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Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories
of new nuclear structure physics at the extremes of neutron/proton excess. The comprehensive
description of these systems requires an open quantum system framework that is capable of treating
resonant and nonresonant many-body states on equal footing.

Purpose: In this work, we develop the complex-energy configuration interaction approach to
describe binding energies and spectra of selected 5 ≤ A ≤ 11 nuclei.

Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid 4He core.
The effective Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified
version of the Furutani-Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized
in the sp space. To diagonalize the Hamiltonian matrix, we employ the Davidson method and the
Density Matrix Renormalization Group technique.

Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and
spectra with the root-mean-square (rms) deviation from experiment of 160 keV. Since the model
performs well when used to predict known excitations that have not been included in the fit, it can
serve as a reliable tool to describe poorly known states. A case in point is our prediction for the
pair of unbound mirror nuclei 10Li-10N in which a huge Thomas-Ehrman shift dramatically alters
the pattern of low-energy excitations.

Conclusion: The new model will enable comprehensive studies of structure and reactions aspects
of light drip-line nuclei.

I. INTRODUCTION

With progress in radioactive beam experimentation
and many impressive advances in the microscopic nuclear
theory, light nuclei provide an excellent ground for test-
ing both nuclear interactions and many-body approaches.
Of particular interest are weakly bound and unbound nu-
clear systems with extreme neutron-to-proton imbalance,
whose structure is profoundly affected by the coupling to
the continuum of decay and reaction channels [1–4].

The important challenge for the field of low-energy nu-
clear theory is to unify nuclear bound states with reso-
nances and scattering continuum within one consistent
framework [5]. There are many open questions that can
be answered by studying drip-line systems [6]: What can
be said about properties of weakly bound or unbound
many-body systems close to the reaction threshold? Do
their properties depend on any particular realization of
the Hamiltonian? Which nuclear properties are impacted
by the coupling to the continuum of scattering and decay-
ing states? Theoretically, a coherent description of the in-
terplay between bound and unbound states in the many-
body system requires an open quantum system formula-
tion. In this context, this area of research is truly inter-
disciplinary. Indeed, open quantum systems are studied
in various fields of physics: nuclear physics, atomic and
molecular physics, nanoscience, quantum optics, etc. In
spite of their differences, such systems often display uni-

versal properties that are common to all weakly bound or
unbound systems close to the reaction/decay threshold.

Impressive progress has been achieved in describing
weakly bound and unbound nuclei using A-body methods
rooted in realistic inter-nucleon interactions [7–11]. Ex-
amples include microscopic computations of 11Be [12, 13],
7He [14–16], and 9He [17].

On a more phenomenological level, configuration inte-
gration techniques, based on the concept of valence nucle-
ons coupled to an inert core have reached a high level of
sophistication. Approaches such as the real-energy con-
tinuum shell model [18, 19] and shell model embedded
in the continuum [20–23] have been applied to systems
near particle-emission threshold with one/two nucleons
allowed in the continuum space. Another powerful tool is
the complex-energy Gamow Shell Model (GSM) [24–26],
an extension of the interacting shell model to the treat-
ment of open quantum systems. GSM has been success-
fully used to describe structural and reaction properties
of exotic nuclei (see Refs. [27–31] for recent representa-
tive applications).

This study can be viewed as a continuation of pre-
vious work on the development of a quantitative GSM
description of light nuclei using a 4He-nucleon potential
and finite-range interaction between valence nucleons. In
the first paper [31], where calculations were carried out
in the spdf model space, the core-nucleon potential was
optimized to nucleon-4He phase shifts. By means of the
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principal-component analysis, it was concluded that a
very reasonable description of energies of 6 ≤ A ≤ 9 nu-
clei (with the root-mean-square (rms) deviation from ex-
periment of 250 keV) could be achieved with only four in-
teraction parameters. In the follow-up study [32], where
calculations were performed in the spd space, experimen-
tal energies and widths of 5−8He could be reproduced
within tens of keV precision by adjusting only one param-
eter (the strength of spin-singlet central neutron-neutron
term). In this work, we use the GSM model to describe
binding energies and spectra of 5 ≤ A ≤ 11 nuclei in the
sp space by carrying out simultaneous optimization of
the core-nucleon potential and the valence two-body in-
teraction with the mass-dependent interaction scaling to
effectively account for the missing three-body forces. We
show that with the appreciable reduction of the param-
eter space (four strengths of the core-nucleon potential
and four parameters of the two-body interaction), a very
reasonable agreement with experimental energies is ob-
tained.

Predictions were also made for the particle-unstable
nuclei 10Li, 10N, and 11O, which are excellent laborato-
ries of open quantum system physics. In particular, a
spectacularly strong Thomas-Ehrman effect in the 10N-
10Li mirror pair is predicted.

This paper is organized as follows. The theoretical
model is outlined in Sec. II, which contains a short
overview of GSM, description of the GSM Hamiltonian,
and the optimization protocol. Results are presented in
Sec. III, with the optimization results discussed first, fol-
lowed by predictions for lithium isotopes and their mirror
partners. Finally, Sec. IV presents conclusions and per-
spectives for future studies.

II. THEORETICAL MODEL

A. Gamow Shell Model

Here we briefly recall the GSM formalism. In this
work, we describe the lithium isotopes and their mirror
partners in terms of valence nucleons coupled to the 4He
core. This picture is justified by the fact that the 4He
nucleus is a tightly bound system with the first excited
state located 20.21 MeV above the ground state (g.s.)
[33].

The GSM Hamiltonian can be written as

H =

Nval∑
i

[
p2i
2µi

+ Uc(i)

]
+

Nval∑
i=1,j>i

[
Vi,j +

pipj
Mc

]
, (1)

where Nval denotes the number of valence nucleons, µi
and Mc are the reduced mass of the nucleon and the mass
of the core, respectively, Uc is the core-nucleon poten-
tial, and Vi,j is the interaction between valence nucleons.
The Hamiltonian (1) is written in the cluster orbital shell
model coordinates [34] defined with respect to the center
of mass of the core.

The GSM Hamiltonian is diagonalized in the Berggren
basis [35], which allows to consistently treat bound, reso-
nance, and scattering states. In the complex-momentum
space, the Berggren basis obeys the closure relation for
each partial wave (`, j):

∑
n=b,d

|ũn〉 〈un|+
∫
L+

|ũ(k)〉 〈u(k)| dk = 1, (2)

where b and d stand for the bound states and selected
decaying resonant states, respectively, and the contour
L+ representing the non-resonant scattering states is lo-
cated in the fourth quadrant of the complex k-plane. The
specific shape of L+ is not important as long as all reso-
nant states between the real axis and the contour L+ are
included. In practical applications, the contour is dis-
cretized for each (`, j), which results in a finite number
of single-particle (s.p.) states. From this discretized set
of shells one constructs Slater determinants, which form
a many-body basis within which the GSM Hamiltonian
is diagonalized. Due to the inclusion of resonances and
complex-momentum scattering states, the Hamiltonian
representation in the Berggren basis is complex symmet-
ric [26].

As in any configuration interaction approach, the di-
mension of the Hamiltonian matrix grows quickly with
the number of active particles. In the context of the
GSM, it increases more quickly than in the conventional
shell model due to the presence of discretized scattering
states. To this end, we truncate the model space by work-
ing with natural orbitals which provide an optimized set
of s.p. states [31, 36, 37].

The natural orbitals are first computed in a truncated
space where few valence particles are allowed to occupy
continuum shells. A truncation is then performed on
the s.p. basis by keeping only natural orbitals for which
the modulus of the occupation number is greater than
a certain (small) value. Finally, a new set of Slater de-
terminants is constructed, for which also a truncation
on the number of particles in the continuum is enforced,
and the numerical diagonalization is performed using the
Davidson method [38].

To check the accuracy of this truncation procedure in
the case of the largest systems, a supplementary com-
putation was also performed using the Density Matrix
Renormalization Group (DMRG) [39, 40] method. The
DMRG allows performing calculations without the s.p.
particle basis truncation and without restrictions on the
number of particles in the continuum. In this approach,
the many-body Schrödinger equation is solved iteratively
in tractable truncated spaces, which are gradually in-
creased until the numerical convergence is reached. We
have checked that, in all cases discussed in this work, the
GSM results are in good agreement with those of DMRG
(see more discussion in Sec. II D).
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B. Gamow Shell Model Hamiltonian

The core-nucleon potential is taken as a Woods-Saxon
(WS) field, with a central and spin-orbit terms, and the
Coulomb field for protons:

Uc(r) = V0f(r)− 4V`s
1

r

df(r)

dr
` · s+ UCoul(r), (3)

where f(r) = −(1 + exp[(r − R0)/a])−1. The WS ra-
dius R0 and diffuseness a were taken from Ref. [31]:
R0(n) = 2.15 fm, R0(p) = 2.06 fm, a(n) = 0.63 fm, and
a(p) = 0.64 fm. The Coulomb potential is generated
by a spherical Gaussian charge distribution with radius
Rch = 1.681 fm [41].

Following Ref. [31], the interaction between valence
nucleons is a sum of central, spin-orbit, tensor, and
Coulomb terms:

V = Vc + VLS + VT + VCoul. (4)

The central, spin-orbit and tensor interactions are con-
structed based on the finite-range Furutani-Horiuchi-
Tamagaki (FHT) force [31, 42, 43]. For each term, the
radial form factor is represented by a sum of three Gaus-
sians with different widths representing the short, inter-
mediate and long ranges of the nucleon-nucleon interac-
tion. This interaction has been used successfully to de-
scribe structure and reactions involving light nuclei [28–
32, 44, 45].

In order to be applied in the present GSM formalism,
the interaction is rewritten in terms of the spin-isospin
projectors ΠST [46]:

Vc(r) = V 11
c f11c (r)Π11 + V 10

c f10c (r)Π10

+ V 00
c f00c (r)Π00 + V 01

c f01c (r)Π01,

VLS = (L · S)V 11
LSf

11
LS(r)Π11,

VT(r) = Sij
[
V 11
T f11T (r)Π11 + V 10

T f10T (r)Π10

]
,

(5)

where r ≡ rij stands for the distance between the nucle-
ons i and j, r̂ = rij/rij , L is the relative orbital angular
momentum, S = (σi + σj)/2, and Sij = 3(σi · r̂)(σj ·
r̂) − σi · σj . The interaction (5) is characterized by the
seven interaction strengths in spin-isospin channels, V 11

c ,
V 10
c , V 00

c , V 01
c , V 11

LS , V 11
T , and V 10

T .
In Ref. [31], the FHT interaction was used in the GSM

description of bound and unbound nuclei with A ≤ 9.
While a good energy reproduction was achieved, the sys-
tematic statistical study of the parameters carried out
in Ref. [31] demonstrated that some of the terms in the
FHT interaction were sloppy, i.e., not well constrained.

In this study, we use a simplified version of the FHT
interaction where we consider the central V 10

c , V 01
c , and

tensor V 10
T terms. This choice is not only informed by the

previous statistical work [31] but also justified by Effec-
tive Field Theory (EFT) arguments [47–51]. Indeed, in
the EFT expansion of the bare nucleon-nucleon interac-
tion, these three terms appear at leading order, whereas

the other terms present in the original FHT interaction
correspond to higher orders of EFT. However, we have
observed that adding the central term V 00

c improves the
overall description of the nuclei considered in this work
and hence we have also included it in Vi,j . We want to
mention here that a similar approach was employed in
Ref. [32] to construct an effective neutron-neutron inter-
action for the description of the helium isotopic chain
in the Berggren basis. In that case, using only the cen-
tral term V 01

c , a good reproduction of weakly-bound and
unbound states in helium nuclei was achieved.

As it is customary in shell model studies [52, 53],
a mass-dependent interaction-scaling factor of the form
(6/A)α is introduced to effectively account for the miss-
ing three-body forces [54, 55]. We found that the value
α = 1/3 gives a very reasonable description of experimen-
tal energies. Finally, the Coulomb interaction between
valence protons is treated by incorporating its long-range
part into the basis potential and expanding the short-
range two-body component in a truncated basis of HO
states [56, 57].

C. Interaction Optimization Protocol

Our interaction optimization protocol strictly follows
that of Ref. [31]. In short, we minimize the χ2 penalty
function:

χ2(p) =

Nd∑
i=1

(
Oi(p)−Oexp

i

δOi

)2

(6)

where p is the vector of parameters used, Nd is the num-
ber of observables, Oi(p) are the calculated observables,
Oexp
i are experimental values, and δOi are the adopted

errors that have been obtained from the χ2 normalization
[58, 59].

The minimization of χ2 is done using the Gauss-
Newton method. Since the GSM Hamiltonian is linear
in the strength parameters, the Jacobian matrix at the
minimum p0,

Jiα =
1

δOi
∂Oi
∂pα

∣∣∣∣
p0

, (7)

can be calculated exactly using the Hellmann-Feynman
theorem [60]. The covariance matrix C can be expressed
in terms of J :

C ' (JTJ)−1 (8)

In the situation where the Jacobian matrix is non-
invertible or has a very small determinant, the Gauss-
Newton method becomes unstable. This typically hap-
pens when a parameter is sloppy, i.e., not well con-
strained by observables. In order to stabilize the cal-
culation, the matrix inversion is replaced by its pseudo-
inverse, derived from the singular value decomposition
(SVD) of the Jacobian matrix [31].
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The uncertainties on parameters and predicted observ-
ables can be computed with the help of the covariance
matrix C. For more details, the reader is referred to
Ref. [31].

The four strengths of the WS potential and four pa-
rameters of the two-body interaction are simultaneously
optimized to reproduce 15 energy levels in lithium iso-
topes and their mirror partners given in Table I.

TABLE I. Energy levels used in the GSM Hamiltonian opti-
mization. The energies are given with respect to the 4He g.s.
The experimental values Eexp are taken from [33]. They are
compared to the GSM values EGSM.

Nucleus State Eexp (MeV) EGSM (MeV)

6Li
1+ −3.70 −3.72
0+ −0.14 −0.10

7Li
3/2− −10.95 −11.02
1/2− −10.47 −10.14

8Li
2+ −12.98 −13.14
1+ −12.00 −11.93

9Li
3/2− −17.05 −16.90
1/2− −14.35 −14.50

11Li 3/2− −17.41 −17.48

7Be
3/2− −9.30 −9.36
1/2− −8.88 −8.53

8B
2+ −9.44 −9.60
1+ −8.67 −8.50

9C
3/2− −10.74 −10.85
1/2− −8.52 −8.59

The calculations are performed in a model space which
includes s1/2, p3/2, and p1/2 partial waves for both pro-
tons and neutrons. Since the optimization involves en-
ergies only, for the sake of speeding-up the optimization
and for better stability, we used a deeper WS potential to
generate the basis, in which the 0p3/2 and 0p1/2 poles are
bound. A real contour was then used to describe the non-
resonant continuum space. The contour L+, independent
of interaction parameters, was divided into 3 segments:
[0, kpeak], [kpeak, kmid], and [kmid, kmax], with the values
kpeak = 0.25 fm−1, kmid = 0.5 fm−1, and the cutoff mo-
mentum kmax = 4 fm−1. Discretizing each segment with
10 points using the Gauss-Legendre quadrature guaran-
tees the convergence of results.

To calculate resonance’s width, one has to generate
a basis based on a shallower basis-generating WS po-
tential, in which the 0p3/2 and 0p1/2 poles are decaying
resonances. In this case, a complex contour defined by a
complex value of kpeak is employed. It is to be noted that
calculation of the width is more demanding than that of
energy. A higher discretization with 20 points for each
segment was used for this purpose. Due to the Coulomb
repulsion, the mean field used to generate the s.p. basis
for proton rich nuclei varies with proton number. The
contour is adjusted separately for each system to assure
that the Berggren completeness relation is met. To en-

sure the numerical stability, the chosen contour should
neither lie too close to the Gamow poles nor lie too far
from the real-k axis. In this work, kpeak is chosen to lie
slightly below the position of the 0p3/2, 0p1/2 poles, but

with the imaginary part greater than −0.2 fm−1. The
calculations were repeated with several slightly different
values of kpeak to assure the full convergence.

D. Computational Details

In this study, we used a newly developed GSM code
that is based on the two-dimensional partitioning of the
Hamiltonian matrix [61]. First, we computed natural or-
bitals from a calculation with at most two particles in
the continuum space. The s.p. basis was further trun-
cated by keeping the natural orbitals with occupations
greater than 10−6. The GSM problem was then solved
in a model space with at most four particles in the contin-
uum shells. We checked the accuracy of this truncation
by performing full DMRG calculations for the systems
with A = 9− 11.

The DMRG allows the computations of energies with-
out truncation in the s.p. basis and without restriction
on the number of particles in the continuum. In the first
stage of the DMRG procedure, the set of shells is split
into two subsets H and P : the pole subspace H con-
sists of the Gamow poles considered (for instance, in the
DMRG computations of the 9Li g.s., H contains the 0p3/2
and 0p1/2 Gamow states) and the remaining shells form
the subspace P . The resolution of the Schrödinger equa-
tion is then performed in an increasing set of shells, by
gradually including the shells of P , one at a time. After
having considered a given shell of P , the model space is
truncated by keeping Nkept many-body states that cor-
respond to the eigenstates of the density matrix with
the largest eigenvalues wi (in modulus). The number of
states kept is defined by the control parameter ε so that

the condition |1 − <(
∑Nkept

i=1 )wi| < ε is fullfilled. The
first DMRG stage ends when all shells in P have been
included. At that point, natural orbitals are computed
and new subsets H and P are defined. The new subset
H contains NH natural orbitals. The calculation contin-
ues in a similar fashion, by adding shells from the new
subset P , one by one, until all shells have been consid-
ered, and then a new set of natural orbitals is computed.
NH is increased and ε decreased, until convergence (few
keV), is achieved. For instance, in the case of the 9,11Li
g.s., computations were carried out by increasing NH up
to 12 and ε was decreased down to 5 × 10−9 (a typical
DMRG accuracy [62]). For both nuclei, the GSM ener-
gies turned out to be less than 10 keV above the DMRG
results. For more details about our DMRG implementa-
tion, see [37, 39, 40].
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III. RESULTS

A. Optimized Interaction

As one can see in Table I, a very good consistency
between theoretical and experimental energies has been
achieved. The root-mean-square deviation from experi-
mental values is 160 keV. The largest discrepancy is ob-
tained for the 1/2− states of 7Li and 7Be, where the
deviation from the data is ∼340 keV.

TABLE II. Central and spin-orbit strengths of the core-
nucleon WS potential optimized in this work. The statistical
uncertainties are given in parentheses.

Parameter Neutrons Protons

V0 (MeV) 39.5 (2) 42.1 (4)
V`s (MeV fm2) 10.7 (2) 11.1 (5)

The values of the parameters for the WS potentials
and the two-body interaction are displayed, along with
their statistical uncertainties, in Tables II and III, re-
spectively. As one can judge from the small parameter
uncertainties in Tables II and III, the GSM Hamiltonian
fit is well constrained. As expected [31], the central term
V 00
c has the largest uncertainty of ∼12%.

TABLE III. Strengths V ST
η of the two-body interaction op-

timized in this work. The statistical uncertainties are given
in parentheses.

V 01
c (MeV) −9.425 (70)

V 10
c (MeV) −8.309 (90)

V 00
c (MeV) −8.895 (1130)

V 10
T (MeV fm−2) −22.418 (970)

It is to be noted that the core-nucleon potential de-
veloped in the present study, optimized simultaneously
with the two-body interaction, is slightly shallower than
the WS field optimized in Ref. [31] to the experimental
s and p nucleon-4He scattering phase shifts. To assess
the quality of the WS potential obtained in this work,
Table IV shows the predicted energies and widths of the
3/2− g.s. of 5He and 5Li. These values are indeed very
close to predictions of Ref. [31] for 5He and 5Li.

TABLE IV. Ground-state energies (in MeV) and widths (in
keV) of 5He and 5Li obtained from the optimized core-nucleon
potential and compared to experiment [65, 66].

Nucleus EGSM Eexp ΓGSM Γexp
5He 0.74 0.798 640 648
5Li 1.6 1.69 1300 1230

Figure 1 shows the energies calculated in the GSM for
the ground states and selected excited states in lithium

isotopes. Table V lists the energy levels for states not en-
tering the optimization with the corresponding statistical
uncertainties. As one can see, the optimized interaction
allows for a good reproduction of experimental energies.
It is to be noted that the results for higher-excited states
not included in the fit are also very satisfactory. For in-
stance, the calculated 3+ state in 6Li at −1.57 MeV is
only 60 keV below the experimental energy. The experi-
mental widths for the second 5/2− state in 7Li (89 keV)
and 5/2− state in 9Li (88 keV) are very reasonable: the
GSM values are, respectively, 22 keV and 62 keV. In
general, we do not expect the same quality of data re-
production for all excited states due to the fact that the
higher partial waves with ` ≥ 2, which may contribute
to the wave functions of these states, are not included in
the model space. The estimated statistical uncertainties
on the predicted energies are small: in most cases they
are in the range of 20-60 keV.

TABLE V. Energy levels for states not entering the opti-
mization. The experimental values Eexp are taken from [33].
The GSM values EGSM are shown with the uncertainties in
the parenthesis.

Nucleus State Eexp (MeV) EGSM (MeV)

6Li 3+ −1.51 −1.57(2)
7Li 7/2− −6.3 −6.04(2)
8Li 3+ −10.73 −10.59(2)
9Li 5/2− −12.75 −12.64(2)

10Li
2+ −16.78 −16.55(5)
1+ −16.54 −16.22(5)

7Be 7/2− −4.73 −4.47(2)
8B 3+ −7.12 −7.11(2)
9C 5/2− −7.14 −7.12(5)

10N
1− −8.84 −8.93(6)
2− −7.94 −8.46(6)

B. Structure of 10Li

Several experiments [67–70] and theoretical studies
[25, 71] have indicated that the structure of the ground
state in 10Li may correspond to a valence neutron in a
virtual s-state. In a recent experiment [72], the presence
of an appreciable low-energy ` = 0 strength has not been
confirmed. Their conclusion was, however, challenged in
theoretical studies [73, 74].

We wish to note, however, that a virtual state in 10Li
cannot be associated with an energy level of the system;
the appearance of such a state in the complex-momentum
plane manifests itself through a low-energy enhancement
of the n+9Li cross section, see Refs. [25, 77, 78] for more
discussion of this point in the context of the GSM descrip-
tion of 10,11Li. For that reason, we limited our calcula-
tions to resonant states in 10Li that can be interpreted
as experimentally-observable resonances.
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FIG. 1. Level schemes of 6−11Li calculated in GSM and compared to experiment. Energies are given with respect to 4He core.
The resonance widths are marked by shaded boxes. The levels used in the GSM Hamiltonian optimization are marked by stars;
their energies are listed in Table I. Theoretical uncertainties for states not entering the optimization are given in Table. V. The
inset shows the predicted levels of 10Li compared to experimental data from 1999 [63] and 2015 [64]. Uncertainties on these
levels are marked by arrows. See text for more discussion.
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FIG. 2. Similar to Fig.1 but for the mirror partners of the Li isotopes. Experimental energy of the 5/2− resonance in 9C was
taken from Ref. [75] and the data for 11O from Ref. [76].

The computed ground-state 2+ and the first excited
state 1+ are predicted, respectively, at 0.35 MeV and
0.68 MeV above the n+9Li threshold. As seen in Fig. 1,
the practically degenerate 1− and 2− states are calcu-
lated at 1.05 MeV. A comment is in order here. To
achieve the numerical stability, the calculation of the
resonances in 10Li had to be performed by employing
a basis-generating WS potential that is deeper than the
optimized core-nucleon potential. We have checked that

in this way we could obtain very stable results for the
energies, with accuracy below 1 keV. On the other hand,
the computed widths, of the order of few hundreds keV,
are not stable. For that reason, we do not show them in
Fig. 1.

Table VI lists the squared amplitudes of the dominant
neutron configurations for the four low-lying states of
10Li. The positive parity states are primarily made from
the 0p3/2 and 0p1/2 resonant shells. The negative parity
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states contain one neutron in the 1s1/2 shell. The con-
tribution from the non-resonant continuum space to the
low-lying states is very small.

TABLE VI. Squared amplitudes of dominant configuration
of valence neutrons and protons for low-lying levels of 10Li
and 10N, respectively. The odd proton in 10Li and the odd
neutron in 10N occupy the 0p3/2 Gamow state. The tilde sign
labels non-resonant continuum components.

configuration 10Li 10N

2+ 1+ 2+ 1+

(0p3/2)4(0p1/2)1 0.84 0.81 0.81 0.78
(0p3/2)3(0p1/2)2 0.10 0.06 0.10 0.05

1− 2− 1− 2−

(0p3/2)4(1s1/2)1 0.72 0.73 0.44 0.37
(0p3/2)4(s̃1/2)1 0.29 0.35

(0p3/2)3(0p1/2)1(1s1/2)1 0.14 0.14 0.09 0.07
(0p3/2)3(0p1/2)1(s̃1/2)1 0.06 0.07
(0p3/2)2(0p1/2)2(1s1/2)1 0.07 0.07 0.04 0.03
(0p3/2)2(0p1/2)2(s̃1/2)1 0.03 0.03

In Ref. [63] they observed two positive-parity states at
0.24 MeV and 0.53 MeV above the n+9Li threshold. The
Jπ = 1+ assignment for the lower state was questioned
in Ref. [64] who suggested a Jπ = 2+ assignment, see the
inset in Fig. 1. Considering the large experimental widths
of the 1+/2+ doublet, 0.10/0.4 MeV [63] or 0.8/0.2 MeV
[64], both experimental results are consistent with the
GSM results. The computed position of the negative-
parity 1−, 2− doublet is consistent with the observation
of a negative-parity state at ∼1.5 MeV [72].

C. Mirror partners of lithium isotopes

The level schemes for the mirror partners of lithium
isotopes are shown in Fig. 2. As in the Li case, we obtain
a very reasonable agreement with experiment. The 5/2−

and 7/2− excited states in 7Be are slightly (< 300keV)
above the corresponding experimental values, whereas
the position of the resonant 3+ states in 8B and 5/2−

state in 9C are well reproduced, as well as the weakly-
bound g.s. of 8B and 9C.

In the following we focus on the unbound nuclei 10N
and 11O. Due to the presence of the Coulomb barrier,
the 1s1/2 single-proton state is a resonance rather than
a virtual state [76, 78]. To capture this state, a complex
contour is used with a kpeak = (0.25− 0.05i) fm−1.

The spectrum of 10N is not experimentally known with
certainty. In Fig. 2, we show the tentative level assign-
ments used in Ref. [33]. According to Refs. [79, 80], the
ground state of 10N is most likely a 1− state of energy in
the range from 1.81 to 1.94 MeV. In a more recent work
[81], they observed two low-lying negative-parity states
but they were not able to assign Jπ values.

Our calculations for 10N predict the ground state to
be a 1− state with (E,Γ)=(−8.93,0.9) MeV that lies

1.92 MeV above the one-proton threshold. The first ex-
cited state is predicted to be a 2− state with Γ=0.3 MeV
slightly below the value quoted in Ref. [81]. This result is
consistent with the recent Gamow coupled-channel anal-
ysis of Ref. [78]. We also predict an excited 1+ state with
Γ = 0.3 MeV, lying 2.9 MeV above the 9C+p threshold,
as well as a second positive-parity 2+ state with a width
of 0.36 MeV.

Table VI shows the squared amplitudes of the domi-
nant proton configurations for the four low-lying states of
10N. Similar to 10Li, the positive parity states are primar-
ily made from the 0p3/2 and 0p1/2 resonant shells. The
dominant configurations of negative parity states contain
one ` = 0 proton, which can either be in the 1s1/2 shell
or in a non-resonant continuum state.

The unbound 11O is the mirror partner of the 2n-halo
nucleus 11Li. The first observation of 11O was achieved
recently [76]. A broad peak with a width of 3.4 MeV was
observed which was interpreted in terms of four overlap-
ping 3/2− and 5/2+ resonances. Our GSM calculations
predict a 3/2−1 g.s. with a width of 0.13 MeV and the first
excited 5/2+1 state with Γ ≈ 1 MeV, see Fig. 2. These pre-
dictions are consistent with the Gamow coupled-channel
calculations of Ref. [78].

.
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FIG. 3. Level schemes of Li isotopes with (a) A = 7, (b)
A = 8, (c) A = 9, (d) A = 10, and their mirror partner
predicted in our GSM calculations. The energies are plotted
with respect to the g.s. energy (at zero). The one-nucleon
emission thresholds are marked.

To study the effect of particle continuum due to differ-
ent positions of particle thresholds in mirror partners, or
Thomas-Ehrman effect [82, 83], in Fig. 3 we compare the
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level schemes of Li isotopes and their mirror partners.
(For the early GSM study of the Thomas-Ehrman shifts
in light nuclei, see Ref. [28].) As expected, the proton-
unbound states in proton-rich mirror nuclei are shifted
down in energy as compared to the states in neutron-
rich partners, which lie below, or slightly above the one-
neutron threshold.

The 10Li-10N mirror pair is the most interesting one as
both nuclei lie above the particle-emission thresholds. As
seen in Table VI, the effect of the very low 9C+p thresh-
old in 10N on the negative-parity states 1− and 2− con-
taining the s-wave proton is huge: it results in a rather
dramatic shift of both negative parity states when going
from 10Li to 10N that gives rise to a different structure
of low-lying resonances in these nuclei.

IV. CONCLUSIONS

In this work, we studied level schemes of 6−11Li and
their mirror partners in the framework of the complex-
energy Gamow shell model assuming the rigid 4He core.
The effective interaction between valence nucleons is con-
structed based on a simplified version of the FHT poten-
tial.

By fitting four FHT coupling constants and four pa-
rameters of the core-nucleon potential, to the experimen-
tal energies of 15 states in 6−9,11Li, 7Be, 8B and 9C, we
managed to construct a well constrained interaction. A
rms deviation from experiment of 160 keV was reached
for energy levels used in the GSM Hamiltonian optimiza-
tion, with the statistical errors of the GSM Hamilto-
nian parameters not exceeding 12%. This result sug-
gests that the “complex-made-simple” scenario proposed
in Ref. [32] for the He chain also works for heavier nuclei
involving valence protons. Namely, a parameter reduc-
tion guided by effective-scale arguments provides a prac-
tical alternative to full-fledged A-body calculations for

drip-line nuclei.
We assessed the predictive power of the optimized

Hamiltonian by making predictions for excited states not
included in the fit. In general, a very reasonable agree-
ment with testing data was obtained, see Table V.

Predictions were also made for the particle-unstable
nuclei 10Li, 10N, and 11O. The computed 3/2− ground
state of 11O is consistent with the recent Gamow coupled-
channel calculations [76, 78]. The ground state of 10Li
is predicted to be a 2+ state about 0.35 MeV above the
neutron-emission threshold, in accordance with Ref. [64]
while the lowest negative-parity state 1− is expected to
lie ∼1.0 MeV higher, in agreement with Ref. [72]. Due
to a spectacularly strong Thomas-Ehrman effect, for 10N
we predict the 1− ground state and 2− first excited state.

By successfully reproducing the structure of lithium
isotopes and their mirror partners with an optimized in-
teraction, we demonstrated that the quantified GSM is
capable of quality predictions for exotic light nuclei with
several valence protons and neutrons. Our future efforts
will focus on Be and B isotopes, which exhibit complex
structure due to the intricate effects of continuum cou-
pling and clustering [84–88].
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[9] P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo,
and A. Calci, “Unified ab initio approaches to nu-
clear structure and reactions,” Phys. Scripta 91, 053002
(2016).

[10] S. Quaglioni, “Light and unbound nuclei - an introduc-
tion to ab initio methods in nuclear structure and reac-
tion theory,” Eur. Phys. J. Plus 133, 385 (2018).

[11] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and
U.-G. Meißner, “Microscopic clustering in light nuclei,”
Rev. Mod. Phys. 90, 035004 (2018).
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