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Abstract

The occurrence of retarded (with glue) and unretarded (without glue) pairing is thoroughly

discussed in cuprates. We analyze some aspects of this problem in the context of the t-J-V

model in a large-N approximation. When 1/N renormalizations are neglected the mean-field

result is recovered, where the unretarded d-wave superconducting pairing triggered by the spin-

exchange interaction J is obtained. However, the presence of a non-negligible nearest-neighbors

Coulomb interaction V (q) kills superconductivity. If the non-double-occupancy constraint and

its fluctuations are considered, the situation changes drastically. In this case, V (q) is screened

making d-wave superconductivity very robust. In addition, we show that the early proposal for the

presence of an unretarded pairing contribution triggered by the spin-exchange interaction J can

be discussed in this context.
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I. INTRODUCTION

The origin of superconductivity in high-Tc cuprates is under an intense debate since its

discovery in 1986. Not only the high value of the superconducting critical temperature Tc

is surprising, but these materials are also anisotropic and the metallic and superconducting

properties show a two-dimensional character. The phase diagram in the temperature and

doping plane of these materials shows unconventional characteristics, as the dome-shaped

behavior of Tc against doping in the proximity to the antiferromagnetic insulator and the

pseudogap phase at low doping (see Ref. [1] for a review). In addition to these features,

the superconducting gap has d-wave symmetry1,2. All members of the cuprate family share

similar characteristics, suggesting the existence of a universal physics.

Phenomenological theories where pairing is due to antiferromagnetic fluctuations3,4 were

proposed for explaining the d-wave symmetry of the superconducting gap in the proximity

to antiferromagnetism. In this scenario, the two-dimensional antiferromagnetic fluctuations

play the role of a retarded glue, as phonons in conventional low-temperature superconduc-

tors.

In the early times, the Hubbard and the t-J models were recognized5 as minimal micro-

scopic models for cuprates. The Hubbard model treated in the framework of a weak coupling

random phase approximation shows d-wave superconductivity6, where the effective pairing

interaction is mediated by the dynamical spin susceptibility which acts as a pairing glue.

In this approach, the nearest-neighbors Coulomb interaction, V (q) = 2V [cos(qx) + cos(qy)],

which is expected to be non-negligible in cuprates7, affects superconductivity because it

has a d-wave repulsive projection. It is therefore important to understand why Tc remains

large even if a nearest-neighbors Coulomb interaction is present. The same effect of V (q) is

expected in the antiferromagnetic phenomenological theories3,4.

The study of d-wave superconductivity and the role of the nearest-neighbors Coulomb

interaction in the Hubbard model is huge8–11. In Ref. [8] it was shown that d-wave super-

conductivity in the Hubbard model is almost unaffected by V (q) if the strong coupling limit

is properly treated. In addition, since the two-dimensional Hubbard model reduces to the

t-J model in the large-U limit12, the question about the role of V (q) on superconductivity

is also of interest in the t-J model. On the other hand, retarded (with glue) and unretarded

(without glue) paring13,14 is under discussion in the t-J model. While in Ref. [14] pairing
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was discussed as composed by a retarded and an unretarded contributions, in Ref. [13] only

an unretarded pairing was considered as the relevant one.

At the mean-field level, the t-J model shows d-wave superconductivity15 arising from

the unretarded exchange interaction J [cos(qx) + cos(qy)], where J is the spin-exchange cou-

pling. Since the exchange interaction has the same form of the nearest-neighbors Coulomb

interaction, the last one is, in principle, detrimental to superconductivity. Using a large-N

approach on the t-J-V model, in this paper we discuss superconductivity and the role of

the nearest-neighbors Coulomb interaction V (q). When the local constraint that prohibits

double occupancy is not included superconductivity is strongly affected by V (q), even for

V of the order of J . Including the constraint d-wave superconductivity is robust against

V (q), even for V ≫ J . We also found that the leading contribution to superconductivity is

mainly provided by the unretarded exchange, however, this contribution is efficient only if

the constraint is properly included. In Sec. II we present a summary of the formalism, in

Sec. III the results and discussions, and in Sec. IV the conclusions.

II. MODEL AND SUMMARY OF THE FORMALISM

As a minimal model, we study the t-J-V model on a square lattice,

H = −
∑

〈i,j〉,σ

tij c̃
†
iσc̃jσ +

∑

〈i,j〉

Jij

(

~Si · ~Sj −
1

4
ninj

)

+
∑

〈i,j〉

Vijninj , (1)

where c̃†iσ (c̃iσ) is the creation (annihilation) operator of electrons with spin σ(=↑, ↓) in the

Fock space without double occupancy at any site, ni =
∑

σ c̃
†
iσ c̃iσ is the electron density

operator, ~Si is the spin operator. The hopping (spin exchange) tij (Jij) takes the value t

(J) between the first nearest-neighbors sites. Vij is a nearest-neighbors Coulomb interaction

with strength V .

It is non-trivial to study the t-J model because of the local constraint that prohibits

the double occupancy at any site. In addition, the operators involved in the t-J model are

Hubbard operators16 which satisfy non-standard commutation rules. We employ here a large-

N technique based on a path integral representation in terms of the Hubbard operators (see

Refs. [17,18] and references therein). In the large-N scheme, the number of spin components

is extended from 2 to N and the physical quantities are computed in powers of 1/N . In

what follows the spin index σ is called p.
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In the framework of the large-N path integral approach, the t-J model is mapped to an

effective theory described in terms of fermions, bosons, and their mutual interactions18.

a) Fermions: We obtain a fermionic propagator [solid line in Fig. 1(a)],

G
(0)
pp′(k, iωn) =

δpp′

iωn − εk
, (2)

with the electronic dispersion

εk = −2

(

t
δ

2
+ ∆

)

[cos (kx) + cos (ky)]− µ . (3)

For a given doping δ, the chemical potential µ and ∆ are determined self-consistently by

solving

1− δ =
2

Ns

∑

k

nF (εk) , (4)

and

∆ =
J

4Ns

∑

k

[cos (kx) + cos (ky)]nF (εk) , (5)

where nF is the Fermi function and Ns is the total number of lattice sites. The momentum

k is measured in units of the inverse of the lattice constant. In Eq. (2) ωn is a fermionic

Matsubara frequency. The Green’s function G
(0)
pp′(k, iωn) is O(1) in the context of the 1/N

expansion.

In the present formalism, the spin-exchange term or J-term of the t-J-V model [Eq. (1)]

is treated by introducing a bond-field variable that describes charge fluctuations on the

bond connecting nearest-neighbors sites along the x- and y-directions. ∆ is the static mean-

field value of this bond field. Although the electronic dispersion [Eq. (3)] looks like that

in a free electron system, the hopping integral t is renormalized by doping δ because of

electron-correlation effects. In addition, there is a contribution ∆ which depends on J .

b) Bosons: We define a six-component bosonic field

δXa = (δR , δλ, rx, ry, Ax, Ay) , (6)

where δR describes the fluctuations of the number of holes at a given site, thus it is related

to on-site charge fluctuations, δλ is the fluctuation of the Lagrange multiplier introduced

to enforce the constraint that prohibits the double occupancy at a given site, and rx and

ry (Ax and Ay) describe fluctuations of the real (imaginary) part of the bond field coming

from the J-term.

4



The 6 × 6 bare bosonic propagator associated with δXa [dashed line in Fig. 1(a)], con-

necting two generic components a and b is

[

D
(0)
ab (q, iνn)

]−1

= N



























δ2

2

(

V − J
2

)

[cos (qx) + cos (qy)]
δ
2

0 0 0 0

δ
2

0 0 0 0 0

0 0 4
J
∆2 0 0 0

0 0 0 4
J
∆2 0 0

0 0 0 0 4
J
∆2 0

0 0 0 0 0 4
J
∆2



























, (7)

where q and νn are the momentum and bosonic Matsubara frequencies, respectively. The

factor N shows that the 6 × 6 bosonic propagator D
(0)
ab is O(1/N), and it is frequency

independent. The element (1, 1) in Eq. (7) carries the information of 1
4
Jijninj and Vijninj

of Eq. (1), while the information of Jij
~Si · ~Sj is contained in the elements (a, a) with a = 3-6.

c) Interaction vertices: For computing quantities up to O(1/N) the present large-N

scheme leads to three-legs and four-legs vertices [Fig. 1(a)].

The three-legs vertex

Λpp′

a = (−1)

[

i

2
(ωn + ω′

n) + µ+ 2∆
∑

η

cos
(

kη −
qη
2

)

cos
qη
2
; 1 ;−2∆ cos

(

kx −
qx
2

)

;

−2∆ cos
(

ky −
qy
2

)

; 2∆ sin
(

kx −
qx
2

)

; 2∆ sin
(

ky −
qy
2

)]

δpp
′

, (8)

where η = x, y, represents the interaction between two fermions and one boson.

The four-legs vertex Λpp′

ab represents the interaction between two fermions and two bosons.

Λpp′

ab fulfills the symmetry of Λpp′

ab = Λpp′

ba , and the only elements different from zero are:

Λpp′

δRδR =

[

i

2
(ωn + ω′

n) + µ

+∆
∑

η

cos

(

kη −
qη + q′η

2

) (

cos
qη
2

cos
q′η
2

+ cos
qη + q′η

2

)

]

δpp
′

, (9)

Λpp′

δRδλ =
1

2
δpp

′

, (10)

Λpp′

δR rη = −∆cos

(

kη −
qη + q′η

2

)

cos
q′η
2
δpp

′

, (11)

and

Λpp′

δRAη = ∆sin

(

kη −
qη + q′η

2

)

cos
q′η
2
δpp

′

. (12)
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Each vertex conserves momentum and energy and it is O(1). For readability reasons we

drop the frequencies and momenta in the left hand side of the definitions of the three- and

four-legs vertices Λpp′

a and Λpp′

ab [see Fig. 1(a) for the frequency and momentum dependence].

By using the propagators and vertices summarized in Fig. 1(a) we can draw Feynman

diagrams as usual.

Π
(��

= Πa�

p ��
D��=

� b

Λ� =

	


�

�
Λ
�=

�

��

��

Feynman Rules

Propagators:

Vertices:

(a)

Effective interaction between fermions(d)

Irreducible boson self-energy(c)

= +

+=

=

Dyson equation(b)

+

+

a ba b

a

b

Veff =

( (
-1

( (
-1

[Dab]
-1

(0)Gpp'=

(0)

pp' pp'

(0)

[Dab]
-1

Πab Π
(2)

a b

q, νn

k, ωn

q, νn

k, ωn

k, ωn

k, ωnk', ωn'

k', ωn'

k-k', ωn-ωn'

k', ωn'k', ωn'

q', νn'

FIG. 1: (a) Summary of the Feynman rules. Solid line represents the fermionic propagator G
(0)
pp′ .

Dashed line represents the 6 × 6 bosonic propagator D
(0)
ab . Λpp′

a and Λpp′

ab represent the interaction

between two fermions and one and two bosons, respectively. (b) Diagrammatic representation of

the Dyson equation. (c) The two different contributions to the irreducible boson self-energy. (d)

Effective interaction between fermions. Looking at the order of the propagators and vertices we

see that Veff is O(1/N), thus superconductivity arises at O(1/N) in this large-N scheme.

From the Dyson equation [Fig. 1(b)], the bosonic bare propagator D
(0)
ab is renormalized

at 1/N order,

[Dab(q, iνn)]
−1 = [D

(0)
ab (q, iνn)]

−1 −Πab(q, iνn) , (13)

6



where the 6× 6 boson self-energy matrix Πab [Fig. 1(c)] is:

Πab(q, iνn) = − N

Ns

∑

k

ha(k,q, εk − εk−q)
nF (εk−q)− nF (εk)

iνn − εk + εk−q

hb(k,q, εk − εk−q)

−δa 1δb 1
N

Ns

∑

k

εk − εk−q

2
nF (εk) , (14)

with ha given by

ha(k,q, ν) =

{

2εk−q + ν + 2µ

2
+ 2∆

[

cos
(

kx −
qx
2

)

cos
(qx
2

)

+ cos
(

ky −
qy
2

)

cos
(qy
2

)]

; 1;

−2∆ cos
(

kx −
qx
2

)

;−2∆ cos
(

ky −
qy
2

)

; 2∆ sin
(

kx −
qx
2

)

; 2∆ sin
(

ky −
qy
2

)}

.

(15)

The vertices Λpp′

a and Λpp′

ab not only represent interactions from the Hamiltonian Eq. (1)

but, as they come from the path integral, they contain also contributions from the algebra

of the Hubbard operators and the non-double-occupancy constraint, which introduce a fre-

quency dependence. Due to this frequency dependence, the computation of the first and

second diagrams in Fig. 1(c) leads to finite and infinite contributions. However, the ghost

fields from the Jacobian in the path integral give rise to terms that cancel exactly these

infinities17,18.

The 6×6 dressed bosonic propagatorDab contains all possible charge fluctuations of the t-

J model on the square lattice, and all are treated on equal footing19. The large-N approach

weakens the effective spin interaction compared with the one associated with the charge

degrees of freedom. Dab with a, b = 1, 2 describes on-site charge fluctuations associated

to δR and δλ. The presence of δλ indicates that the non-double-occupancy constraint

and its fluctuations are taken into account in the calculation. The element (1, 1) of Dab

is related to the usual charge-charge correlation function17. D22 and D12 correspond to

fluctuations associated with the non-double-occupancy condition and correlations between

non-double-occupancy condition and charge-density fluctuations, respectively. We call this

case as on-site charge sector or the 2 × 2 sector. If a, b = 3-6, Dab describes bond-charge

fluctuations associated to rx, ry, Ax, and Ay. We call this case as the bond-charge sector or

the 4 × 4 sector. Dab also contains the mixing of both sectors, however it was shown that

the coupling between on-site and bond-charge fluctuations is negligible20. If J = 0 the 6× 6

Dab reduces to the 2× 2 sector, and only on-site charge fluctuations are involved.

7



The superconducting effective interaction between fermions, Veff(k,k
′;ωn, ω

′
n), can be

calculated using the diagram in Fig. 1(d), which shows that in the present theory pairing

is mediated by charge fluctuations contained in Dab. Note that we can also draw a diagram

containing two vertices Λpp′

ab and two bosonic propagators Dab, however, this contribution is

omitted because it is O(1/N2). The analytical expression for the effective interaction is

Veff(k,k
′;ωn, ω

′
n) = ΛaDab(k− k′, ωn − ω′

n)Λb , (16)

where Λa and Λb are the three-legs vertices from Eq. (8) with p = p′.

We use a weak coupling approximation to compute the effective couplings λi in the

different pairing channels or irreducible representations of the order parameter on the square

lattice, i [i = (dx2−y2 , dxy, s
′, p)],

λi =
1

(2π)2

∫

(dk/|vk|)
∫

(dk′/|vk′|)gi(k′)Veff(k
′,k)gi(k)

∫

(dk/|vk|)gi(k)2
, (17)

where the functions gi(k) encode the different pairing symmetries, gd
x2−y2

(k) = cos(kx) −
cos(ky), gdxy(k) = cos(kx) cos(ky), gs′(k) = cos(kx) + cos(ky), and gp(k) = sin(kx). vk is the

quasiparticle velocity at momentum k. The integrations are restricted to the Fermi surface,

i.e., k and k′ run over Fermi surface momenta and iωn = iω′
n = 0. λi measures the strength of

the interaction between electrons at the Fermi surface in a given symmetry channel i. If λi >

0, electrons are repelled hence, superconductivity is only possible when λi < 0. The critical

temperatures, Tc, can then be estimated using a BCS expression: Tci = 1.13ω0 exp(−1/|λi|),
where ω0 is a suitable cutoff frequency which encodes retardation effects. If λi is negligible,

superconductivity is unexpected, no matter the value of ω0. Although it is an approximation,

the weak coupling scheme gives a way to select, in principle, the dominant pairing channels

from all different contributions independently of their retarded or unretarded nature. It

was introduced in retarded (with glue) cases as the electron-phonon one21, where λ is the

dimensionless coupling strength due to the electron-phonon interaction. This approach

was also used for spin-fluctuation interaction in the context of cuprates3. The fact that

we calculate on the Fermi surface in Eq. (17) does not invalidate the study of retarded

interactions. Obtaining an accurate value of Tc requires considering retardation effects in

more detail, but that is not our aim. We study the main tendencies to superconductivity

and from where they arise by computing the coupling strength λ of each contribution.
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III. RESULTS AND DISCUSSIONS

We chose J = 0.3, T = 0, and 0 ≤ V ≪ Vc, where Vc is the onset of the instability to a

checkerboard charge density wave18,22. Energy is given in units of t. There is no tendency

to superconductivity, i.e., λi > 0, for any pairing channel except for dx2−y2 for δ < 0.5.

Thus, in the following we focus only on the dx2−y2 channel. For simplicity we call λd
x2−y2

(dx2−y2-wave) as λ (d-wave) in what follows.

0.6

0.3

0

-0.3

J=0.3

d-wave channel

0.50.40.30.20.1

-1.2

-0.8

-0.4

0

�

�

V

�
�(0)

�

�=0.25

0 0.3 0.6 0.9

�, V=0.0

�, V=0.3

�(0), V=0.0

�(0), V=0.3

FIG. 2: (Color online) The superconducting coupling λ and λ(0) versus doping δ for V = 0 and

V = 0.3. Inset: The superconducting coupling λ and λ(0) versus V for δ = 0.25. For this δ,

Vc ∼ 1.9.

Using the 6× 6 Dab in Eq. (16) we compute λ as a function of δ for V = 0 and V = 0.3.

Figure 2 shows that, although V (q) has a repulsive d-wave projection, λ is almost unaffected

by V . In addition, d-wave superconductivity enhances with decreasing doping. This result

is contrary to other results that suggest that superconductivity is killed by V already for

values of the order of J (Refs. [23–25]).

Using the 6× 6 D
(0)
ab instead of Dab in Eq. (16) Veff is given by26

V
(0)
eff (k,k′;ωn, ω

′
n) =

(

J

2
− V

)

[

cos (kx − k′
x) + cos

(

ky − k′
y

)]

+

J

2

[

cos (kx − k′
x) + cos

(

ky − k′
y

)]

. (18)

Note that V
(0)
eff is frequency independent. The first term in V

(0)
eff containing J and V comes

from the 2 × 2 sector of the t-J model. The second term originates from the 4 × 4 sector
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which is proportional to J . We call attention that considering c̃ as usual fermions in Eq. (1)

V
(0)
eff can be recovered as a mean-field approximation of the t-J model.

Using V
(0)
eff the corresponding λ(0) can be computed. In contrast to λ, while supercon-

ductivity is robust for V = 0, λ(0) vanishes for V = 0.3 (see Fig. 2). These results show

that, among other effects discussed later, the renormalization of D
(0)
ab by the 6 × 6 boson

self-energy Πab [Eq. (13)] screens out the effect of V . The inset in Fig. 2 shows λ and

λ(0) versus V for δ = 0.25. These results for λ indicate that superconductivity is mostly

unaffected by the Coulomb interaction even for V ≫ J when the full dressed Dab bosonic

propagator is considered. On the other hand, for the case of the bare propagator D
(0)
ab no

superconductivity occurs for V > 0.3, as can be expected from Eq. (18).

One difference between λ and λ(0) for V = 0 is that while λ(0) smoothly decreases with

decreasing doping, λ tends to large negative values at δ ∼ 0.13. This behavior for λ can

be explained in the context of the flux phase instability, which occurs at a critical doping

δc ∼ 0.13 for present parameters19. See the Appendix for details about the flux phase. Since

λ is calculated on the Fermi surface, i.e., ωn = ω′
n = 0, when approaching δc the effective

superconducting coupling λ tunes the instability and diverges.

It was shown that λ, which includes the bosonic self-energy Πab, is robust against V , but

such robustness is not present in the case of λ(0). Next, we discuss which are the relevant

components of Πab that lead to the different behavior between λ and λ(0). Since the flux

phase belong to the 5-6 sector of Dab (see the Appendix), we calculate λ including only

the 2 × 2 sector Π11, Π12, Π22, and the flux sector Π55, Π56 and Π66 in the Dyson equation

[Eq. (13)], i.e., leaving the other components of Πab as zero. We call this λCh−FP. Figure 3(a)

shows λCh−FP for V = 0 and V = 0.3. For completeness, in the figure we included the results

of λ for the full 6×6 case of Fig. 2. These results show that Π11, Π12, Π22, Π55, Π56, and Π66

are the most important components of the bosonic self-energy Πab since they capture the

same λ behavior as using the full 6×6 Πab. It is important to note that the inclusion of Πab

in the Dyson equation introduces a frequency dependence in the dressed bosonic propagator

Dab, i.e., the effective interactions are retarded in contrast to the unretarded interactions

from the undressed D
(0)
ab . This point is important for later discussions.

Next we analyze the influence of the 2× 2 on-site-charge and FP sectors separately.

Considering only Π11, Π12, and Π22 in the Dyson equation the effective paring interactions

can be written as

10
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0
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-0.4

0

(c)

λ
Ch, V=0.0

λ
Ch, V=0.3

λ
J

λ, V=0.0

λ
Ch-FP, V=0.3

λ
Ch-FP, V=0.0

(b)

(a)

λ
J

λ
FP

λ
J
λ

FP

δ

λ
λ

λ

0

-0.2

0.1 0.3 0.5
δ

λ

�=0.05-0.4

FIG. 3: (Color online) (a) λCh−FP versus doping for V = 0 and V = 0.3. λ from Fig. 2 is included

for comparison. (b) λCh for V = 0 and V = 0.3, and λJ versus doping. (c) λFP and λJ versus δ.

Inset: λFP and λJ versus δ for Γ = 0.05.

V
(Ch)
eff (k,k′;ωn, ω

′
n) =

−2Λ1(δ − Π12) + Λ2
1Π22 − { δ2

2
(2V − J)Fk,k′ − Π11}

(δ − Π12)2 +Π22{ δ2

2
(2V − J)Fk,k′ − Π11}

+

J

2

[

cos (kx − k′
x) + cos

(

ky − k′
y

)]

, (19)

where Fk,k′ = cos (kx − k′
x) + cos

(

ky − k′
y

)

. Using Eq. (19), we compute λCh. Figure 3(b)

shows results for λCh versus δ for V = 0 and V = 0.3. It can be seen that λCh is almost
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unaffected by V showing that the Coulomb repulsion is indeed screened by the Πab compo-

nents that belong to the 2 × 2 on-site charge sector. The second term on the right hand

side of Eq. (19) is the same as in Eq. (18). We call λJ the contribution from this term and

its behavior is shown in Fig. 3(b). The fact that the three curves are nearly coincident give

us the clue that the components of the 2 × 2 on-site charge sector of Πab screen the first

term of Eq. (18) and consequently, only the effective (J/2)
[

cos (kx − k′
x) + cos

(

ky − k′
y

)]

interaction from the 4× 4 sector survives.

When the t-J model is treated at mean-field level, superconductivity is expected to

be triggered by the exchange term J(k − k′). However, superconductivity is killed by a

small nearest-neighbors Coulomb interaction. When the non-double-occupancy constraint

is treated properly, the effect of the Coulomb interaction is screened. Thus, present results

show a clear difference between a treatment of superconductivity at the mean-field level and

a treatment in strong coupling. We think that our results support the early point of view13

that superconductivity in cuprates has a contribution from the unretarded J(k− k′) term,

but we claim that for such a pairing to be realized the non-double-occupancy constraint

should be treated beyond mean-field.

The screening effect from the 2 × 2 sector can be understood as follows. The second

contribution of the first term in Eq. (19) is mainly s-wave and gives a negligible contribution

in the d-wave channel, i.e., this term is not relevant for our analysis. The third term has the

form of the screening of the Coulomb interaction from the usual RPA, because Π22 is just

a simple bubble. It is important to remember that Π22 arises here from fluctuations of the

Lagrange multiplier introduced to impose the constraint. Then, this contribution screens

the J and V terms (first term of V
(0)
eff ) from the 2×2 sector, while the J-term from the 4×4

sector (second term in V
(0)
eff ) remains. In addition, the first contribution −2Λ1(δ−Π12), which

is independent of J and V has a small repulsive d-wave projection. Then, if V = J = 0, i.e.,

only the 2× 2 sector is present, superconductivity is not expected to be mediated by charge

fluctuations.

It is important to mention that the doping dependence of λCh and λJ does not show the

steep behavior near δc seen in Fig. 2 for λ. This is due to the fact that we did not include

Π55, Π56 and Π66 from the FP sector (see the Appendix). To understand the influence of

only these components on λ we take the dressed bosonic propagator Dab and compute Veff
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by projecting Dab onto the FP eigenvector (0, 0, 0, 0, 1/
√
2,−1/

√
2) [Ref.19]. We obtain

V
(FP)
eff (k,k′;ωn, ω

′
n) = −(Λ5 − Λ6)

2ReχFP(k− k′, iωn − iω′
n) , (20)

where Λ5 and Λ6 are the fifth and sixth component of the vertices in Eq. (8), and

χFP(q, iνn) = [(8/J)∆2 − ΠFP(q, iνn)]
−1 , (21)

which is the flux phase susceptibility19 and ΠFP(q, iνn) the electronic polarizability given by

ΠFP(q, iνn) = − 1

Ns

∑

k

γ2
FP(q,k)

nF (ǫk+q)− nF (ǫk)

ǫk+q − ǫk − iνn
, (22)

with the form factor γFP(q,k) = 2∆[sin(kx + qx/2) − sin(ky + qy/2)]. For q = (π, π) the

form factor γFP(q,k) transforms as [cos(kx) − cos(ky)], i.e., the flux instability has d-wave

symmetry. χFP(q, iνn) plays the role of a bosonic glue, as phonons in usual superconductors.

This projection isolates the FP sector and allows us to check its effect on λ. λFP versus δ,

where λFP is calculated using V
(FP)
eff , is shown in Fig. 3(c). While at large doping λFP goes to

zero, the curve shows the steep behavior approaching δc. In Fig. 3(c), we also plot λJ versus

δ. Comparing λFP with λJ we conclude that the flux phase enhances superconductivity only

near the quantum critical point at δc associated with the flux instability. This tendency to

enhance superconductivity can be seen as triggered by quantum critical fluctuations27.

Figure 3 shows that the total coupling strength λ can be computed in a good approx-

imation as the sum of λFP and λJ, i.e., as coming from an effective pairing interaction

Veff ∼ V
(FP)
eff + J(k− k′). While V

(FP)
eff is retarded, J(k− k′) is unretarded. It is well known

that when introducing a finite broadening Γ in the analytical continuation iνn = ν + iΓ in

Eq. (22), the flux phase is pushed to lower dopings28. In the inset of Fig. 3(c) we show

results for λFP and λJ for Γ = 0.05. For this Γ the flux-phase does not set down at a finite

doping, and J(k − k′) is a good approximation for computing the total coupling strength

for all dopings.

The authors of Ref.[14] showed that the pairing strength is composed by a retarded spin

fluctuation contribution and an unretarded term J(k − k′), and that the retarded pairing

dominates. In agreement with this work we also found an unretarded J(k−k′) contribution.

As discussed in our paper the large-N approximation weakens spin fluctuations over charge

fluctuations, then we cannot rule out the presence of a retarded spin-fluctuation pairing. In

Ref. [14] the Coulomb potential V (q) was not included, which can kill the superconductivity
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from the spin fluctuation term. However, we showed that the constraint in the t-J model,

when included, screens V (q). Then, we think that our paper and that of Ref. [14] are

complementary. If pairing in cuprates is mainly retarded or mainly unretarded is an open

discussion. Although one can expect a retarded pairing as in conventional superconductors,

some experiments suggest that pairing may certainly be unretarded29,30.

IV. CONCLUSIONS

Using a large-N approach on the microscopic t-J-V model we studied d-wave super-

conductivity and the role of a nearest-neighbors Coulomb repulsion on it. In this ap-

proach, pairing is mediated by a bosonic propagator which contains on-site charge and

bond-charge fluctuations, both treated at the same footing in present formalism. When

the bare bosonic propagator is considered, superconductivity arises from the unretarded ex-

change term J(k− k′). However, the presence of the nearest-neighbors Coulomb repulsion

V (q) is detrimental to superconductivity and cancels pairing for values of V ∼ J , suggesting

a fragile d-wave superconductivity. The situation changes drastically when the bosonic prop-

agator is dressed by interactions. In this case, superconductivity becomes almost unaffected

by V and remains robust even for V ≫ J . The inclusion of the non-double-occupancy con-

straint and its fluctuations screens the effect of V (q), while a pairing contribution from the

J-term remains. In other words, the scenario for a possible unretarded (without glue) pair-

ing contribution triggered by J emerges in strong coupling, i.e., only if the local constraint

is considered properly.

Our results may be useful for the comparison with similar calculations in the Hubbard

and t-J models. A robust d-wave superconductivity against a nearest-neighbors Coulomb

repulsion V (q) requires the non-double occupancy to be considered, and at this level an

unretarded pairing contribution is obtained. In the large-U limit, the Hubbard model is

mapped to the t-J model. Then it would be interesting to check the role of V (q) on

superconductivity and, in addition, to disentangle retarded and unretarded interactions

from the obtained pairing in the Hubbard model.
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Appendix A: Some characteristics and discussions on the flux phase

In this Appendix we briefly discuss the main characteristics of the flux phase (FP) and

its possible connection with the physics of the pseudogap. As discussed in Ref. [19], for

present parameters (J = 0.3 and T = 0) the flux phase18,31–34 occurs at δ = δc ∼ 0.13,

with a modulation vector Q close to (π, π), i.e., the FP breaks the translational symmetry.

In present large-N approximation the FP occurs when one eigenvalue of D−1
ab is zero, and

since the associated eigenvector is of the form (0, 0, 0, 0, 1/
√
2,−1/

√
2), the flux instability

is located in the sector 5-6 of the 6 × 6 matrix Dab (Ref.[19]). For δ < δc the imaginary

components Ax and Ay of the bond field become finite. The commensurate FP is character-

ized by the modulation vector q = (π, π) and describes staggered circulating currents. In

the FP state a d-wave gap, similar to the pseudogap in cuprates, opens, and Fermi pockets

with low intensity in the outer part are developed35 instead of a large Fermi surface. The

FP is equivalent to the dCDW which was proposed phenomenologically for describing the

pseudogap36.

The FP is a bond-charge instability. As discussed in Ref. [19], besides the FP there

are several kinds of bond-charge fluctuations, and in principle all of them can lead to an

instability depending on the model parameters. However, in the context of the present

large-N method, for hole-doped cuprates it was found that the flux instability is robust in

a realistic-parameters regime. In contrast, for electron-doped cuprates the leading bond-

charge instability can occurs for the real components rx and ry of the fluctuations of the

bond field37.

Although the flux phase or dCDW is a candidate for describing the pseudogap, its exis-

tence in the t-J and Hubbard models is controversial. While some reports show the presence

of the flux instability or its fluctuations38,39, others do not40. The FP is also controversial

from the experimental point of view. While the authors of Refs. [36,41,42] show that a series

of experiments in the pseudogap phase can be described in the context of the FP, angle-

resolved photoemission spectroscopy (ARPES) experiments do not show pockets but Fermi

arcs43,44 which are considered as an indication that translational symmetry is not broken

in the pseudogap. In Refs. [45–47] the interaction between the flux-phase fluctuations and

carriers in the proximity to the flux-phase instability leads to a reasonable description of

the Fermi arcs and Raman scattering without the necessity of the translational-symmetry
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breaking. Recently48, it was proposed that the FP is a good candidate for describing the

pseudogap.

The connection between the FP and the antiferromagnetism and its fluctuations, which

lead to d-wave superconductivity8,49, is an interesting point. The FP occurs at much larger

doping (δ = 0.13 in the present calculation) than the onset of antiferromagnetism. Then,

at the onset of the FP both phases may interact weakly while, with decreasing doping

approaching the antiferromagnetic-insulating phase, antiferromagnetism and its fluctuations

may lead against the FP. On the other hand, the FP develops staggered magnetic moments

much weaker than those in the antiferromagnetic phase50 which, in principle, indicates that

the FP and antiferromagnetism are distinct phases. In spite of that, it was claimed that

antiferromagnetism can be also understood in the framework of the flux phase51.
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