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ABSTRACT

We carry out a new analysis of the published radial velocity data for the planet-hosting star
HD 82943. We include the recent Keck/HIRES measurements as well as the aged but much
more numerous CORALIE data. We find that the CORALIE radial velocity measurements
are polluted by a systematic annual variation which affected the robustness of many previous
results. We show that after purging this variation, the residuals still contain a clear signature
of an additional ~1100d periodicity. The latter variation leaves significant hints in all three
independent radial velocity subsets that we analysed: the CORALIE data, the Keck data
acquired prior to a hardware upgrade and the Keck data taken after the upgrade. We mainly
treat this variation as a signature of a third planet in the system, although we cannot rule out
other interpretations, such as long-term stellar activity. We find it easy to naturally obtain a
stable three-planet radial velocity fit close to the three-planet mean-motion resonance 1:2:5,
with the two main planets (those in the 1:2 resonance) in an aligned apsidal corotation. The
dynamical status of the third planet is still uncertain: it may reside in as well as slightly out of
the 5:2 resonance. We obtain the value of about 1075 d for its orbital period and ~0.3Mj,;, for
its minimum mass, while the eccentric parameters are uncertain.

Key words: methods: data analysis—methods: statistical —techniques: radial velocities —

celestial mechanics — stars: individual: HD 82943.

1 INTRODUCTION

CORALIE radial velocity (RV) measurements (e.g. Mayor et al.
2004) imply that the planetary system of HD 82943 includes at
least two giant planets moving in the 2:1 mean-motion resonance
(MMR). However, although this 2:1 MMR was identified long ago
(Gozdziewski & Maciejewski 2001), there was not a consensus
concerning the orbital parameters of the major planets, or even
what is the total number of the planets in the system. Only the
periods of these two planets were determined with more or less
good precision: P, &~ 220d and P, ~ 440d. The main uncertainty
was related to the orbital eccentricities and the associated periapsis
arguments. The only certain assertion was that the eccentricity e, or
both the eccentricities are large. In such a case, the dynamical regime
of this system remains poorly constrained: the original CORALIE
RV data allow a lot of alternative orbital configurations, both stable
and unstable, and without any clear advantage in the goodness of
the fit (Ferraz-Mello, Michtchenko & Beaugé 2005a).
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The addition of 23 Keck measurements by Lee et al. (2006)
did not improve the situation very much. It appeared that the data
contain the hint of an extra planet with an uncertain Py ~ 1000d
(Gozdziewski & Konacki 2006), and that such three-planet sys-
tem may lie close to a Laplace resonance with P, : P, : Py =~ 1:2:4
(Beaugé et al. 2008). But including an extra planet to the RV curve
model makes the reliable fitting of the data even more difficult. Be-
sides, it follows from the analysis done by Beaugé et al. (2008) that
there is some suspicious discrepancy between the CORALIE and
Keck data. The orbital fits were rather sensitive to removing some
individual RV measurements or a set of measurements. Another
alternative planetary configuration of HD 82943, involving the 1:1
MMR, was provided by Gozdziewski & Konacki (2006).

Recently, Tan et al. (2013) published a new analysis with a sig-
nificantly expanded Keck data set for HD 82943. They suggested a
stable two-planet fit, corresponding to an aligned apsidal corotation
state. Some hints of the third planets with Py ~ 1000 d were noted
by Tan et al. (2013) too, but contrary to Beaugé et al. (2008), this
variation was found to have insufficient statistical significance. We
would like to highlight that the conclusions drawn by Beaugé et al.
(2008) about the third planet were based mainly on the CORALIE
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data, while Tan et al. (2013) did not use the CORALIE data at all,
suspecting them unreliable. With this in mind, a solely independent
(even if marginal) detection of the ~1000d variation made by Tan
et al. (2013) should be considered as a further argument in favour
of its existence. At least, it would be incorrect to say that the Tan
et al. (2013) work retracts this variation.

Tan et al. (2013) decision to not rely on the CORALIE data
looks pretty justified at this step. Indeed, numerous previous works
made it rather obvious that CORALIE and Keck data for HD 82943
refuse to play together. It seems likely that there is some extra RV
variation that contaminates one or even both these data sets, making
them contradicting with each other at some stage. The main goal
of the present paper is to carry out a self-consistent joint analysis
of these two RV data sets. The CORALIE data set still outnumbers
the combined Keck one more than by the factor of 2, so it is highly
undesirable to be disregarded. Besides, we would like to bring some
clarity concerning the putative third planet, since Tan et al. (2013) in
fact neither confirmed nor retracted it. We do not consider here the
1:1 MMR solution introduced by GoZdziewski & Konacki (2006).

The paper is organized as follows. In Section 2, we describe
in more detail the data that we use in our analysis. In Section 3,
we demonstrate that a plain analysis of the merged RV data leads
us to an unrealistic dynamically unstable orbital configuration. In
Section 4, we discuss the quick method of obtaining a dynamically
stable orbital fit that relies on the theory of apsidal corotation reso-
nances (ACRs). In Section 5, we carry out an in-depth analysis of
the combined RV data. In particular, we try to identify the sources
that make the Keck and CORALIE data inconsistent with each other
and also to assess the detectability of the putative third planet in the
combined RV time series. We give our final orbital fits for HD 82943
in that section. In Section 6, we justify the robustness of the sta-
tistical analysis methods that we used in the work. In Section 7,
we discuss all pro and contra concerning the existence of the pu-
tative third planet. Section 8 is devoted to the uncertainty of the
system orbital inclination and its impact on the data analysis and
planetary dynamics. In Section 9, we consider the dynamics of our
three-planet configurations, paying particular attention to the most
uncertain orbital parameters. In Section 10, we provide the sim-
ulations of the three-planet migration and discuss the conditions
leading to the capture in the three-planet resonance.

2 RV DATA

We used several publicly available data sets in the work. First, there
are N = 142 CORALIE measurements from Mayor et al. (2004) with
typical uncertainty 4-5 m s~! and the time span of ~4.4 yr. These
data were never released in a table form, and we scanned them out of
the relevant EPS figure available at the arXiv.org preprint of Mayor
et al. (2004). A similar procedure was applied by Ferraz-Mello
et al. (2005a), Lee et al. (2006), Gozdziewski & Konacki (2006)
and Beaugé et al. (2008). All coordinates are stored in the EPS file
as integer values, so the extracted data should inevitably contain
some additional round-off errors. The maximum round-off error of
the restored time is 0.5 d, and of the restored RV is £0.07 ms~'. As
we believe, the RV uncertainties can be reconstructed from the figure
without additional errors, because it seems that they were already
rounded to integer numbers by Mayor et al. (2004) before plotting
the figure (the precision of 1 m s~! in the RV uncertainty is typical
for other public ELODIE/CORALIE data sets). We just ensured
that reconstructed RV uncertainties are all close to integer numbers
and then rounded them to get rid of the scanning errors. In contrast,
the reconstructed RV measurements do not concentrate near integer
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values, indicating that their initial precision was probably better
than 1 m s~! (maybe 0.1 m s™"). Thus, we left them without any
further post-processing.

The expected distribution of the EPS scanning errors is the
uniform one for the time and the symmetric triangular one for
the RV (because we determined the RV value as half-sum of
its error bar limits). Therefore, the implied standard deviations
of these errors should be o, & 0.5/\/3 ~ 0.3d for the time and
ory ~ 0.07/+4/6 2 0.03 m s~ for the radial velocity.

Obviously, only the time errors represent a potential issue. Let
us assume that the RV curve is given by the model w (7). Then we
may say that the time uncertainty o, acts as an indirectly induced
random (non-Gaussian) RV noise generating extra RV uncertainty
of ~|u/(¢)|o, where u'(f) is the star radial acceleration induced
by all orbiting planets. From the likely orbital parameters, we can
limit this acceleration by roughly 5 m s~!d~!. The maximum is
achieved when the massive planets pass their pericentres simulta-
neously. Thus, the additional RV uncertainty indirectly induced by
0, ~0.3dis 1.5 m s~ at worst. This is still well below the best
residual rms of the CORALIE data that we obtain in this paper,
~7 m s~'. It is unlikely that extra errors of ~1 m s~' or so may
introduce significant changes in the RV curve parameters, given the
primary noise component of ~7 m s~!, and given the fact that RV
uncertainties were already rounded to 1 m s~' precision by Mayor
et al. (2004). The scanning errors may slightly increase the esti-
mated values of the CORALIE RV jitter given below, but in average
this shift is properly taken into account by our fitting algorithm
(Baluev 2009), and actually it appears quite negligible (recall that
statistical uncertainties sum via their squared values). Given this
argumentation, we believe that it is pretty safe to use our recon-
structed CORALIE data in practice, unless shorter orbital periods
like ~10d get involved.

In addition to CORALIE, there are recent Keck data available
in Tan et al. (2013). According to the recommendations by Tan
et al. (2013), we split these data in two independent subsets, before
and after a hardware upgrade. The first Keck subset consists of
only N = 22 measurements with the average stated uncertainty of
~1.5m s~! and the time span of ~3.2 yr. The second Keck subset
contains N = 42 measurements spanning 6.3 yr and having the
typical stated uncertainties of 1—1.5 m s~!. The CORALIE and
the first Keck data sets notably overlap with each other, while the
second Keck data set does not overlap with any of the others. Notice
that although the CORALIE data are older and less accurate, they
outnumber the Keck data more than by the factor of 2, and also
expand the time base. Therefore, the contribution of the CORALIE
and the Keck data in the results of the analysis should be roughly
equal: none should be disregarded. However, as follows from the
analysis made by Beaugé et al. (2008), there is some inconsistency
between the Keck and CORALIE data sets which makes their joint
analysis unreliable. This forced Tan et al. (2013) to discard the
CORALIE data from their analysis. One of the underlying goals
of the present paper is to find a way to merge these data sets in a
consistent manner. The combined time series contains N = 206 data
points covering 12.4 yr cumulatively.

3 PRELIMINARY DATA ANALYSIS

To carry out the RV data fitting, we use the maximum-likelihood
method from Baluev (2009), which was implemented in the PLANET-
PACK software (Baluev 2013a). This method allows us to adaptively
fit the RV curve parameters together with the parameters of the
RV noise (‘jitter’). It is especially useful for analysing the mixed
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heterogeneous time series, which we have here: different data sets
are allowed to have different values of the RV jitter (which in prac-
tice is a typical case), and this makes them weighted in a consider-
ably more adequate way. To compare different best-fitting models,
we will mainly rely on the adjusted likelihood-ratio statistic Z from
Baluev (2009, 2013a), and assuming that Z obeys a chi-square
distribution asymptotically (for N — co). We verify the practical
validity of this approach in Section 6 below.

First of all, we tried to fit the available RV data for HD 82943
with the Keplerian and the Newtonian (N-body) two-planet models.
Both fits correspond to an anti-aligned apsidal configuration of
the planets. This configuration appears highly unstable: the system
does not survive even 1000 years of the dynamical simulation.
Although stable configurations with anti-aligned apses are possible
(Beaugé, Ferraz-Mello & Michtchenko 2003; Ferraz-Mello et al.
2005b; Beaugé, Michtchenko & Ferraz-Mello 2006), and even the
one was once reported for HD 82943 (Ji et al. 2003), the anti-aligned
configuration that follows from the present data is highly unstable,
mainly due to unsuitable values of the eccentricities (to have a stable
anti-aligned ACR, the eccentricities must be much larger, implying
intersecting orbits).

We tried to fit edge-on as well as an inclined (though still copla-
nar) Newtonian model, but this did not make any significant changes
to the best-fitting parameters. The Newtonian edge-on fit is given
in Table 1. Although we obtained some meaningful and apparently
rather promising estimation of the orbital inclination of 44° £ 14°,
from the likelihood-ratio test we find that it is statistically consis-
tent with the edge-on fit: the relevant statistical significance is only

Table 1. Best-fitting parameters of the HD 82943 planetary
system: two-planet Newtonian edge-on model.

Planetary orbital parameters and masses

Planet ¢ Planet b
P () 220.078(51)  441.47(35)
K(ms™h 65.4(1.5) 41.91(77)
e 0.3663(97) 0.162(36)
w (°) 117.2(1.7) 300.9(3.4)
A(°) 308.7(1.4) 216.4(1.0)
M (Myyp) 1.959(47) 1.681(28)
a (au) 0.74345(12)  1.18306(62)
i(°) 90(fixed)
Parameters of the data sets
CORALIE Keck 1 Keck 2
c(ms™) 8144.18(80) —6.1(1.9) —7.68(62)
Tjitter (M s7h  6.63(58) 9.0(1.4) 3.81(46)
ms (ms~')  7.85 8.83 3.87
General characteristics of the fit
T(ms™h) 7.11
d 16

The parameters have the following meaning: orbital period P,
RV semiamplitude K, eccentricity e, pericentre argument o
and mean longitude . The planet mass M and the semimajor
axis a values were derived assuming the inclination of i = 90°
and the mass of the star M, = 1.13 M, taken from Tan et al.
(2013). The uncertainty of M, was not included in the uncer-
tainties of the derived values. The parameter c is the constant
RV offset, and ojier is the estimated RV jitter (individual for
each data set). The fit epoch is JD245 3500, and the elements
are in the Jacobi reference frame described in (Baluev 2011).
The goodness of the fit [ is tied to the modified likelihood
function as explained in Baluev (2009). The integer d is the
total number of free parameters.
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1.30. Actually, even the Keplerian fit does not differ much from the
Newtonian one. To compare such non-nested models, we can use
the Vuong test (Vuong 1989; Baluev 2012), which yields only rather
marginal 1.8¢ separation between the Keplerian and the Newtonian
edge-on fit.!

Remarkably, the anti-aligned configuration in Table 1 is sig-
nificantly different from the aligned one obtained by Tan et al.
(2013), which was stable. Obviously, this change is the effect of
the CORALIE data that push the best-fitting configuration in some
unsuitable direction. The CORALIE data, or even both Keck and
CORALIE data, probably contain some additional variations that
we need to identify and eliminate before we may obtain any reli-
able results. As the planetary configuration of Table 1 is severely
unstable, it is unrealistic and is shown here mainly for demonstra-
tive purposes. We should apply some more intricate data analysis
method to obtain a more realistic orbital fit based on the combined
RV data.

4 STABILITY AND THE VALUE OF THE ACRs

The most easy and direct way to identify any possible spurious
variations in the data is to investigate the RV residuals left after
subtraction of the frue planetary RV contributions. However, we do
not have the true orbital configuration of the system at our disposal;
what we have is only an unrealistic unstable configuration distorted
by the spurious variation that we want to eradicate. The formal best-
fitting solution tries to compensate this variation by means of some
bias in the planetary parameters. The best fit thus becomes unstable
and, on the other hand, the polluting variation remains hidden in the
noise. To bring this variation to the light, we may force the orbital fit
to be more physically realistic. For example, we may require it to be
dynamically stable. This would bring the fit more close to the true
configuration, while the polluting RV variation would become more
obvious. This would help us to identify it among other (irrelevant
or noisy) peaks of a periodogram.

So, how we can find a realistic stable two-planet configuration,
if the RV data do not reveal it to us immediately? There are a
lot of works devoted to this issue. For example, in GoZdziewski &
Maciejewski (2001), GoZdziewski, Konacki & Maciejewski (2005),
Gozdziewski & Konacki (2006) and Gozdziewski, Breiter &
Borczyk (2008), it was suggested to penalize the RV goodness-
of-fit function with the MEGNO chaoticity indicator. Although this
is a direct and minimum-force approach, we do not use it here,
because it looks too slow for our goals. Besides, it acts as a very
irregular constraint imposed on the orbital parameters, and its irreg-
ularity disables any reliable statistical treatment. We need to assess
the statistical reliability of the results, and also to reveal the actual
agent that makes the best fit unstable. To fulfil these goals, we will
use another approach, initially suggested in Baluev (2008a), which
is based on the theory of ACRs. A quick way to stabilize a high-
eccentricity resonant planetary system is to fix it in an exact ACR.
This makes the resulting best-fitting configuration surely stable. The
ACR constraint is excessive: the stability does not necessarily re-
quire ACR. For example, low-eccentricity orbits are usually stable
without any ACRs. But in the particular case of HD 82943, the ACR
is a natural way to stabilize the system, because of its high orbital

! Basically, Vuong test is a modification of the likelihood-ratio test carrying
a special normalization. The Voung statistic is equal to zero for models with
equal maximum likelihood and increases when the discrepancy between the
models increases.
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Table 2. Best-fitting parameters of the HD 82943 planetary
system: two-planet Newtonian edge-on ACR model.

Planetary orbital parameters and masses

Planet ¢ Planet b
P (d) 220.067(42) 439.611(94)
K(ms™) 53.18(69) 41.31(70)
e 0.432(13) 0.1468(68)
w (%) 120.9(1.3) 120.9(1.3)
A (%) 309.84(57) 216.36(82)
M (Myyp) 1.545(23) 1.658(28)
a (au) 0.743338(94)  1.17959(17)
i(°) 90(fixed)
Parameters of the data sets
CORALIE Keck 1 Keck 2
c(ms™) 8142.40(77) —5.5(1.7) —7.82(68)
Tjitter (M s™hy  7.42(61) 8.1(1.3) 4.21(50)
rms (ms~!) 8.55 8.00 427
General characteristics of the fit
T(ms™h) 7.55
d 16 —4=12

See notes of Table 1. The number of the degrees of freedom is
reduced by 4 due to the ACR constraint imposed on the planets
candb.

eccentricities. Besides, the ACR configuration is likely close to the
truth: it follows e.g. from the results by Tan et al. (2013). There are
also arguments related to the planet migration that make the ACR
assumption rather realistic and desirable.

The theory of the ACRs and their relation to the planetary migra-
tion is explained in Beaugé et al. (2003, 2006), Ferraz-Mello et al.
(2005b) and Michtchenko, Beaugé & Ferraz-Mello (2006). The fur-
ther justification of this ACR fitting method, as well as technical
details, is given in Baluev (2008a), and an implementation is avail-
able in pLANETPACK. In short, the ACR condition puts four equality
constraints on the entire system of orbital parameters and on the
planetary mass ratio. Note that for coplanar orbital configurations
that we consider here, the ratio of the planet masses M; is equal to
the ratio of the relevant minimum masses M,sin i, implying that the
uncertain value of i does not significantly affect the imposed ACR
constraint.

In Table 2, we give an ACR version of the fit from Table 1. As
we expect, this ACR configuration should be more close to the truth
than the one in Table 1. The likelihood-ratio separation between the
fits of Tables 1 and 2 is very significant: about 4.2¢ in the asymptotic
approximation. To identify the source of this difference, we need to
investigate the residuals of the both fits, and then to compare them
with each other.

5 IN-DEPTH DATA ANALYSIS

First of all, let us just plainly look at the RV residuals of the best-
fitting models in Fig. 1. Although the differential variation between
these residuals is not yet obvious, one thing is clear: these residu-
als are not consistent with a pure noise. For example, the Keck-1
data show a systematic deviation which is partly confirmed by the
CORALIE data that overlap with this Keck range. The density of
the CORALIE data does not allow us to see any further details in-
side their cloud, however. The presence of any residual variation in
the Keck-2 data is unclear, though some hints might be spotted in
the ACR case.

To clarify the situation, let us consider some residual peri-
odograms calculated with respect to different base models. They
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Figure 1. The RV residuals to the best-fitting two-planet models of HD
82943. The CORALIE data are marked as red triangles, the first Keck data
set by black squares and the second Keck data set by blue circles. The error
bars display only the internal RV uncertainties (without the jitter).

are plotted in Fig. 2. Here we plot periodograms related to each
of the individual data sets as well as to the joint time series. The
data set-separated periodograms were constructed according to the
method described in Baluev (2011). Namely, we assume that the
probe periodic variation belongs to only a single RV data set, while
the base RV model (e.g. the ones of Table 1 or Table 2) still belongs
to each of them. This approach allows us to easily detect various
inconsistencies between different data sets, still using the full sta-
tistical power of the entire time series to fit the base model. See
also Baluev (2013a) and references therein for a more unified de-
scription of the ‘residual periodograms’ that we use here. Also, we
note that when computing these periodograms the common orbital
inclination was allowed to float to absorb as much of the residual
variation as possible. The horizontal lines in the graphs of Fig. 2
show the simulated statistical levels of 1o, 20 and 3¢ significance,
which we discuss in more detail in Section 6 below.
Looking at Fig. 2, we can draw the following conclusions.

(i) The two-planet RV model is definitely unable to explain the
full RV variation in the data. There are one or even more periodic
or quasi-periodic variations in the residuals.

(ii) One of the main differences between the CORALIE and Keck
data sets is an RV variation at the period of ~400 d. This is the only
large peak that is significantly pumped up when we set up the ACR
constraint (i.e. when we analyse RV residuals corresponding to a
more realistic orbital model). Therefore, it is the likely source of
the inconsistency.

(iii) Since the ~400d period is close to the second planet’s pe-
riod, it might be tempting to interpret it as some artefact of an
incomplete reduction of the RV variation due to the planets ¢ and
b. This is however unlikely, because then it should exist in all three
RV data sets. We interpret it as an annual variation caused by in-
strumental or data reduction errors related only to the CORALIE
data. The periodogram peak is wide enough to be consistent with
the period of 365 d. It is already known that annual errors frequently
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Figure 2. Residual likelihood-ratio periodograms of the HD 82943 RV data for different base models, which are marked in the column titles. The periodograms
correspond to the entire time series and to specific sub-data sets (labelled in the graphs). The latter ones were constructed assuming an RV model with a probe
periodicity assigned to only a particular RV data set (labelled in each individual panel). The minimum period was increased to 10 d from the traditional limit
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Figure 3. The best-fitting CORALIE annual variation phased to its period.
The RV model here is the three-planet Newtonian one with a fittable incli-
nation. The RV contribution of the planets was subtracted from the residuals
before plotting the graph, but the contribution from the annual variation was
preserved.

occur in the old ELODIE RV data (Baluev 2009, 2008a); the same
may be true for CORALIE. We plot this CORALIE annual term in
Fig. 3.

(iv) Another periodogram peak persists with a period of ~1100d.
Contrary to the 400 d peak, this one is present (and is statistically
significant) in all three RV data sets, regardless of whether we
consider them jointly or separately. After removal of the CORALIE
annual variation, the ~1100 d one even becomes more obvious. This
convinces us that some RV variation at the period of ~1100d does
exist and it belongs to the star rather than to a specific instrument.

The RV variation near the 1100 d period was already suspected in
previous studies (Beaugé et al. 2008). Its most intriguing explana-
tion, which we analyse further in this work, is the possible existence
of a third planet in the system. This hypothetical third planet would
be very interesting because it appears close to the 5:2 MMR with
the planet b. Thus, the whole system would lie close to the three-
planet 1:2:5 resonance. This is different from the 1:2:4 (Laplace)
resonance suggested by Beaugé et al. (2008). The updated RV data
no longer support the Laplace resonance. Tables 3 and 4 contain the
parameters of the three-planet fits that were obtained with and with-
out the ACR constraint. Both fits correspond to an aligned apsidal
corotation between the planets ¢ and b. We interpret this as a sign of
a considerably more ‘healthy’ RV model. Although the non-ACR
configuration of Table 3 still appears formally unstable, it is now
very easy to slightly adjust its parameters to make it stable. In fact,
now the ACR and non-ACR fits are statistically consistent with each
other: we obtain only 1.50 separation from the likelihood-ratio test.

Here we should note that the ACR configuration of the two inner
planets is perturbed by the third planet. Formally, this perturbation
should slightly shift the parameters of the ACR configuration from
its purely two-planet position. However, we do not take this ACR
shift into account in Table 4, because it is expected to be pretty
small. A rough estimation yields that the gravitational force from
the planet d is smaller than 1/10 of the one existing between the
planets c and b. Therefore, the ACR constraint of Table 4 was based
only on the Hamiltonian of the subsystem of the two inner planets,
as if the third planet had no influence. From the other side, when we
obtained both fits of Tables 3 and 4, the gravitational perturbation
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Table 3. Best-fitting parameters of the HD 82943 plane-
tary system: three-planet Newtonian edge-on model with the
CORALIE annual term.

Planetary orbital parameters and masses

Planet ¢ Planet b Planet d
P (d) 220.080(70)  439.70(48) 1078(13)
K(ms™) 58.5(2.3) 39.31(55) 5.30(57)
e 0.410(16) 0.053(63) 0(fixed)
w (°) 117.1(1.2) 123.5(9.7) -
A () 307.3(1.1) 215.00(97) 296.0(6.0)
M (Myyp) 1.721(78) 1.593(21) 0.290(31)
a (au) 0.74340(16)  1.17978(86)  2.145(17)
i(°) 90(fixed)

Parameters of the data sets

CORALIE Keck 1 Keck 2
c(ms™h) 8146.1(1.1) —4.8(1.1) —6.86(51)
Agys ms™h)  8.5(1.3)
Tyys (d) 184.8(9.9)
Oiiver s~ 5.63(55) 4.90(81) 2.61(34)
rms (ms~!) 7.13 4.87 2.76

General characteristics of the fit

I(ms™) 5.86
d 21

See notes of Table 1. The additional parameters Agys and Tys
represent the semiamplitude and the maximum epoch of the
sinusoidal CORALIE annual variation.

Table 4. Best-fitting parameters of the HD 82943 planetary
system: three-planet Newtonian edge-on ACR(c,b) model with
the CORALIE annual term.

Planetary orbital parameters and masses

Planet ¢ Planet b Planet d
P (d) 220.062(33) 439.586(74) 1072(13)
K(@ms™h 55.22(55) 39.86(56) 5.39(57)
e 0.4289(92) 0.1476(50) O(fixed)
w (°) 118.0(1.1) 118.0(1.1) -
A(°) 309.10(49) 213.56(71) 298.4(5.8)
M (Mjyyp) 1.607(18) 1.600(22) 0.294(31)
a (au) 0.743340(73)  1.17955(13)  2.137(17)
i(®) 90(fixed)

Parameters of the data sets

CORALIE Keck 1 Keck 2
c(msh 8146.1(1.1) —4.8(1.0) —6.89(57)
Ags ms™h)  8.9(1.2)
Tgys (d) 182.4(9.3)
Tjitter (M s7h  5.68(55) 4.16(71) 2.99(38)
rms (ms~') 7.21 4.24 3.10

General characteristics of the fit

T(ms™h 5.91
d 21 —4=17

See notes of Tables 1 and 2.

from the third planet was still taken into account in full to compute
the fitted RV model. In either case, dynamical simulations show that
the fit of Table 4 is very close to the desired ACR state, so this fit is
the one that we expected to obtain.

In view of the matters discussed above, it is interesting to track
how the CORALIE annual variation and the RV contribution from
the putative ~1100 d planet could distort the best-fitting parameters
of the main planets ¢ and b. To do this, we consider two-dimensional
confidence regions for the parameters (ecosw, esinw) that are
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plotted in Fig. 4. We give these plots for different models of the RV
data. Here is what we would like to highlight.

(i) The transition from the Keplerian to Newtonian RV model
has a dramatic shrinking effect on the uncertainty region of (ey,, wp).
However, this shrinking is severely anisotropic, and the best-fitting
values themselves remain rather immutable.

(ii) The only way to naturally obtain a stable two-planet con-
figuration, without the use of any ‘brute force’ like an imposed
ACR constraint, is to take into account the residual long-term RV
variations discussed above.

(iii) The stable two-planet configuration can be approached in
many ways: by adding a fittable annual variation to the CORALIE
RV model, by adding the ~1100 d periodic term or by dealing with
the red-noise model using the method of Baluev (2013b). Either
of these actions shifts the best-fitting orbital configuration in the
direction of the stable aligned ACR. However, the largest effect
is obtained when the CORALIE annual term and the third planet
are both included. In this case, the best fit itself migrates to the
domain of aligned apses, and although this best fit is still unstable,
it becomes easy to find stable configurations within its statistical
uncertainties.

6 STATISTICAL VALIDITY OF THE RESULTS

So far we mainly relied on analytical likelihood-ratio tests with its
asymptotic chi-square distribution, and on the maximum-likelihood
point estimations that are valid when the number of observations
is sufficiently large. These methods are often criticized by authors
who propagate the use of the Bayesian statistical methods instead.
However, we believe that the weaknesses of asymptotic maximum-
likelihood theory are often excessively exacerbated, as well as the
advantages of the Bayesianism which is suggested as a replace. This
has been already demonstrated in Baluev (2013b) for the case of the
GJ 581 planetary system, in which a rather complicated multiplanet
model with correlated noise was employed. Here we aim to show
that the case of HD 82943 is similar in this concern, at least when
all publicly available RV data are taken in the analysis.

We rely here on the Monte Carlo simulations assuming the Gaus-
sian model of the RV noise. We do not believe that employing the
bootstrap simulation, like Tan et al. (2013), would be more reli-
able. From Fig. 1 it is clear that the residuals to the best-fitting
models are anyway corrupted by some systematic variations, so it
is perhaps useless to expect that shuffling of these corrupted resid-
uals would provide a better model of the real RV noise. Besides,
from Baluev (2013b) we know that the bootstrap method does not
correctly handle the uncertainty of noise parameters like the jitter.

So, let us verity that we indeed can safely treat various likelihood-
ratio tests obeying to the asymptotic chi-square distribution. To do
this, we must adopt some null hypothesis H (in the form of the
functional model) and the alternative hypothesis K, such that H is a
subspace of K of lesser dimension. The simplest case, for example,
is when we assume that H consists of a single point, while /C spans
the entire parametric space (for some given parametric model of
the RV data). After choosing the models H and X, we can run
the Monte Carlo simulation (the pLANETPACK algorithm described
in section 10.1 of Baluev 2013a) to reconstruct the distribution of
the associated non-linear likelihood-ratio statistic and to compare it
with the relevant chi-square distribution.

In Fig. 5, we compare the simulated and analytic likelihood-ratio
distributions for the case when 7 is a single point (which is treated
as the true vector of the parameters), while C corresponds to a
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Figure 4. Confidence regions for the parameters (e cos w, e sin w) of the HD 82943 planets ¢ and b for various RV data models. In each panel, the smaller
spot in the top-left part of graph is for the planet ¢, and the large spot is for the planet b. The isolines correspond to the asymptotic 1o, 20 and 30 significance
levels. The type of the orbital model is marked in the titles above each plot. For the Newtonian fits, we always used a coplanar orbital model with a fittable
common inclination. For three-planet models, the planet d was included in the N-body integration, but its eccentricity was always fixed at zero. See the text for

further details and discussion.

two-planet or a three-planet model (with a fittable common inclina-
tion in each case). We can see that the agreement is very accurate,
as if these models were strictly linear.

Proceeding further, we verify the applicability of the asymptotic
likelihood-ratio test to the task of comparing the ACR with a gen-
eral non-ACR configuration. The simulation results for this test are
shown in Fig. 6. In this case, the alternative K represents the entire
parametric space (for the same two models as above), while the
null hypothesis H is a restriction of K to the ACR models. Now
we can see some deviation between the simulated and asymptotic
distribution function, but this deviation is rather marginal. In par-
ticular, the ~1.50 statistical difference between the fits of Tables 3
and 4 is now corrected to ~1.30, which is similarly insignificant.
The difference of ~4.2¢ between the fits of Tables 1 and 2 is
slightly reduced to ~3.8c, which is still very large. Therefore, these
corrections are rather cosmetic and do not trigger any qualitative
changes.

Finally, we verify the calibration of the confidence contours that
we plotted in Fig. 4. These confidence regions represent the level
contours of the likelihood function, and they can also be treated by

means of the likelihood-ratio test (Baluev 2013a). In this case, the
alternative hypothesis again fills the entire parametric space, while
the null hypothesis represents its restriction to some fixed values
of w and e (with unrestricted other parameters). In this case, the
deviation between the distribution functions is even smaller than that
for the previous ‘ACR versus non-ACR’ comparison. This means
that the relevant corrections to Fig. 4 would be rather unremarkable,
so these confidence regions are statistically safe and reliable.

The case of the periodogram distributions did not appear that
nice, however. The periodogram analogue of the asymptotic chi-
square likelihood-ratio distribution is the following approximation
given in (Baluev 2008b)

FAP(z) < M(z) = We*/z, (H

where FAP is the false alarm probability to estimate, z is the ob-
served periodogram maximum and W is proportional to the settled
frequency range. Formally, this formula is strictly valid only for
linear models (with a single allowed non-linear frequency parame-
ter), but for the non-linear periodograms it should be still valid in
an asymptotic sense for N — oo (Baluev 2009).
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Figure 5. The distributions of the test statistic Z from Baluev (2009): comparing the asymptotic x 2 one (thick red curves) and the simulated one (thin black
curves) in each graph. Left graphs show the cumulative distribution functions (with the number of x2 degrees of freedom, d, labelled in the abscissa). Right
graphs compare the relevant normal quantiles (the no significance levels). Here, the null model H is a single point related to some adopted ‘true’ parameters
(actually borrowed from the best fit of the real RV data), and the alternative model K involves a full fit of the simulated data.

However, the large factor W in (1) scales up any non-linearity
effects in the FAP to levels much larger than e.g. the small devia-
tions seen in Figs 5, 6 and 7 above. Monte Carlo simulations have
shown that the approximation (1) works well only for the CORALIE
periodogram, while for the Keck periodograms the simulated FAP
is much larger than (1) predicts. This was actually expected, since
the amount of the Keck data is still rather small, and they are split
in two even smaller independent subsets. Therefore, we decided to
calibrate the periodogram significance levels of Fig. 2 with the sim-
ulated values of the FAP rather than with the analytic approximation
(1). These simulations were done for the frequency range from 0
to 0.1d™!, which is the same as was used for the periodograms
themselves. The simulated FAP curves are shown in Fig. 8.

7 REALITY OF THE THIRD PLANET

Strong evidence in favour of the 1100d variation comes from its
detectability in all three RV data sets that we have analysed: the
CORALIE data, the Keck data before the upgrade and the Keck
data after the upgrade. Although the RV data coverage is not en-
tirely perfect (the middle 1100d cycle was poorly covered), the
phase of this sinusoid is more or less smoothly transferred from
one data array to another (see Figs 1 and 9). Besides, it appears
difficult to naturally obtain a stable two-planet configuration from
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the combined time series, unless the 1100d variation is taken into
account. This argumentation suggests that the mentioned variation
does really exist and is likely caused by the star rather than by some
systematic instrumental drifts or data reduction errors.

Non-planetary interpretations of the ~1100d RV variability are
still possible. This variation could be caused by some long-term
astrophysical activity phenomenon evolving on the star. In partic-
ular, the long-term stellar magnetic activity is known to generate
excessive noise in the low-frequency range (Dumusque et al. 2012).
In fact, it looks rather suspicious that this variation seems to fade
over years: it was strong in the time of CORALIE observations,
while in the latest Keck data it is more difficult to detect. However,
this seems to be an apparent effect due to a more dense CORALIE
data coverage and their larger number, since in the phased residuals
(Fig. 9) we do not see any clear systematic differences between
different data sets.

We tried to verify the long-term noise hypothesis using the red-
noise analysis technique described in Baluev (2013b). Our result is
that the red-noise model can easily absorb the ~1100d variation,
suppressing it well below the characteristic noise levels. The charac-
teristic correlation time-scale that the red-noise analysis algorithm
reported was about a few hundred of days. Therefore, the cur-
rent data are unable to distinguish the planetary and non-planetary
interpretations. This ambiguity may be resolved analysing the
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Figure 6. Same as Fig. 5, but for testing an ACR best fit against the corresponding unconstrained best fit.

correlation between the Doppler RV measurements and some spec-
tral activity indicator, as Dumusque et al. (2012) have done for «
Cen. If the same 1100 d period is found in the star’s activity measure,
then we should probably retract the hypothesis of the third planet.
The necessary spectral data are not publicly available, however. In
any case, we still must take the relevant RV variation into account
to have a more robust two-planet fit.

In fact, both interpretations can work together: the 1100d vari-
ation may be induced by the third planet indeed, and it might be
also contaminated by the long-term astrophysical noise. To ver-
ify this possibility, we computed the residual periodogram with all
three planets included in the base model (see Fig. 10). We can see
that some residual power at long periods still remains, and it might
be even statistically significant. However, it looks like some large-
scale noise rather than a single clearly isolated period. Besides, it
is remarkably smaller than the planet d peak that remained in the
residuals of the analogous two-planet model (bottom-right panel of
Fig. 2). We prefer to interpret the residual power in Fig. 10 as some
astrophysical noise or remaining systematic instrumental errors. We
definitely need more RV data to investigate this remaining residual
variation more reliably.

Tan et al. (2013) also noted a peak at ~1100d in their Keck
periodograms. However, their statistical analysis yielded only a
marginal significance for this variation: FAP = 0.033 for an edge-
on fit and FAP = 0.085 for a fit with i = 20°. Our work yields
a remarkably more credible detection. To carry out a more direct

comparison with Tan et al. (2013), in addition to the periodograms
of Fig. 2 we have also computed the periodogram of the Keck data
that were taken entirely alone (without CORALIE) and without
imposing of any ACR constraint. The analytic formula (1) implied
FAP ~ 10~ for the edge-on model, FAP ~ 4 x 1072 for the i = 20°
model and FAP ~ 6 x 1073 for the model with a floating i (which
still appeared close to 20°). Note that these FAP values are for the
frequency range from O to 1 d~!, which is 10 times wider than that of
Fig. 2. However, we have explained above that the analytic formula
(1) underestimates the FAP for Keck periodograms. Therefore, we
have selected the worst case of three — the model with free i — and
run the Monte Carlo simulation to assess the relevant FAP more
reliably. We obtain the estimation of FAP ~ 0.016. The relevant
periodogram is shown in Fig. 11, and the graph of the associated
simulated FAP is shown in Fig. 12.

This suggests remarkably more credible detection of the planet
d than what follows from Tan et al. (2013) results: e.g. the FAP
is now reduced by the factor of 5 or more. Although our Keck
periodogram in Fig. 11 should be even more pessimistic than the
both periodograms shown by Tan et al. (2013) in their fig. 13,
our ~1100d peak is somewhat higher (considering all the cases
relatively to their apparent noise levels). Such a difference was
caused, as we believe, by the following main factors. First, we used
the more efficient ‘residual periodogram’ (also known as ‘recursive
periodogram’) instead of the ‘periodogram of the residuals’. The
so-called residual periodogram is based on a full multiplanet fit
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Figure 7. Same as Fig. 5, but for testing a best-fitting model with fixed (ep, wp,) against the corresponding unconstrained fit. These results can be used for a

more accurate calibration of the confidence contours in Fig. 4.
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Figure 8. Simulated distributions of the periodogram maxima for peri-
odograms in the left column of Fig. 2. The ordinate is equal to the simulated
FAP divided by W = fiax Teff, Where fimax Was always 0.1d™ ! while Tef was
different: 5534 d for the joint data, 1245 d for CORALIE, 1200 d for Keck-1
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planets b, ¢ (Newtonian ACR fit) + CORALIE annual variation
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Figure 9. The two-planet RV residuals of HD 82943 phased to the apparent
RV period of the third planet (which is by a few days smaller than the best-
fitting osculating orbital period). The reference fit corresponds to the ACR
two-planet Newtonian model with a fittable inclination. The data points have
the same shapes as in Fig. 1.

per each computed power value, rather than on a single fit of the
base model. Thus, we deal with more adequate and accurate fits,
which improve the periodogram detection power by pushing the
real peaks up relatively to the noisy ones (Anglada-Escudé & Tuomi
2012; Baluev 2013a). Secondly, we used a more adequate RV noise
model which involves an adaptive jitter fitting, and also allows for
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model of HD 82943, based on the joint RV data. The system inclination
to the sky plane is treated as a fittable parameter. Analogous non-ACR
base model generates a similar periodogram with a slightly reduced peak at
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Figure 11. Residual periodogram calculated for the two-planet non-ACR
model of HD 82943, based on the stand-alone Keck RV data (without
CORALIE). The system inclination to the sky plane, i, is treated as a fittable
parameter. The models with 7 fixed at 90° and 20° generate periodograms
with a slightly higher peak at ~1100d.
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Figure 12. The solid (blue) line shows the simulated FAP for the peri-
odogram in Fig. 11. The broken line shows asymptotic approximation (1).
The vertical line segment labels the abscissa position corresponding to the
height of the actual periodogram peak at P ~ 1100d. Number of Monte
Carlo trials was equal to 10 000.

a more reliable relative weighting of different data sets (Baluev
2009).

Our simulation of the Keck-only detection FAP of 1.7 per cent (or
2.40) for the planet d is still slightly worse than 1 per cent (or 2.60),
which Tan et al. (2013) acknowledge as a trustable exoplanetary
detection threshold. However, we re-emphasize that this long-term
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variation is also supported by the public CORALIE data (even after
reduction of their annual variation), and the cumulative significance
is much better than even the 3o level (see Fig. 2).

8 UNCERTAINTY OF THE INCLINATION

During the preparation of this paper, a new observational work
has appeared (Kennedy et al. 2013), where the authors consider
the debris disc of HD 82943 [which was originally discovered by
Beichman et al. (2005)] and report a rather accurate measurement of
its inclination to the sky plane: 27° & 4°. They find this value to be in
good agreement with the planetary system inclination i = 20° & 4°,
as reported by Tan et al. (2013) based on the Keck RV fits. Contrary
to Tan et al. (2013), the orbital inclination estimations of our work
are very uncertain, with the lower typical limit on i about ~20°
and no upper limit (i.e. consistent with an edge-on orientation,
i = 90°). The typical nominal value is i ~ 40°. These results are in
fact also consistent with Kennedy et al. (2013), at least we do not
find any detectable disagreement. We only have to be a bit more
sceptical concerning the conclusion that the disc—planet alignment
is confirmed indeed; our RV data analysis just does not allow us to
verify this guess.

We believe that the existence of an observable outer debris disc in
the system tells us indirectly that the space beyond the two robustly
detectable planets is unlikely empty: the third planet or even more
additional planets may be present.

In Table 5, we give a refined fit with an ACR constraint and as-
suming the value i = 27°, which is now more likely than i = 90°,
due to Kennedy et al. (2013). This configuration is stable for at least
10° yr. The likelihood-ratio separation between this new fit and the
relevant unconstrained fit (a modification of Table 3 with free i) cor-
responds to only 1.60 (asymptotically). The actual significance is
probably even slightly smaller (see Section 6), so we may conclude
that the RV data are entirely consistent with the coplanar three-
planet ACR(b,c) configuration inclined by 27° to the sky plane. In

Table 5. Best-fitting parameters of the HD 82943 planetary
system: three-planet Newtonian inclined ACR(c,b) model with
the CORALIE annual term.

Planetary orbital parameters and masses

Planet ¢ Planet b Planet d
P (d) 220.158(33) 439.16(10) 1075(13)
K(@ms™) 55.41(54) 39.92(55) 5.42(57)
e 0.4257(93) 0.1460(50) O(fixed)
w (°) 118.0(1.1) 118.0(1.1) -
A(°) 309.55(50) 213.77(72) 293.5(5.7)
M (Myup) 3.559(40) 3.529(48) 0.653(70)
a (au) 0.743963(73)  1.18006(19)  2.144(17)
i(°) 27(fixed)

Parameters of the data sets

CORALIE Keck 1 Keck 2
c(ms™) 8146.3(1.2) —4.79091) —6.73(55)
Agys (ms™h)  8.7(1.2)
Tgys (d) 180.4(9.8)
Tjitter (M s7hy  5.89(56) 3.91(67) 2.93(37)
rms (ms~1) 7.33 4.00 3.05

General characteristics of the fit

IT(ms™h) 5.93
d 21 —4=17

The orbital inclination of the coplanar system is fixed to 27°,
which is the debris disc inclination according to Kennedy et al.
(2013). See also the notes of Tables 1 and 2.
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fact, such a change of i had only a negligible effect on the fit, except
for the absolute planetary masses. Therefore, the value of i does not
significantly affect our main results presented so far, including e.g.
the conclusions about the 1100 d periodicity. Besides, most of these
results were anyway obtained assuming a free-floating i, which was
typically located in the range 30°—50°, and this is not too far from
the value provided by Kennedy et al. (2013).

However, the value of i = 27° roughly doubles the planetary mass
estimations, and this may have a significant effect on the planetary
dynamics. In particular, the stability domains around the nominal
configuration should significantly shrink. Therefore, we still need
to investigate this effect.

9 THREE-PLANET DYNAMICS

If the 1100d variation is interpreted as a third planet, the entire
system appears remarkably close to a 1:2:5 three-planet resonance.
Although the nominal fits presented above infer that the third planet
is still slightly out of the 5:2 resonance, showing a circulation of
critical angles rather than a libration, the parameters of the third
planet are still rather uncertain.

In particular, the eccentricity ey (along with the pericentre ar-
gument wq) looks ill-determined: allowing it to float during the fit
generates misleading overfit effects, like multiple local maxima of
the likelihood function. Similarly to the HD 37124 c case discussed
in Baluev (2008a) or to the GJ 876 e case from Baluev (2011),
we find multiple local optima for the eccentric parameters (eq, wg)
at rather high ¢4 ~ 0.3-0.4. However, all of them are likely unre-
liable due to the RV model non-linearity and large uncertainties.
All these local solutions may eventually disappear with more RV
observations, as it expectedly occurred in the mentioned HD 37124
case (Wright et al. 2011). Moreover, this effect of eccentricity bias
looks frequent for exoplanets discovered by the Doppler technique
(Beaugé, Ferraz-Mello & Michtchenko 2012), and it follows from
simulations of the Keplerian fits done by Cumming (2004) and
Zechmeister & Kiirster (2009) that RV noise favours to large (and
thus overestimated) eccentricity estimations. In the particular case
of HD 82943 d, this eccentricity bias can be also induced by the
correlated astrophysical RV noise. Therefore, we conclude that the
most reasonable course of action is to fix e4 at zero. The actual value
of this eccentricity is in fact unconstrained.
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The orbital inclination of the system, i, is also ill-determined and
always remains statistically consistent with 90°, although allowing
it to float during the fit does not generate any statistical degeneracies
or other obvious bad effects (e.g. the simulations of Section 6 were
all done with a floating i). It follows from the results by Kennedy
et al. (2013) that we must pay particular attention to the value of
i=27°.

The orbital period Py has rather good estimation accuracy, but
nevertheless it may be inside as well as slightly out of the 5:2
resonance, implying a significant change in the planetary dynamics.
Therefore, the uncertainties of eq, wq, Py and i allow for a wide
spread of possible dynamical regimes of the three-planet system.

Our first task is to analyse the orbital stability of the region of the
phase space exterior to the two known planets of the system. This
will help us to constrain the location of the third planet.

A detailed analysis of the (aq4, e4) phase space is shown in Fig. 13.
Here we show a dynamical map constructed from the numerical in-
tegration of two grids of initial conditions for the outer planet, based
on the ACR configurations of Tables 4 and 5. Positive (negative)
values of e4 correspond to aligned (anti-aligned) orbits with respect
to the planet b. All initial conditions were integrated for 10° years.
The colour code shows the values of the MEGNO chaoticity indica-
tor (Cincotta & Sim¢6 2000) attained during the integration interval,
while the hashed domain corresponds to initial conditions that im-
plied planetary ejections or collisions within this time span (i.e.
unstable systems).

Around a4 = 1.87 au, we can clearly observe the hashed band of
the 2/1 MMR. This however does not mean that the Laplace reso-
nance 1:2:4 would inevitably lead to instability. The actual stability
also depends on the angular variables that were set to particular
values in Fig. 13. The plot also shows evidence of both the 5/2 and
3/1 resonances for larger semimajor axis. Other commensurabilities
are also visible, although not as strong. The nominal configuration
is located between the 7/3 and 5/2 MMRs. The 7/3 MMR becomes
unstable for i = 27° (at least for the RV-fitted values of the angles),
while the 5/2 MMR remains stable.

These results indicate that it is not difficult to find a stable con-
figuration for the third planet and in good statistical agreement with
the RV fits. However, the stability is rather sensitive to apparently
small changes of the system parameters. For example, the stability
domain for the non-ACR fit of Table 3 is significantly reduced in

0.3 500

s

MEGNO after 10°y

-0.2

-0.3

semimajor axis a4 [AU]

Figure 13. Dynamical maps for the neighbourhood of the planet d location (marked as a point with an error bar). The maps are obtained from the fits of
Tables 4 (left) and 5 (right) by varying egq and Pg4. The value of wq was set to either w, (upper semiplane in each panel) or wp + 7 (lower semiplane). The
hashed region corresponds to configurations that did not survive the integration term of 10° yr. The MEGNO chaoticity indicator is encoded in colour. The
error bar of the nominal position reflects the uncertainty of the period Py assuming eq = 0. Statistical uncertainties of the eccentricity eq exceed the ordinate

range, so this eccentricity is only constrained by the stability requirement.
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comparison with what we can see in Fig. 13. Actually, the nominal
fit of Table 3 is even unstable. This indicates that apparently minor
changes in the configuration of the two main planets of the system
may dramatically affect the dynamics of the third planet.

The stability domains may also be reduced by assuming a smaller
value for the system inclination i, which increases the actual planet
masses. However, we found that the nominal ACR system remains
stable for i as small as 17°, so this limitation is not very important.
We may note that the change of i to 27° remarkably transformed the
structure of individual MMRs in the domain, although their general
structure is still similar. In particular, the nominal solution moved
very close to a high-order 22:9 (or possibly 17:7) MMR between the
planets b and d, which increased the chaoticity in the entire system.

A second pair of dynamical maps is shown in Fig. 14. These
are the maps for the ill-determined eccentric parameters ¢4 and
wq computed for the ACR fit with i = 27° and a free-floating
period Py (eventually estimated by a non-resonant value), and for
the ACR fit assuming the same i = 27° and fixing Py = 1105d (at
the resonance 5/2 with the planet b). We can see that the stability
is generally favoured by a small e4, although the upper limit on
eq depends on the orientation angle wy. The shape of the stability
domain is different for the resonant and non-resonant value of Py.
In the non-resonant case, we see clear influence of the 22:9 MMR
(e.g. the chaoticity fibres in the top-left part of the stability domain).
This resonance is not very strong, so the major part of the domain
does not look affected by it. Nevertheless, from Fig. 13 we can see
that this resonance could become a dominating factor after a small
increase of Py with respect to the nominal value. For the 5:2 MMR
case, the chaoticity is much larger, and the relevant stability domain
looks featureless except for a tiny spot of regular motion near the
centre. This island of regular motion appears not belonging to the
three-planet MMR; below we discuss this in more detail.

For the triple-resonance case, the angle wy does not describe the
secular dynamics of the third planet comprehensively. In this case,
the longitude A4 should also be considered, since we cannot directly
average the resonant Hamiltonian over it. Although the value of 14
is determined relatively well (at least, with a much better accuracy
than wq), we must plot a dynamical map by varying this longitude
to understand the position of the nominal system in the phase space.

0.2 500

i=27° 7

0.15 LTSI LILL:
7 /

01 F

/ T . 100 e
0.05 : T / o
- e/ e
3 /9 —
£ 0 £
» / 7 R / 5]
o R o
-0.05 7 4 5
o X 7k 10
0.15
-0.2 Z —d D
02 015 01 -005 0 005 01 015 02

€4 COS 0y

64 Sin wy
o

The riddle of HD 82943 685

If Fig. 15, we show the map plotted for the parameters 14 and wy.
The map was based on an ACR(b,c) fit fixing i =27°, Py = 1105d,
eq = 0, and with ¢4 manually moved (without further refitting) from
0 to 0.03. In this plane, most of the initial conditions lead to very
chaotic motion, although still stable within the time span covered
by our integration. Our attention is mainly attracted by two re-
markable spots of regular motion near 14 = 150° and 350°. The
detailed investigation showed that this regular motion is not truly
resonant: one or both critical angles, related to planet d, circulate.
Only the 2:1 resonance is preserved here, while the 5:2 one is bro-
ken. Therefore, these spots represent some breaches in the struc-
ture of the three-planet MMR. We cannot tell anything clear about
the topology of these breaches in the phase space. It is an open
question, whether they represent some disconnected inner caves
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Figure 15. Dynamical map for the angular parameters Aq and wq for the
three-planet MMR. The maps are based on the same fit as the one used for
the right frame of Fig. 14, now setting ¢4 = 0.03. The horizontal (green) line
shows the position of wy,. The hashed vertical band shows the 1o uncertainty
range of the best-fitting A4 (assuming that wq is undetermined). The other
notations are the same as in Fig. 13.
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Figure 14. Dynamical maps for the ill-determined parameters eq and wq. The left-hand panel is based on the fit of Table 5 with non-resonant best-fitting
Py = 1075 d, while the right one is based on the fit with Py fixed at 1105 d, the centre of the 5:2 resonance in Fig. 13. The arrows set the direction of wy,. The

other notations are the same as in Fig. 13.
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Figure 16. The eccentricities of the major planets in the HD 82943 system: comparing the non-ACR (left) and the ACR solution (right). The asymptotic 1o,
20 and 30 confidence regions inferred by the corresponding orbital model and the surrounding layout of the ACR configurations are displayed together. The
thick solid lines separate different types of ACRs for the 2/1 MMR case. The thick dashed line in each graph shows an isofamily of the ACRs with a constant

planet mass ratio, taken from the corresponding RV fit.

or they look like pipes passing through the MMR domain. In the
remaining (truly resonant) part of the map, there are a few small
domains with a smaller degree of chaoticity (those having a bit
lighter colour). The typical Lyapunov time over the map is only
~250 yr, but it rises to ~1000 yr in these domains. These domains
are probably related to some triple ACR configurations like the
one appearing in Section 10 below. However, the value of A4 sug-
gested by the RV data is located between these domains, where the
chaoticity is high. As the uncertainty of A4 is rather small, it ap-
pears that our RV fits are inconsistent with these moderately chaotic
domains.

The simultaneous presence of fully resonant (1:2:5) as well as
only partly resonant (1:2) configurations in Fig. 15 indicates that this
map represents a slice of the phase space taken close to the relevant
separatrix. This explains why most of these initial conditions are
very chaotic — the chaos is typically located near a separatrix. We
believe that the chaoticity may be reduced by seeking a suitable
adjustment of the orbital elements of the two inner planets. The ACR
constraint used to obtain the above fits neglected the perturbations
from the third planet. Taking them into account would slightly shift
the estimated ACR equilibria. This would not significantly affect
the quality of the RV fit, but the long-term dynamics might change
dramatically.

So far, we were unable to find in the vicinity of the nominal fit
any regular or at least low chaotic motion simultaneously belonging
to the three-planet MMR. All our configurations with regular dy-
namics are not entirely resonant. We however did not try to vary the
parameters of the two inner planets, which may have a significant
effect on the dynamics of the outermost one. Besides, some real
planetary systems do show a chaotic dynamics (see e.g. the GJ 876
case discussion by Marti, Giuppone & Beaugé 2013), so we should
not assume that the dynamics of the HD 82943 planetary system
have to be regular. We only need it to be long-term stable.

10 THREE-PLANET MIGRATION

The primary goal of this section is to demonstrate that the 1:2:5
three-planet resonance can be naturally established via the mecha-
nism of the planetary migration.

MNRAS 439, 673-689 (2014)

But first of all, let us investigate in more detail the dynami-
cal status of the two main resonant planets ¢ and b. We compare
the general layout of the dynamical ACR families of the 2:1 reso-
nance (Beaugé et al. 2003) with the actual best-fitting configurations
and with the associated parametric uncertainty regions in the plane
(ec, ev). These results are plotted in Fig. 16, where we use a three-
planet coplanar model with a free-floating orbital inclination. Each
point in the (e., e,) plane corresponds to some ACR configuration.
We have three domains, corresponding to different types of stable
ACRs: the symmetric anti-aligned family (labelled as ‘s><’), the
symmetric aligned one (‘symmetric<’) and the asymmetric ACRs.

Each ACR configuration implies, in particular, a fixed value of
the planetary mass ratio that must be held. Thus, for a given mass
ratio we can plot a corresponding isofamily of ACRs. Such isolines
are very important, because they may serve as evolutionary tracks of
the system during the planet migration phase (Beaugé et al. 2006).
In each of the two panels of Fig. 16, we plot a single such isoline that
corresponds to the relevant best-fitting mass ratio. We can see that
both these isolines pass through all three types of ACRs. Therefore,
this system could undergo an asymmetric ACR state in some past
and then switched back to the symmetric regime.

Planetary migration was simulated using a standard N-body code
based on a Bulirsch—Stoer integration routine, plus a Stokes-type
exterior force (Beaugé et al. 2006) with specified values for the
e-folding times for the semimajor axis (t,) and eccentricity (t.).
We assumed that only the exterior (hypothetical) planet suffered
the migration. Both inner planets suffered no orbital decay, except
the indirect one, induced by the outer planet once the three-planet
resonance was established. However, we did include an eccentricity
damping on the planets ¢ and b, just to keep their eccentricities
fixed.

We analysed several initial conditions and migration rates. There
is evidence (e.g. Beaugé et al. 2008; Marti et al. 2013) that three-
planet resonances may be fairly fragile with small stability domains,
so it is possible that the probability of finding stable configurations
is not high. On the other hand, it is well known that the commensu-
rability in which the bodies are ultimately captured depends on the
migration rate and initial semimajor axis ratio (Nelson & Papaloizou
2002; Rein, Papaloizou & Kley 2010).
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Figure 17. Final mean-motion ratios between the two outer planets my, and
mgq, as a function of the orbital decay e-folding time, for a total of 1798
N-body runs with planetary migration acting on the outer mass. The main
MMRSs attained by the planets are shown in horizontal dashed lines.

The initial orbits of m. and m} were chosen equal to those shown
in Table 4, while the semimajor axis and eccentricity of the outer
planet were chosen randomly in the intervals a4 € [2.36, 2.38] au
and eq4 € [0, 0.02]. Although the limits of both intervals were small,
they guaranteed a random distribution of the angular variables at
each resonance, allowing us to estimate the capture probabilities
in each commensurability. The values of a4 are interior to the 3/1
resonance, but outside the 5/2. Finally, the migration rates were also
chosen randomly in the interval 7, € [10%,2 x 10°], while 7. was
chosen such that 7. /7, = 100, a value expected for type 1 migration
in laminar isothermal discs (Ogihara & Ida 2009).

Fig. 17 shows the final P4/ P, ratio for 1798 initial conditions
and migration rates. The integration time was a function of 7,, and
the runs were stopped once a stable configuration was reached with
constant mean-motion ratios. In all cases, we checked that the two
inner planets remained locked in the 2/1 MMR.

As expected, the final MMR attained by the outer planet depends
on 7,. We can roughly identify four different intervals. For very
slow migration rates (z, > 5 x 10° yr), practically all the fictitious
systems ended trapped in three-planet resonances, and in all cases
the two outer planets were locked in the 5/2 MMR. For slightly faster
migrations (down to 7, ~ 10° yr), some initial conditions crossed
the 5/2 resonance, most being trapped in the 2/1. However, a few
were also captured in the 7/3, while ~10 per cent of the initial
conditions lead to unstable orbits and were ejected from the system.

For even lower decay times (7, < 10° yr), the 5/2 resonance
seemed unable to counteract the dissipative force and all stable
configurations correspond to the 2/1 MMR, defining thus a Laplace
resonance between all three planets. However, about half of the runs
lead to unstable orbits. Finally, no resonance capture was observed
forr, < 3 x 10*yr.

Summarizing, the 5:2:1 three-planet resonance seems a natural
outcome of this type of simple N-body experiments, as long as the
orbital decay rate is sufficiently slow. Whether this could indeed
be the case is a matter of dispute. From the analytical estimates
by Tanaka, Takeuchi & Ward (2002), for a minimum mass solar
nebula and typical disc properties, t, is estimated to be of the order
of ~10*yr for planets with masses comparable to the estimated
value of m4. However, it is important to keep in mind that planetary
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Figure 18. A simulation of the planet d migration and trapping of all three
bodies in the 5:2:1 multiple resonance. The resonant angles are defined in

(2).

migration is not well understood and it is believed that migration
rates, especially for type 1, should have been lower than what linear
theories for laminar discs predict. For example, magnetohydrody-
namic turbulence could delay the orbital decay as much as two
orders of magnitude (Nelson & Papaloizou 2004; Alibert et al.
2005), leading to values more compatible with planetary formation.
So, the values 7, ~ 10° yr or even higher are plausible.

Fig. 18 shows an example of the trapping of the third planet
in a 5/2 MMR with the second one, and the consequent locking
of all three planets in the 5:2:1 multiple resonance. The two top
frames show the time variation of the semimajor axes (left) and
eccentricities (right). The triple commensurability is attained in less
than 10° yr, after which all planets continue to migrate together.

The bottom-left graph shows the evolution of the resonant angles,
defined as

Ocb = 2hp — Ac — @,
Opd = S)xd — 2)\b — 3wb,
Ocbd = Sha — 8Ap + 34, 2

where oy is the critical angle of the three-planet resonance. The
angle oy, is the leading critical angle of the 2/1 MMR between the
planets ¢ and b, and it is always librating. Before the triple reso-
nance is established, o, librates around zero, as expected from a
symmetric ACR solution. However, after the third planet becomes
resonant, the libration centre switches to an asymmetric value, al-
though still close to zero. The angle oy, is the one associated with
the 5/2 resonance between b and d. It circulates before the reso-
nance trapping, and librates around an asymmetric value after that.
The same is noted in o.,q. Note that from e.g. the fit of Table 4
we have o = —9° £ 29° and —34° & 29° for Table 5, so the real
orbital configuration is not necessarily a three-planet ACR like the
one appearing in Fig. 18.

Finally, the bottom-right plot shows the behaviour of the differ-
ence in pericentres. Again, @y, — @, starts librating around zero,
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Figure 19. Left: MEGNO value (Y) as a function of time for an initial
condition in the 5:2:1 MMR. Right: evolution of Ae for the three planets
during a 10% yr N-body integration.

but changes to an asymmetric libration after the system is trapped
in the 5:2:1 MMR. The same is also noted for wy — @,.

To check whether the stability of this orbit is due to the gas, we
took the state of the system at t = 2 x 103 yr, considered those as
new initial conditions and integrated it again without gas effects
for 108 yr. We also calculated the MEGNO chaos indicator for the
run. Results are shown in the left-hand plot of Fig. 19. The value of
(Y) starts close to 2 (indicating a regular motion) but after ~10° yr
it begins to linearly grow. This indicates chaotic motion, although
only noticeable after 10° yr, indicating that the chaos is weak. A
linear fit of the value of (Y) after this time indicates a maximum
Lyapunov exponent also of the order of 10° yr.

To analyse the stability of this chaotic configuration, we tried
to estimate any diffusion in the action space. This was done by
calculating the evolution of Ae, defined as the amplitude of the ec-
centricity of each planet. For regular motion, Ae should be constant.
For chaotic but stable motion, this quantity should also be constant
or bounded. Results are shown in the right-hand plot of Fig. 19. We
observe a secular increase in all values of Ae, larger for the outer
planet and smaller for the inner body. The values, however, remain
small. If there is any orbital instability, it should only be observable
for time-scales much larger than the age of the star.

11 CONCLUSIONS

We believe that the existence of the 1100 d variation in the RV data
for HD 82943 is if not convincing at least plausible. Moreover, it
is likely that this variation was caused by some agent related to
the star itself rather than to a particular instrument. However, we
reiterate that we still do not insist on the planetary interpretation of
this variation. It can also be a hint of some long-term noise caused
by the star’s activity.

The planetary interpretation leads us to an extremely interesting
dynamical system in the three-planet resonance 1:2:5. This would
be, to our concern, the second such candidate system. The previous
one was the system of KOI 806/Kepler-30, detected by transits and
transit timing variations (Tingley et al. 2011), although later data
suggested that its third planet is significantly out of the 5: 2 MMR
(Fabrycky et al. 2012).

What concerns the major planets b and c is that their dynamics is
likely close to the aligned ACR located near the border with asym-
metric ACRs. But the RV fitting uncertainties still do not constrain
the dynamical regime of HD 82943 d well. The third planet may be
inside as well as slightly out of the 5:2 MMR with the planet b, im-
plying different dynamics. Initial conditions with the non-resonant
third planet often lead to a regular and stable motion. However, in-
side the three-planet 1:2:5 resonance, we could not find any regular
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or low chaotic motion that would be more or less consistent with the
RV data. It is nonetheless known that chaotic configurations are not
necessarily unacceptable, since chaos does not necessarily imply
instability. For example, the GJ 876 planetary system demonstrates
a chaotic but stable motion in the Laplace resonance (Marti et al.
2013).

We find that the three-planet 1:2:5 resonance may represent a
rather natural outcome of the planetary orbital migration. If this
three-planet resonance will be further confirmed, this may place
significant constraints on the parameters of the migration process,
like the characteristic migration rate.

Irrespective of whether the third planet exists or not, there is one
interesting matter concerning the two inner planets. Their nomi-
nal configuration corresponds to a symmetric aligned ACR located
very close to the boundary with the domain of asymmetric ACRs.
Moreover, from Fig. 16 we may suspect that this system could have
passed through the asymmetric corotation regime somewhere in the
past, during the planetary migration stage.

According to Beaugé et al. (2006), once the migration is driven by
a dissipative adiabatic force, it should follow the isolines of the con-
stant mass ratio shown in Fig. 16. Therefore, during the migration
there could be two rather abrupt switches between the symmetric
and asymmetric corotation modes. Due to large eccentricities and
masses of the planets ¢ and b, these bifurcations would basically
represent a dynamical catastrophe for other planets in the system,
should they exist there in that epoch. As a result, some of these
planets could be ejected out of the system or could fall on the star.
Such a conclusion provides a nice theoretical explanation of the
spectroscopic observations that detected an unusually high lithium-
6 abundance in the atmosphere of HD 82943 (Israelian et al. 2001).
This chemical anomaly was hypothetically interpreted as evidence
that some planets could fall on the host star in the past, enriching it
with lithium-6. We can see that the ACR-sticky migration mecha-
nism by Beaugé et al. (2006) provides a good explanation of how
such a catastrophe could be actually triggered.
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