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Abstract. In recent years, window-integrated solar protection systems are used and studied as a 

promising energy saving technology, both for cold and hot climates. In particular, smart 

windows, whose optical proprieties in the solar wavelength range can somehow be controlled, 

show interesting results, especially in reducing the air conditioning power consumption. With 

the improvement of nanolithography techniques as well as with the possibility of designing 

polarization intervals, coupled polarizing films show a good potential as a dynamic and 

wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric 

measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and 

Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical 

performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation 

glazing factors, according to the standard UNI EN 410, are calculated. The measured data are 

also analyzed in detail to emphasize the optical peculiarities of the materials under study that 

do not stand out from the standard parameters, as well as the specific problems that arise in 

spectrophotometric evaluations of polarizing films.  

1. Introduction 

Through the history of thermal and lightning control for human comfort in indoor spaces, transparent 

windows have been coupled with a large variety of shading solutions. Since 1959, with the invention 

of the float (Pilkington) method, that allowed industrial production of glasses with uniform thickness 

and very flat and parallel surfaces, and in the following years thanks to the advancements in metallic 

and polymeric materials engineering, many research projects have been carried out on window-

integrated solar protection systems.  

 Today, three main types of such systems can be identified. Static/Passive glasses have fixed optical 

properties, i.e. spectral transmittance, reflectance and absorptivity, determined by the use of purposely 

engineered superficial thin films or by multiple layer deposition. This category includes various kinds 

of low-emissivity (Low-E) glasses and selective coatings (solar control glasses). Dynamic/Passive 

glasses show a change in optical proprieties due to incoming solar radiation, like thermocromic (TC) 

and photocromatic (PC) glasses, while Dynamic/Active glasses require an external electric stimulus, 

that usually allows a greater flexibility of use and the optimization of daylighting and energy saving. 

Examples are Electrocromic (EC), Liquid Crystal glasses (LCD) and Suspended Particle Devices 

(SPD).  
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 In recent years, researchers, standardization bodies, governement bodies and industrial companies 

are closely following the development and performance improvement of the aforementioned 

technologies. Among recent publications, the paper by Jelle [1] reports a comprehensive comparison 

of thermo-optical performances of several smart windows technologies, as well as a deep reference 

section. The report by Lee et al. [2] focuses on an experimental and numerical evaluation of the 

reduction of Heating, Ventilation and Air Conditioning (HVAC) power consumption given by the use 

of TC and EC smart windows in a test building, showing promising results in the case of EC windows, 

also studied by Sbar [3]. A previous study on the control strategy for active windows was carried out 

by Jonsson and Roos [4]. In Italy, spectrophotometric measurements were performed by Asdrubali et 

al. [5] on glass and plastic based window panes. 

 Fewer literature can be found on polarizing filters as a possible technology for a new concept of 

smart windows, that can combine the benefits of a passive approach (no energy is required to maintain 

a certain optical configuration) with the reconfiguration capability of active technologies. The recent 

development of nanolitographic techniques can lead to the design of the polarization spectral range, 

and to special films suited for both applications and climate zones.  

 In this paper, UV-Vis-NIR spectrophotometric measurements are carried out to measure the global 

optical performances, i.e., transmittance, reflectance and absorptivity parameters according to the 

standard UNI EN 410 [6], of two polarizing technologies, namely crystalline polarizer and Wire Grid 

broadband polarizer, in single- and double- film layout. The measured data are analyzed in detail to 

emphasize the optical peculiarities of the materials under study that do not stand out from the standard 

parameters, and to evaluate any issues that can arise in spectrophotometric measurements of polarizer 

filters.  

2. Experiments 

2.1. Theory and definitions 

Let us consider an ideal linearly polarized beam, whose each wavelength component is totally 

polarized, with total intensity I0, incident on an ideal polarizer filter; the total intensity of the 

transmitted radiation I is, according to Malus’ law (1): 

 

           (1) 

 

where φl is the angle between the initial polarization orientation of the beam and the polarizer axis. 

When a beam of unpolarized radiation, like sunlight, is transmitted by a single polarizing film, its 

intensity is reduced by the average of cos
2
(φ) within the 0-π interval, i.e., by one half. Thus, Malus’ 

law applied in the case of two ideal polarizing filters crossed by unpolarized radiation can be written 

as (2): 

  
 

 
        (2) 

 

where φ is the angle between the axis of the two polarizers. While being applicable to limited ranges 

and for certain polarizing technologies, this physical principle is not adequate to predict the behaviour 

of wavelength-selective polarizers, that must be experimentally evaluated.  

 On the other hand, the standard UNI EN 410 defines some global parameters to evaluate the 

performances of luminous and solar characteristics of glazing for glass in buildings. Light (visible) 

transmittance τv and reflectance ρv are defined by equations (3-4) 

 

   
∑                 

          

∑             
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where Dλ is the relative spectral distribution of illuminant D65 and V(λ) is the spectral luminous 

efficiency for photopic vision defining the standard observer for photometry or, in other words, the 

sensibility curve of an average human eye (figure 1). 
 

 
Figure 1. Visible parameters weight factor vs. wavelength 

 

Solar direct transmittance τe and reflectance ρe are defined by equations (5-6) 
 

   
∑       

       
          

∑   
       
          

 (5) 
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 (6) 

 

where Sλ is the relative spectral distribution of the solar radiation (figure 2) 
 

 
Figure 2. Solar parameters weight factor vs. wavelength 

 

UV transmittance is defined by equation (7). Although the UV range is conventionally limited 

between 280 and 315 nm for the UV-B band, and from 315 to 380 nm for the UV-A band, our analysis 

starts at 300 nm, since shorter wavelengths do not reach ground level because of atmospheric 

absorption [7]. 
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These parameters are directly calculated from spectral transmittance τ(λ) and reflectance ρ(λ) 

measurements. Visible and solar absorptivity, i.e., αv and αe, are instead derived from the relation 

between the three radiative proprieties, both spectral and total, equations (8-9). 
 

                   (8) 
 

             (9) 

2.2. Experimental setup 

Two different polarizing materials are analyzed, in single-film (polarizer only) and double-film 

(polarizer/analyzer) configurations. One is a Polaroid polymeric-crystalline filter: each film is 0.13 

mm thick and it is composed by an inner layer of polyvinyl-alcohol (PVA) with uniformly oriented 

iodoquinine sulphate crystals, laminated between two external layers of triacetate-cellulose (TAC). 

The other is a wire grid (WG) anisotropic polarizer, whose polarizing element is a layer of 100 nm- 

high aluminium nanowires deposited on a TAC substrate with a pitch of 100 nm, as schematically 

shown in figure 3, for a total film thickness of 0.08 mm. 
 

 
 

Figure 3. Scheme of the wire grid polarizer film 

 

The samples, measuring 45 mm x 45 mm, are glued on an octagonal wood frame with a central 

aperture, as shown in figures 4 and 5. Henceforth, φ is the angle between the axis of the two 

polarizers, θ is the angle of the sample orientation with respect to the vertical, for both single- and 

double-film trial configurations. 
 

  
(a) (b) 

Figure 4. 3D drawing of the frame-mounted WG samples. 
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Figure 5. Photo of the sample (center) and integrating sphere (right) in the integrating sphere 

accessory. 

 

 The instrument used in this work is a Perkin Elmer Lambda 950 UV-Vis-NIR, double beam, 

double monochromator spectrophotometer. The radiation sources are a deuterium lamp for the UV 

region, and a tungsten lamp for the Vis/NIR range. The instrument is equipped with a 150 mm 

spectralon integrating sphere mounting a Photomultiplier Tube (PMT) sensor for the UV-Vis range, 

and a Gallium Arsenide (InGaAs) sensor for NIR measurements; the switch between the two detectors 

occurs at 860 nm. The total spectral range is between 200 and 2500 nm with a wavelength accuracy of 

±0.08 nm in the UV/Vis range, and ±0.30 nm in the NIR range. The instrument have been calibrated 

with a certified Spectralon sample; the measurement errors, both in reflectance and transmittance 

mode, are less than 0.11% in the UV-Vis range, and less than 0.23% in the NIR range. In this work, 

the measurement range is between 300 and 2500 nm with 10 nm intervals. A Hanle-type common 

beam depolarizer, placed behind the ray chopper, minimizes the unwanted polarization of both test and 

reference beams caused by the instrument optics [8], even though some residual polarization effects 

are still noticeable in sections 3.1.1 and 3.2.1.  

 The optical scheme of the integrating sphere is shown in figure 6. For transmittance measurements, 

the sample is placed in a rotating sample holder shown in figure 5, while for reflectance measurements 

the sample is placed in the reflectance sample holder located in the backside of the sphere, with a fixed 

8° inclination relative to the incoming beam (quasi-parallel). It’s worth remembering that reflectance 

measurements encompass both specular and diffuse components. 
 

 
Figure 6. Optical scheme of the Integrating Sphere accessory (adapted from [9]) 

 

Data are collected with a PC using a Perkin Elmer dedicated software (UV Winlab) and analyzed with 

a custom made datasheet.  
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2.3. Preliminary analysis: scattering effects 

As stated in EN 410, “the use of an integrating sphere is necessary when light scattering materials are 

tested”, and “the size of the sphere and its aperture shall be large enough to collect all possible 

scattered light”. In order to test the adequacy of the employed integrating sphere, the WG single-film 

specimen spectral transmittance has been measured by placing the specimen both close to the aperture 

and in the rotating sample holder, mounted 6 cm apart. As shown in figure 7, the two measurements 

differ at the most of 0,3% in the UV-Vis range, and of 1% in the NIR region; thus, for our purposes, 

scattering phenomena can be neglected.  
 

 
Figure 7. Single WG film, placed at the entrance of the integrating sphere (d = 0 cm) and on the 

rotating sample holder (d = 6 cm) 

3. Results 

3.1. Crystalline polarizer (Polaroid) 

3.1.1. Single film. A single film of Polaroid has been preliminary tested in four orientations, namely θ 

= 0°, 45°, 90°, 135°. As shown in figure 8, only the visible part of the spectrum shows a partial 

agreement to Malus’ law (equation 2); in fact, UV radiation is completely blocked, while the specimen 

is 90% transparent in most of the NIR region, amd hence only the visible portion of the spectrum is 

effectively polarized. Transmittance values show a little difference with the orientation, about 3%, 

again only in the visible range, between 0°/45° and 90°/135°, probably because of residual beam 

polarization combined with the polarized light dependence on the PMT sensor [10].  
 

  
(a) (b) 

Figure 8. τ(λ), single Polaroid film, various orientations θ: full spectrum (a) and Vis range detail (b) 
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To reduce this effect, the subsequent transmittance and reflectance measurements on the coupled films 

are averaged on four orientations, as in equation (11), also applicable to ρ(λ). 

 

       ̅     
∑    

    
   

 
    for                     (11) 

3.1.2. Double film, clear configuration (φ=0°). The total optical proprieties of the double-film 

specimen have been tested. Compared to the single film, τ(λ) is reduced almost uniformly by 6-10%, 

whereas ρ(λ) is almost constant around 10%. The calculated absorptivity, α(λ), shows clearly the filter 

behavior; since reflectance is uniformely low, UV radiation is almost totally absorbed, just like the 

non-transmitted part of visible radiation (figure 9).  

 
Figure 9. Transmittance, reflectance and absorptivity vs. wavelength for a double Polaroid film, φ = 

0°  

3.1.3. Double film, variable configuration. This test shows, as graphed in figure 10, the good 

agreement with Malus’ theory for the Polaroid filters in the Vis region; τ(λ) is reduced by half for φ = 

45°, and completely blocked for φ = 90°. The UV and NIR behavior remains almost unchanged, as 

well as spectral reflectance (not shown); in particular, even in the dark configuration, the filter is 

almost transparent within most of the NIR range. 

. 

 
Figure 10. Transmittance and absorptivity vs. wavelength for a double Polaroid film, various φ 
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3.2. Wire Grid polarizer 

3.2.1. Single film. Just like the Polaroid film, the single WG film shows little differences in the Vis 

region for τ(λ), while varying its orientation θ. In particular, artifacts of 1.5% for θ = 45° and 1.7% for 

θ = 135° are visible in Figure 11 at 860 nm, where detector is swiched, due to polarized light 

dependence of PMT readings [11]. Transmittance values are almost constant and just below 50%, and 

this is a hint of the main feature of the WG film, that is the ability to polarize NIR radiation. UV 

radiation is totally blocked, but in a different way with respect to the Polaroid filter; i.e. radiation is 

absorbed and reflected in equal parts, whereas it is completely absorbed by the Polaroid filter.  

 

  
(a) (b) 

Figure 11. τ(λ), single WG film, various orientations θ: full spectrum (a) and Vis range detail (b) 

3.2.2. Double film, clear configuration (φ=0°). The double-film specimen shows, in the φ = 0° (clear) 

configuration, a slight and almost uniform transmittance reduction of 5% as compared with the single 

film. As showed in figure 12, reflectance is around 50% in the whole range, while absorptivity values 

show different behaviors from UV (50%), to Vis (15%) and to NIR (5% from 850 nm to 2200 nm, 

20% to 2500 nm). 
 

 
Figure 12. Transmittance, reflectance and absorptivity vs. wavelength for a double WG film, φ = 0° 
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3.2.3. Double film, variable configuration. Varying the rotation angle φ shows some interesting 

behaviors, namely, the NIR radiation polarization effect, the non-linearity between φ and the 

transmittance attenuation (or reflectance enhancement), mainly caused by inter-reflections, the 

independence of UV behavior from φ, and the total radiation blockage for φ = 90°. Moreover, the local 

reflectance minimum around 800 nm, typical of aluminum, is enhanced by closing the filter, as it can 

be seen in figure 13(b). 

  
(a) (b) 

Figure 13. Transmittance (a), reflectance and absorptivity (b) vs. wavelength for a double WG film, 

various φ 

3.3. Global parameters 

The calculated global solar radiation glazing factors are reported in table 1. Clear (φ = 0°), gray (φ = 

45°) and dark (φ = 90°) configurations are considered for visible and solar transmittance parameters, 

clear and dark for UV transmittance, visible and solar transmittance, and solar absorption. These 

parameters summarize what can be seen in figures 8-13, i.e., UV radiation is completely blocked by 

both Polaroid and WG samples, while the WG specimen shows a better overall visible transmission 

and the capability of NIR transmission control.  

 

Table 1. Calculated solar radiation glazing factors 

 τuv τuv  τv  ρv  τe  ρe  αe 

φ[°] 0 90  0 45 90  0 90  0 45 90  0 90  0 90 

P1 0.1 -  44.0 - -  6.6   57.6 - -  6.9 -  35.5 - 

WG1 0.1 -  47.0 - -  46.0 -  42.3 - -  45.9 -  11.9 - 

P2 0.0 0.0  36.1 18.3 0.0  7.5 8.2  49.4 40.3 30.7  8.8 9.7  41.8 59.6 

WG2 0.0 0.0  40.6 24.5 0.1  46.8 85.2  36.7 22.4 0.1  47.0 78.9  16.2 21.0 

P and WG Subscripts indicate the number of films 

4. Conclusions 

The Polaroid crystalline polarizer shows excellent UV blocking proprieties and a good agreement in 

the Vis range with Malus theory, so that it can be used as a test reference. However, the poor Vis 

transmittance in the double film clear state (τv, φ = 0° = 36.1), and the high NIR transmittance, as well, in 

0

10

20

30

40

50

60

70

80

90

100

300 600 900 1200 1500 1800 2100 2400

%
T

 

λ [nm] 

τ, φ = 0° τ, φ = 45° τ, φ = 90° 

0

10

20

30

40

50

60

70

80

90

100

300 600 900 1200 1500 1800 2100 2400

%
R

  
  
%

A
 

λ [nm] 

ρ, φ = 0° ρ, φ = 45° ρ, φ = 90° 

α, φ = 0° α, φ = 45° α, φ = 90° 

32nd UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference IOP Publishing
Journal of Physics: Conference Series 547 (2014) 012013 doi:10.1088/1742-6596/547/1/012013

9



 

 

 

 

 

 

every configuration do not allow its use for effective smart windows. Wire Grid polarizer shows a 

much more interesting behavior, due to the ability of polarizing NIR radiation, as well as to both low 

solar absorption (αe , φ = 90° = 21.0) and high reflectance (ρe , φ = 90° = 78.9) especially in the dark state. 

In particular, low values of αe are required in hot climates to avoid the thermal shocks in glasses. More 

advances are expected with the diffusion of nanolitographic techniques that will allow, at a certain 

degree, the control over the spectral characteristics of Wire Grid filters.  

The measurements have been made using the UNI EN 410 as reference, but the norm needs to be 

improved to take into account this kind of materials and, in general, smart glasses. In particular, 

polarization effects must be taken into account for more reliable spectrophotometric measurements, 

especially in the visible wavelength range. Further work is needed on the spectral characterization of 

polarizing technologies, especially in layered glass-integrated configurations, and with variable angle 

of incidence. 
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