (u, Vu)

is a weak solution of (6.24]), applying Remark [£.4] we obtain the following inequality, similar to
(6.15):

> 1

2 +1:Y0)] " <C(jal+ 1

with Z = Z(B(xg,7),4). Since Y =p+q—1 < 0 for any q € (—o00,1 — p), we have

RIS

)" [otn]

1 pbx _ .
(6.26) (j+1;Y0) > CF (|g| + ﬂ) Y ZENEo(jsY).

q
Let a < 0, set Y; = aX? and ¢; = aX? + 1 — p, where X = o/s > 1 as in Lemma 6.1l Then
Y; <0, ¢ < —(p—1) and, with C as in (6.13]), we have

) s 1 NbXT _ )
(6.27)  ®(j;saX?) < {CX ](yqum) 77 NI¥ J]‘ (B +1; sakith).
J

Now note that

1 : 1 :
lgjl + 77— < ]a\X]—i-p—l—i-—l < |alX! +p—-1+ —
|41 p= (p—1A—-A"4)
i 1 1 . 1
< A ||a[X2+p—1+ | = &7 [‘O"X”rc“]’
(p—1A—-&74)

withey=p—1+((p—1)(1 — Xfi))_l as in Lemma [6.Il Then from ([€.27) we have
, . e ‘
D(jiasdi) < [V (|0 XF 4 o) ZY AP NIV () 41 asx ),

Iterating the previous inequality we obtain

P

D(j;asx’) < [C%(’OAX%+C4)B*%XB*%N%Z%] 1@ (00; —00),

where ®(o0o; —00) = limsup ®(j; asX?), ¥y = Z?io X T and ¥; = zjo.ion’j. Also using (6:21))
Jj—o0
we conclude
Yop

®(j; asX?) < Cyg [CHZ} W<1>(oo, —00),
with C19,C11 as in (6.22). Since this holds for all j € N U {0}, we obtain

Yop

(6.28) ‘13(0,048) S ClO [0112] W‘13(00, —OO).

Since B(xo, 7r) C S; for every j > 1 we have essinfg(,, U > ®(00; —00), see [GT]; hence
_alla | T . _

(6.29) ||u ||s,B(zo,r);% < Cho [CHZ] eBsZs;O{rTlf)u,

which proves ([6.25]).



Lemma 6.4. Let the assumptions in the opening paragraph of this section hold, and suppose that
(u,Vu) € Wé’p(Q) is a weak solution in € of

(6.30) div(A(z,u, Vu)) < B(z,u, Vu)

where A, B satisfy (L2]) with exponents 6,7, as in B0). Furthermore, suppose that the Poincaré
inequality (2.9) holds. Fiz & € Q, k > 0, €1,€2,€3 € (0,1] and let t = |u| + k and w = logu. Fizx
a quasimetric ball B(z,bl/T) for b > 1 as in 29) and 0 <1 < 7ri(2)/b. If u> 0 in B(z,bl/T),
then

(6.31) ]w — wB(jJ)’ dr < CuZ(B(JAZ, [Jl/T), ﬁ),
B(3,1)

where Z(B(a?:, bl/T),zi) may be infinite and where C1a depends on a,p, o, on €1, €a, €3 in the defi-
nition B.4) of Z, on b,Cy in 23), on dy,Cy in Z4) and on Cs«, 7, N in (ZI0).

Proof: We can assume that Z := Z(B(&, bl/7), @) is finite, otherwise (G31)) is trivial. Let n =
be as in (ZI0) relative to B(#, bl/7), and set v = nPa'~P. Applying Remark 4 on the quasimetric
ball B(&,bl/7), we have that v € Wé’%(Q) with suppv C B(z,bl/7) and using (6.3) we have

Vu-A+vB < o '(1—p)pPu PN/ QVaP + (p— 1)y
(6.32) +apn? N/ QVn|at P/ QVal T + pr b/ Q V|
+ePa' P/ Qv + Pd

a.e. in 2. We integrate over B(Z, bl/7) and use the facts that (u, Vu) is a weak solution of (630
and that v is a feasible nonnegative test function, obtaining that the left side of the resulting
inequality is nonnegative. Also, we move the resulting first term on the right side to the left side
and estimate the third and fifth terms on the right in ways like those used to estimate similar
terms in (6.8). Then we obtain, as in (6.11]) with ¢ =1 — p,

(6.33) Pua P/ QValdr < C’{ y |\/6V17|pdx+][ hnPdx
B(&,%) B

B(iv%) T ﬂ)

(:B, T

+ ) P~ b/ QV| dﬂc—i-][ ) nPd dx

B(#,%) B(#,%)

p _p(¥=p)
+ crH=P Py p+i=9 dw},

with C' depending only on a,p,o. Repeating steps 5 and 6 in the proof of [MRW| Theorem 1.2]
we obtain

_ 1
(6.34) PP /QValde < czp{ IVQVnlPdz + — ][ npdx}
B(2,%) P [,

B(#,%)

_ 1
< czr{ B@’M)I@Wlpdwl—p}

analogous to [MRW| (3.21)] with ¥ = 0, noting that 0 < n <1 on B(z, %l) We recall that here
Z = Z(B(#,bl/7),u) and we note that C' depends on a,p,o and on €, €, €3 appearing in the
definition (B.4) of Z.

Since 7 is the function 7y in ([ZI0) relative to B(&,bl/7), then n € Lipo(B(z,bl/7)) N Lip($2)
and n = 1 on B(Z,bl). Recalling that bl < ri(y), we apply the Poincaré inequality (2Z9) to



w = log @ (see Remark [£.4]) and get

1 1 1/p
- w—wpaplde < Ol ———— OVuw|Pdz
|B(z,1)] B(:i,l)| (@) <|B($a b0)[ /B0 VQvul )

1 1/p
S Cl T T P vapdﬂf
<\B(3€a bl)| B(fc,bl/r)77 Qv )

|B(&,bl/7)|"/P <
|B(Z,60)[YP \ B pi/7)

(R A, vl

where the last line is obtained using ([6.34]). Also, C' in (635]) depends on a,p, 0, €1, €2, €3 and on
the constants b, Cy appearing in (2.9). In (6.35]), use Holder’s inequality with exponents % -

= Cl npa*py\/évmpdﬂ v

S

) s —p
together with (2.4]) and (ZI0) to obtain
1 _ /| B(&,bl/7)|\1/p o\ 1
YZN w—wgiplde < ClZ|————= QVn|* dx + =
|B(2,1)] B(:i,l)‘ (o) < |B(Z, bl)]| > K B(a‘:,bl/ﬂ‘f ) l]
- _dorTN
< -
< CZr » [ o —i—l}
(6.36) — OnZ,

where Ci2 depends on a,p,o,€1,¢€2,€3,b,C, on the constants dy,Cy in (Z4) and Cs«, 7, N in

2.10).

Proof of Proposition [3.1k We will use the notation and assumptions of Proposition [B.1] and
divide the proof into steps.
Step 1. We have B(zg,Cyr) € B(y, 571(y)). Indeed if § € B(xo, Cyr), then

(&) < K(p(&20) + plao, ) < 5(Cor+ Zn)) < (T + D)nly) < Zn).

Step 2. By using Lemmas and [6.3] let us show that for every a > 0 there exists a; €
lac=1/2 ] such that

1

_ PYo 1
- 1oy |50 || @1
(6.37) s sup < Cwo[CuZ(B(zo,r),w)| = @™ 7y a5

and that for every as < 0

1 _ p¥o
(6.38) HﬂaQH:QB(mOm);% < Cyo [CnZ(B(xo,r),ﬂ)] laa] %S(ioi,rrlf)ﬂ’
with Cyg, C11 and g independent of (u, Vu), k, B(xo,7),y,b,¢,d, e, f,g,h,a, aq, .

Indeed, by our assumptions, r; satisfies a local uniformity condition with respect to p on
B = B(y,r1(y)) with constant A,. Since zg € B(y,r1(y)) we have ri(zg) > Ari(y), so that
r< 57:& r1(y) < 72r1(wg). Moreover 7! < C,, so that r/7 < Cyr and B(zo,r/7) C Bz, Cs7).
Thus by [B.7) we conclude that Z(B(zg,r/7),4) < M < +00, and hence all the assumptions of
Lemmas and are satisfied.

Step 3. We start implementing the ideas of Section Bl Let

) 16(y*)*K? 2 A,
R(¢) = mm{Az i {AZ, (855)*1}T’ 40/@6(7*)4brl(§) for £ € Q, andlet B = B(xo,7).
Let us show that if £ € B(y,ri(y)) then R(§) = & milnﬁ{(zz)?;;),l}r. Indeed for every & €

B(y,rm1(y)) we have A,ri(y) < r1(§) by our assumptions on r;. Since r € (0, 5;’& r1(y)) with



C, as in ([B3.6]), we obtain
16(y*)*K5 167 (y*)*k* . T2A? T2 A,
AZmin{ A2, (355)1) < 5C. A, min{ 42, (5n0) 1} ) T 20550376 W) = Goes(ryie 1)

Note that by the second restriction above on R(§), we have R(&) < @T(?; < (;,Eg% for every £ € €,

which meets some of the requirements of Proposition 5.l Moreover, since R(&) is constant on
B, it satisfies a local uniformity condition on B with respect to p for any constant in (0, 1], in
particular for A,. Thus R(§) satisfies the requirements in the statement of Proposition [5.1] and

consequently can be used in Corollary 5.3l Hence there are constants Cg,Cy, ¢, = 812 (v*)2,

5o = AL migi’?gﬂ;g’j)_l} (cf. Remark 5.2 for the values of ¢, and dg) such that (5.4]) holds for every
function f € [¢,RIBMO(B) with | f||., s smos) < Co-

Step 4. We claim that if £ € B and B(z,t) is a c,R(§)-ball then

b
i) B(z,ty) C B(z, —to) C B(zg, Cyr),
(6.39) T
i) 0<ty< ;to < Cur < 5—/:7’1(y) <ri(z)

Since £ € B and B(z,tg) is a ¢,R(§)-ball (see the definition above (5.1])), we have
_ 12O 29
= (A2 G b

(6.40) to < cpR(E)

and B(z,v*to) C B(&,¢c,R(E)) = B<§, 27(;;6” r>. Thus, also using the swallowing property of the
pseudometric balls as described in Lemma, [2.2],

B(z,ty) C B(z7 gto) - 3(27 2’)(/;;?[174) c B<§7 MT)

(507’
2(v*)3¢,b
doT

- B(xo, 7“) = B(xo, C*A*’I“> C B(zg, Cyr).
Since by Step 1 we have B(xg, Cyr) C B(y,r1(y)) and since r; satisfies a local uniformity condition
with respect to p with constant A, on that set, we conclude that A,ri(y) < r1(z). Hence, also

using (620),

2by*¢c, A,

=

Tdo ()

Here the next-to-last inequality is due to the relation between r and 71 (y) that we noted earlier.
The proof of our claim is complete.

Step 5. Now we show that w = log is a function in [c,R]BMO(B), where as above B =

B(xg,7). Let £ € B and consider a c,R(§)-ball B(z,tp). By Step 4, Lemma and condition
B1) we conclude that

b TA,
0<to<—to < gCvr < Cur < —=r1(y) <r1(2).

= b
— < — ul <
oy 100~ Wt 4 < CiZ(B(22t).i1) < CiaM,

and thus, by the definition given in (5.1I), we have ||wl|, rBrmoB) < C12M.
Now we choose o = ngﬁ, where Cy is as in Proposition [5.1] and where s is as in Lemmas

and and also (6.37). Then the corresponding o from inequality (6.37) satisfies a; €
lac=1/2 a]. Then we have

C
”S(Xlwu[ch]BMO(E) < SOquzM < Sacle < 79,

and by Step 3 we can use Corollary 5.3 to conclude that
(6.41) €% 5o m1aa(B) < (14 Cs)*.



Step 6. We notice here that o € B(xo,r) and that B(zg,r) is a dgR(x¢)-ball, and use this
fact in conjunction with (6.41]). We start by recalling that since zg € B(y,71(y)), Step 3 shows

that R(zg) = 4= mif{(zz)zl;;),l}r. Now a simple calculation gives 0 < r < v*r < 2v*r = §oR(xo),

B(zo,7"r) C B(xo,2y"r) = B(xo, 60 R(z0)) and B(zo,7*r) C B(zo,r1(z0)) C Q.
Since B(xg, ) is a dgR(xo)-ball with =y € B(zo,r), by (6.41]) and definition (5.3]) we have

esalw dC ][ efsalw dC S (1 + C8)2,
B(zo,r) B(zo,r)

and thus we conclude

1 1

1 2 .
—« aq saq || —o aq
(6.42) 1T B gy < (L o)™ [0 gy

Step 7. Now we use ([6.37), ([6.38) with as = —a; < 0 and (6.42)) to finish the proof:
1

esssup 4 < C’10[C'11Z(B(960,7“)7ﬂ)]%Hﬁal”a_l o

B(zo,Tr) s,B(wo,r);d
= 7 120 - 70711
< Cio(1 + Cg) [CHZ(B(xO’ r), u)] o1 f|u HS,B(J:(),T);%
9 2 _ 2pyYg .
< Chy(1+ Cg)™1 [C11Z(B(wo,r),u)] 1 essinf a.
B(xo,TT)
Since Cg +1 > 1, Z(B(xo,r),ﬂ) > 1 and oy > ao /2, we see that
9 1 _ 2pY0 Vo
esssup 4 < Ciy[(1+ Cs)**%0 C11 Z(B(zo,7),u)] = essinf @
B(zo,Tr) B(zo,7r)

which, recalling the definition of « given in Step 5, is inequality (B8], with Cy = C%,, C5 =
1
(1 + Cg)Sp‘I’O C11 and Cg = 4\/3]9\1/08012/09.

7. THE PROOF OF THEOREM [3.7]

Let (u,Vu) be a weak solution of (LI]) in ©Q and let 9 € B = B(y, g—irl(y)) For r > 0
(sufficiently small so that B(zg,r) C ), define
M(r) =ess sup u, m(r)=ess inf u, and wy,(r) = M(r) — m(r).
B(zo,r) B(zo,r)
We will refer to wy,(r) as the oscillation of uw in B(zg,r). Now, let r € (0, giA: r1(y)), where C,
is as in (B.0), and set My = M (C,r), mg = m(C,r), noting that My and my are finite by [MRW]|
Theorem 1.2] and Proposition B3l as B(zg, Cir) C B(y,7*r1(y)). Denote

(u1,Vuyp) = (Mo —u,—Vu) and (ug2, Vuz) = (u — mg, Vu).

Clearly (u1, Vuy), (ug, Vua) € Wé’p(Q) and ug,us > 0 in B(xg, Cyr). For (z,2,£) € Q@ x R x R”,
let

Al(x’z’g) = _A(x?MO -z, _g)a A2(x’z’£) = A(CE,Z + mO,g)a
Al(x’z’g) = _A(x?MO -z, _g)a A2(x’z’£) = A(CE,Z + mO,g)a and
Bl(xazaé.) - —B(I',MQ -z, _5)7 BQ(I’,Z,S) - B(.%',Z + m07§)'

It is not difficult to see that (u1, Vup) and (ug, Vug) are respectively weak solutions in € of
(7.1) div(Al(x,u, Vu)) = Bi(z,u,Vu), and
)

div(Ag(x,u,Vu> = By(z,u,Vu).



We now check that these equations satisfy (L2) for coefficients which satisfy (i) — (iv) of
Proposition B3l The calculations are simple and we only provide an example. Let us show that
Aj satisfies item (ii) of (L2) for appropriately modified definitions of g, h. Indeed, since A satisfies

(L2)), we have
- Ay(z,2,8) = =& A(x,My— = —f)
> a 'V Q@)EP — h(z)| My — 2| — g(x)
> a ' VQ)EP ~ 2p thi@)|2l? — (g(x) + 2P~ h(z)| Mo |?).
Setting hyi(z) = 2P~ h(z) and ¢1(x) = g(z) + 2P~ Mo|Ph(x) it follows that Al(x,z,f) satisfies
(L2)(ii) with h, g there replaced by h1, g respectively. Furthermore, hy, g1 € Lt (2) since [My| <

oo and both h,g € Lj OC(Q) by hypothesis. Other verifications are similar using the modified
functions

ha(a) = 27 'h(@),  ga(e)
e1(@) = e(x) + 27 Mo o), es(a)
(@) = f@) + 227 | MoP (), fola)

g(x) + 27~ mo|Ph(x),
e(z) + 2P~ Ymg|P~tb(x), and
fl@) + 22 Hmo [P~ d(z)

with
bi(z) = by(z) = 2P 1b(x),
ca(z) = c(z) = c(z), and
di(z) = do(z) = 2P ld(z).

Therefore both (u1, Vuy) and (ug, Vug) are weak solutions of equations satisfying the hypothe-
ses of Theorem As a consequence, uq, uy satisfy

(7.2) ess sup up(z) + ki(zo,7) < Cy [ ess inf wi(z) + ki(xo, 7")}, and
2€B(zo,7T) z€B(xo,TT)

(7.3) ess sup ug(z) + ka(zo,7) < C’g[ ess inf wa(z) + ka(xo, 7“)}
z€B(zo,7T) z€B(xo,TT)

Here k1 = ky(zo,r) and ke = ko(xg,7) are defined as k in Proposition B.3] using the structural
coefficient functions b1, c1,dq, e1, f1,91, h1 and bs, co, ds, €3, fa, g2, ho Tespectively. By Proposition

B3,
(74) k‘j(xo,T) S A]’T)\, j = 1, 2,
with A exactly as in Proposition B3] and Aq, Ay defined as A in Proposition [3.3] using instead the
structural coefficients related to Ay, As, By, Ba. Each of Cy,Csy, A1, As depends on p, ¥, My, my,
lellpo, 300 110115, B0 €l B0 Wllp 5o N1ells B.aas 111D Biaws 1191144 8100 Whllag, 1400 Cos dos s,
a, and N, where B = B(y,r1(y)). It is important to also note that A is independent of u, and that
when ¢ € (p,p+1—o~!) the dependence of Cy, Ca, A1, Ay on ||ul|ps, p.ax Occurs through My, Mo
of Proposition B.3] and through My, mg, see [MRW, Theorem 1.2]. Moreover Cy,Co, My, My are
independent of ||u||pe, Bidzs Mo, mo when ) = p.

Setting C' = max{C},Cy} and rewriting (Z:2) and (Z3) in terms of M(r) and m(r) gives
(7.5) My — m(rr) + k1(zo,7) < C’(MO — M(717r) + k1 (=0, 7“)), and

M(7r) — mg + ka(zo,7) < C(m(ﬂ") —mo + ka(zo, 7“))

Adding the inequalities in ([5]), rearranging and inserting the oscillation w,,, we obtain

wag(T7)(C +1) < (C = 1) (wan (Cur) + (k1 + h2)

and so

Q

-1

(7.6) Wao (T77) < 1

(wIO(C*T)+ArA>, 0<T<5/{C’ r1(y),

Q



where we have used estimate (7)) and set A = Aj 4+ Ag. Define R = C,r, Ry = (y) and

Ay = AC*. Recall that 7 < 1 < C,. Then (Z8) and the monotonicity of wy, 1mply that for
every v < 7/C,, one has

C—-1
C+1

(7.7) wg (VR) < (wmo (R) + AORA) for all R € (0, Ry).

We now iterate (7.7)) using powers of v to obtain essential Holder continuity of u. Indeed, for
any v < 7/C, and j > 1, we have

: C —1\J A c
(7.8) wao (W Ry) < (C—ﬁ)j{wm(feo) + AgR) ; [ci 2l }
Gl <1 C+1 -
Now choose v < Z- such that < 5 to obtain Z { — 7 ] < 2. Then (8) gives
(7.9) way (W Ro) < (C—+1> [me(RO) +2A0R0]

Now let 0 < R < Rgv and choose j € N such that »/t!Ry < R < I Ry. This choice implies that

(7.10) j+1> - (RO).

Combining (ZI0) with (Z.9]) we obtain

(7.11) wag(R) < ﬁ<§>”(MCO(RO) + 2[\033),

c—1
C+1

In
where p = —=*

> 0. Thus there are positive constants ¢y, u independent of xy such that
(7.12) wyo(R) < czRM i 0 < R < Ryv.

As a consequence of (Z.12]), u is essentially Holder continuous with respect to pin B = B(y, g—irl (v))-
To see this, first note that since u € L>(B), there is a set E, C B with |E,| = 0 such that

(7.13) u()] < Jlull o= s

for all € B\ E,. Choosing z,w € B\ E,, there are two cases to consider.
Case I: p(z,w) < ”TRO. Applying (CI2) in the ball B(x,2p(z,w)) we obtain
(7.14) lu(z) — u(w)] < wz(2p(z,w)) < 72t p(z,w)H.

Case II: p(v,w) > 2. Then

7.1 <2 < 2l
(7.15) lu(z) —u(z)| < ||U||L<>°(B) = Vﬂ—RSLP(ﬂ?,w) .

24 lul| oo ()
V“Rg
Holder continuous with respect to p in B, which completes the proof.

Setting cg = max{c72", } and combining estimates, it follows that wu is essentially



8. PrROOF OoF COROLLARY [3.9

Fix a compact set K C . By hypothesis, there is a positive constants sy depending only
on K such that so < r1(y) < 1 for all y € K. As a result, the constants A and M of Propo-

sition [3.3] can be chosen larger so that they depend only on K and S = U B(y,r1(y)) € Q.
yeK

More precisely, this is achieved by replacing in those definitions all instances of |B(y, 1 (y))| with

in}f{ |B(y,r1(y))| > 0, expanding all norms calculated on B(y,r1(y)) so that they are calculated

ye

over S, and replacing 1 (y) itself by sg and 1 as appropriate. Moreover, since S is a compact subset
of 2, ry satisfies a local uniformity condition on every ball B(y,r1(y)) with y € K, with a uniform
constant A, = A,(S). In fact, one can choose A, = s{, where s{ satisfies 0 < s < ri(y) < 1
for all y € S. Combining these observations with Theorem B it follows that any weak solution
(u, Vu) of ([ILJ)) in 2 satisfies the Harnack inequality (B.11]) when z¢p € K and where the constant
C1 there is chosen to depend only on K and S via the norms of structural coefficients and the
LP?(S) norm of u.

Fix now a weak solution (u,Vu) of (LI in . Working through the proof of Theorem [B.7]
with the observations above, one sees that v (see ((Z.8)) can now be chosen to depend only on
K and S as C there depends only on these quantities, and 7/C\ depends only on K, S through
Cy = Ci(Ay). As a result, for every y € K we have the estimate

z,w€B(y,r)\Ey p(Z, w)ﬂ
where r = %so and the constants cg, p1 are independent of y and F) is as in the proof Theorem

B.7. We now cover K with a finite collection of p-balls of the form B(y;, 5-) and set E = |J E, .
Then |E| =0, and for z,z € K \ E there are two cases to consider:

Case I: p(x,z) < 5-. We claim that there exists y; € K such that both z,z € B(y;,r). Indeed,
choose y; such that z € B(y;, 5-). Then

p(z,y5) < K(p(z,2) + p(z,y5)) <.
Since x,z € B(y;,7) \ Ey;, we may apply (B.I)) to obtain
[u(z) — u(2)] < copla, 2P
Case II: p(x,z) > 5-. Arguing as at the end of the proof of Theorem B.7], we have

out1 p
re

() — u(2)] < 2fullp(s) < [l e (5o, 2)P

Combining both cases, it follows that u is essentially Holder continuous in K and, therefore,
essentially locally Holder continuous in §2.

9. PROOFS OF RESULTS IN SUBSECTION [3.3]

Proof of Theorems [3.10}, B.11] and of Corollary For every w € [0,00) and every
a € (0,p] we have

(9.1) w* <14 wP.



Now, if A(z,z,£) and B(x, z,£) satisfy the structural assumptions (L2)) with ~, 4, satisfying
(B314]), then by ([@J) they also satisfy the modified structural conditions

(i) A(z,2,¢) = /Q(x)A(x, 2,€),

(i) & Alw26) 2 0™ [VQ@E| = M)l = (o(x) + b)),
mz(szg\<4¢——r\ +i(a P!+ (b(z) + e(2)),

(iv) @ng\<c\vf—z\ +d(@) |27~ + (ce(x) + d(z) + f(2))

for every x € 2, every z € R and every £ € R™. Thus, in order to conclude, it is sufficient to
apply Theorems B.5 B.7] and Corollary [3.9] using the new structural conditions (@.2)), i.e. with
v =46 =1 = p and with e, f, g replaced respectively by b+ e, c+d+ f and g + h.

Proof of Theorems [3.13] and of Corollary As is clear from their proofs, in
order to obtain Theorems B.5] B.7 and Corollary B.9] one needs the structural assumptions (L.2I)
to hold with v =0 = p and ¢ € [p,p+1—0c~1) not for every (z,2,£) € Q x R x R”, but only for
(x,2,€) = (z,u(x), Vu(z)) for almost every z € €2, where u is the weak solution of equation (L)
under consideration.

If A(z,2,£) and B(x, z,§) satisfy the structural assumptions (L2) with ~, d,1 > p, then we can
write

i) Az, z,6) = /Q(x)A(x, 2,£),
n>sluxzs>a '|vewe ( )2l - g(a),

(
(

(9.3) (iii) ‘A (2, 2,€) ‘ <a‘\/—§‘ ]zh P) 2Pt + e(z),
(iv) ‘sz§‘<c ‘\/—5‘ 2"7P) Pt + £ ().

Now, by replacing z with u(z) in (@3)) we can conclude the proof through the application of
Theorems B.5] B.7 and Corollary B9 This is done using the modified structural conditions (©.3])
that correspond to (L2)) with v = § = p and with h, b, d replaced by hy = hlu|""P, by = bju|7~P

_ 6— : po b3
and d; = d|u|°~P respectively. Indeed, note that the map By +— IW—(Z)D)BO

> max{p'c’ —1} since By > max{pafgf%l, p(pfl)iofpgo(’yfp) }. Thus we conclude that

is increasing and hence

poBo
po+(y—p)Bo

B= min{}%,g} > max {p'a',pcﬁ)l}

and, since B < &, we have e € Lloc(Q)' Moreover for any compact subset ©® C 2 with positive
measure

1
B
b = < |Ib o — = bB|u| P8
H 1”8’@’6& o H 1||po+zz’vlj(;))50’®’dx ( © | |
poBo (r—p)poB %
< < bpcr+ y= p)Bo ’u‘PUvL y— p)lgo dx) e
By using Hélder’s inequality with conjugate exponents ¢ = po+(;+p)80 and ¢’ = ZW we
obtain
1 y=p
9.4 bllper < [ 0%de)” ) b
( : ) ” 1”8,@,dz — 6 x ®‘u’ x - ” ”807@dIH |pa@da} < Foo,

and hence by = blu|"? € LB _(Q).



For H and D as defined in Theorem [B.13] one can prove in a similar way that H,D > %0, that
H,D > o', that g, hy = hlu]"P € LI (), and that f,dy = d|u|*P € LP_(Q) with

— 5—
©95)  Ilyom < Mozl ? s and  ldlpez < ldinezlul’? 4

Finally, if M is defined as in the statement of Proposition B.3] (with b,d, h replaced by b1, d;, hy
respectively) and My is as in (B.I7), then (@.4) and (@.35]) imply that M < My.
Thus we can conclude by applying Theorems [B.5] B.7] and Corollary 3.9

10. APPENDIX

Theorem 10.1. (Young’s Inequality) Let ai,a2,0 >0 and 8,5 > 1 satisfy % + % =1. Then

B B’
a; 1 a
(101) aj a9 S 9?—}— 05//5 F

Lemma 10.2. Let (Q, p,dz) be a local homogeneous space and ~v* be as in (Z3). Fiz x,y € €,
A>1,t>0,1€Z, and k € NU{0}. Then if t < NTF < Ry(x)/~v* and B(y,t) N Bz, \'TF) £ 0,
we have

(10.2) By, t)] < Co(y*N*)®|B(z, X')].

Proof: The swallowing property (Z3) gives B(y,t) C B(z,7*A™**), and since v* A *F < Ry (z),
we have that

’7* )\l—l—k

By, )] < [Ble,r" X )| < Go( 15

)" 1B )| = Coly" X6 Bz, X))

Proposition 10.3. Let (€2, p,dz) be a local homogeneous space, see Definition [2.4), let © € Q
and assume 11(x) is a function as in (2.13]) that satisfies a local uniformity condition in © with
constant A, = A,(0O), see [2.8]). Then condition weak-Dy, see Definition[3.17, holds with ¢* = dy
on ©, for some constant C7 > 0 and with o = A, /2.

Proof: Since © € () is compact, we can cover it with a finite number of pseudometric balls
B(y1,r1(y1)), .., Blyp,r1(yp)) with y1,...,yp € ©. Let z € ©, r € (0,4:r1(z)) and choose
vyt € {y1,...,yp} such that © € B(yg,71(yx)). Then, conditions (2.6 and (ZI3]) imply that
0<r<ar(r) < % < Ri(yg). Using (2:4]) we conclude that

do
T1\Yk
Bl < (“U) 7 el
It now follows that condition weak-Dg+ holds with ¢* = dp, @ = A,/2 and

Cr— - i {|B(yk,7“1(yk))|}_

T Cok=LN | (ri(yg))®

Proof of Proposition B.3l Step 1. We start by recalling that if zy € B(y, #rl(y)), r e
(0, 5:2:; r1(y)) and C, is as in (3.6), then B(zo,Cir) € B(y,r1(y)); see Step 1 of the proof of
Proposition Bl Since by the definition of C, we have 0 < Cyr < r1(y) < R1(y), Definition 2.4]
gives

do
1B(y,r1(y))| < Co (%) |B(z0, Cr)|.



Step 2. We now prove ([3.I0). By Step 1 and the definition of k(xq, ),

(Cyr)P~1
|B(zo, C,r)|B

(Cyr)P
]B(xo,C*r)\%

k(xo,r)

p—1 p—1
HeHB,B(mO,C*r);d:v] + HfHD,B(:rO,C*r);dm]

1
P

(C,r)P
|B(x0, C,r)| %

007’1 (y)do _q1_do
<m (Car)”" 7% lells, By, (v)):de

Hg”H,B($07C*T);dZ‘]

1
p—1

_1

+

5 -1
C’on(y)d“ D dy P
(W (Car)P" 2 || fllp,Bly.ri (v))sdx

COT‘l(y)dO H _dg
(W (Cer)” N 9lla, By ())ida

Thus, by the definitions of A\, A and the fact that Cir < ri(y),

=

P

_l’_

Co Wr =Xy
o) < (i) OO Il

Co @-1)D »
- <m> Tl(y)P ( ) HfHD ,B(y,r1(y));dx

1

+ ( . )W () NCr gl = A
|B(y,m1(y))] * H,B(y,r1(y));dw
Step 3. If B(z,1l) C B(xo,Cyr) and 0 < I < Cyr, then B(z,l) € B(y,r1(y)) and 0 < I < r1(y) <
Ri(y). As in Step 1 we conclude that

do
Bl < o (M) 101

Also note that since 7 satisfies a local uniformity condition on B(y,r1(y)) with respect to p with
constant A, and since zg € B(y,71(y)), then A.ri(y) < r1(zp). Thus, from

0<i<Cir< A*rl(y) < T‘l(x(]) < Rl(x(])
and B(z,l) C B(zg,Cyr), we deduce by Definition 2.4] that

Cyr do
]B(xo,C*r)\gCo< 7 ) |B(x,1)].

Step 4. We are now going to prove that Z(B(z,1),u) < M, with M as in the conclusion of
Proposition B3l Using the definition of Z given in ([B.4]) and equations (B.3]), we have

(10.3) Z(B(w, 1)) <1+ bl o1 g gy + 75 1||€Hp/o/,B(m,l);%
p(¥—p) i
<lp‘|cp+1 wup+1 w|| pa  Bw0)d >
1
€2
(lth” pff B(z,1);dx Hg” P" B(z,l);dx >

il 1P =
+{ 21 ”%,BW);%JFkp—l”f”%ﬁ(x,w;% :



Step 5. Recalling the conditions on B and by Step 3, we have by Holder’s inequality that

POy gz < PHOIg sy = WHZ’HB,B(M;M
CEri(y) B 71
KAL) T [10ll8. By (v):a
|B(y,r1(y))|5
1
< CEri(yP! 15l By, ()

The terms including norms of i and d are treated in a similar way, also recalling the definitions
of €9, €3. Thus we obtain

A

1
1P HhH po CQH7“1(y)p||h”7{,B(y,r1(y));@a

_B(zl)de

1
1P|dl| bt < Gy

B( i L] (y)pHdH’D,B(y,m(y));%'

Step 6. Again using the conditions on B, Step 3 and the definition of k = k(xq,r), we have

!

P!
wilelyo pen

(Cr)P el g, pwo,curydn

P=1 |B(xo, Cor)|5 llells By

lells ,B(x,1);dz

(Cur)P=1 el Bo.Curydn  |B(x,1)|5
p—1 5 1 pflf%o 1
! |B(zo, Cir)|B = (L) < CP.
(Cer)P™t|B(2,1)|B Cir -

The terms involving g and f can be estimated in a similar way, giving

2=
Q=

kagH po B(:z: 1);dx < CO and Lp— 1||f|| po B(:v 1);dx < CO :

Step 7. We estimate the remaining term

p(Y—p)
I —lp||cp+1 ¢ pti- w|| pa

_ lp
B(:v 1);dx B(a.)

p2o’ p2o’ (v —p) po’
c+1=v)(p—e1) 7y (p+1-¥)(p—e€1) (1

starting with an application of Holder inequality with conjugate exponents

_(e-Dp+1-Y)p—a)
p(¥ —p)

> 1,

,_ (c=Dp+1-9)(p—e)
(c=Dp+1=9)(p—e)—pi—p)

q

where we will associate ¢ with % and ¢’ with ¢; note also that ¢ > 1 due to the definition of ¢;
(see Proposition B.3]). Thus, also recalling the conditions on ¢, we obtain

(o= (p+1-9)(p—e1)—p(—p) Y—p
2o po(p+1—1) (p+1-9)o
I < [P c (=D p+1-¢)(p—e1)—p(¥—p) aPdr
B(=,l) B(z,l)
P 4 ;bl p)
= Pl ally
e DGri—h e —p—p D@L p”B‘”
p(—p) 114 _p_ p(—p)
< lpHCH”“ vl H“’+1 Y = v el By 18 g Bty
C,B(z,l); po,B(z,l); ’B(mJ)’(p+1llw)c+0(p+1z:w) ,B(z,l);dx po,B(z,l);dz



where the last inequality follows from the second part of the minimum in the definition of €.
Thus, by the first display in Step 3,

d —p) _
I lp_ (p+10—pw)c U(P+1 Izl)) (COrl( )dO) (p+117—1p)c+o(p1ilziw) ” ” p+1 H 7H (ﬁ:—wl IZZ)
= C,B )id B( dz
| By, r1(y))| wFi-1 + D a5 )
ptlbonl (¥=p)
r(y)PCy" r1-9)
< po+(—p)C H Héjg y¢rl( ));dx |:Hu”pa,B(y,r1(y));dx + k(l'Oa )’B(yﬂ"l(y))’ ] 3 5
|B(y,r1(y))| Eri=9e
where we have used the facts that [ < r;(y) and p — 0 ﬁ(f’ e~ Uf;ﬁj% > 0, due to the first

condition on C in item (iv) of Proposition B3l Finally, since Cyr < r1(y), Step 2 applies to k(xq, )
and we have

B | S5y
+1-v)o +1-9 iz
[=my)c’ el yis 1o Bz + AT '

Step 8. It is now sufficient to insert the estimates from Steps 5,6,7 into inequality (I0.3]) to
conclude the proof.
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