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SCIENCE FOR SOCIETY Wild bee pollination is fundamental to the reproduction of hundreds of thousands
of wild plant species and is key to securing adequate yields in about 85% of food crops. Declines in the
abundance and diversity of bee species have been reported at local, regional, and country levels on
different continents, but up to now there has not been a long-term assessment on global trends. We turned
to publicly available data on specimen collections and observations gathered at the Global Biodiversity In-
formation Facility, mostly coming from museum and academic collections and complemented by citizen-
science efforts. We found that the number of bee species being collected or observed over time has
been steadily declining since the 1990s. Although these results might in part reflect increased impediments
to specimen collection and datamobilization, as well as reduced sampling coverage, they could also reflect
a worldwide decline in bee diversity given that many species are becoming rarer and less likely to be found.
SUMMARY
Wild and managed bees are key pollinators, ensuring or enhancing the reproduction of a large fraction of the
world’s wild flowering plants and the yield of�85% of all cultivated crops. Recent reports of wild bee decline
and its potential consequences are thus worrisome. However, evidence is mostly based on local or regional
studies; the global status of bee decline has not been assessed yet. To fill this gap, we analyzed publicly avail-
able worldwide occurrence records from the Global Biodiversity Information Facility spanning over a century.
We found that after the 1990s, the number of collected bee species declines steeply such that approximately
25% fewer species were reported between 2006 and 2015 than before the 1990s. Although these trendsmust
be interpreted cautiously given the heterogeneous nature of the dataset and potential biases in data collec-
tion and reporting, results suggest the need for swift actions to avoid further pollinator decline.
INTRODUCTION

Insects are the most speciose group of animals and are esti-

mated to encompass a large fraction of Earth’s living biomass.1

Given their historical abundance and ubiquity, along with the

many familiar examples of extreme resilience to natural or inten-

tional extermination, some insects have been viewed tradition-

ally as the ultimate survivors of most apocalyptic scenarios.

However, in the last two decades, a series of high-profile reports

based mostly on local or regional evidence have repeatedly

warned of a significant decline in insect diversity and biomass

and raised the alarm about the potential consequence of this

decline for the delivery of many ecosystem services.2–5 Among

the affected ecosystem services is plant pollination: insects are
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the main vectors for pollen transfer of most wild and crop flower-

ing plant species.6–10 Bees (Hymenoptera: Apoidea: Anthophila),

a lineage that includes about 20,000 described species, are the

most important group of insect pollinators.11,12 Wild bee species

are key not only to the sexual reproduction of hundreds of thou-

sands of wild plant species7 but also to the yield of about 85% of

all cultivated crops.6,13,10 There is mounting evidence that a

decline in wild bee populationsmight follow or even bemore pro-

nounced than overall trends in insect decline.12,14–17 Such differ-

ential vulnerability might result from a high dependence of bees

on flowers for food and a diversity of substrates for nesting, re-

sources that are greatly affected by land conversion to large-

scale agriculture, massive urbanization, and other intensive

land uses.18–20 However, most studies on ‘‘bee decline’’ to
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date are either focused on particular bee taxa (e.g.,Bombus21) or

based on local-, regional-, or country-level datasets and have a

strong bias toward the Northern Hemisphere, particularly North

America and Europe, where most long-term research projects

capable of generating multidecadal datasets have been

conducted.4,12,22,23

To find an alternative approach to assess whether bee decline

is a global phenomenon affecting all major bee lineages, we used

the data publicly available at the Global Biodiversity Information

Facility (GBIF).24 The GBIF collects and provides ‘‘data about all

types of life on Earth’’ from ‘‘sources including everything from

museum specimens collected in the 18th and 19th centuries to

geotagged smartphone photos shared by amateur naturalists

in recent days and weeks.’’24 GBIF ingests data from a widely

diverse range of data sources, localities, recording strategies,

geographic areas, sampling intensities, etc., and each data

source is potentially plagued by both systematic and idiosyn-

cratic biases.25–28 Although usage of GBIF data has been heavily

criticized because of its inherent biases,22,25,29–31 most criti-

cisms are usually aimed at using its occurrence data to recon-

struct and model species’ distribution ranges. Reconstructing

geographic ranges and abundances from such ‘‘messy’’ data-

sets is indeed challenging.32 However, a binning approach in

which a simpler question (‘‘has a species been recorded any-

where in the world during a given period?’’) yields a yes/no

answer can potentially be much more robust to sampling-effort

heterogeneity and geographic uncertainty.33 We reasoned that

if bees have been experiencing a global decline in the last few

decades, then a generalized decrease in population size and

range would result in increased rarity, diminished chance of

observation and collection, and consequently, a diminished

number of total species being observed and recordedworldwide

each year. This approach assumes that none of the artifactual

trends caused by potential observation biases in the data are

stronger than the real trends in bee diversity. Thus, we also

assess the potential influence of some sources of bias and sug-

gest how improving data collection and sharing could alleviate

bias and reduce uncertainty.

RESULTS AND DISCUSSION

Fewer bee species have been recorded since the 1950s
To test our hypothesis of global bee decline, we queried GBIF for

all occurrence records of Hymenoptera prior to 2020 with either

‘‘preserved specimen’’ or ‘‘human observation’’ bases of re-

cord34 (see experimental procedures). Records of preserved

specimens originate in vouchered collections such as those

from museums and universities or associated with biodiversity

surveys and molecular barcoding initiatives, among others. Hu-

man observations, on the other hand, are records in which a

given species was observed but no voucher was collected;

this category of records has been growing exponentially since

citizen-science initiatives became increasingly popular.35

Because the preserved specimen records are likely to represent

the most taxonomically traceable source of information within

the GBIF dataset,35,36 we made parallel analyses for both the

full dataset and the specimen-only subset. We filtered the data-

sets to six families of the superfamily Apoidea that comprise the

Anthophila or ‘‘true bees’’: Melittidae, Andrenidae, Halictidae,
Colletidae, Megachilidae, and Apidae (we excluded the small

family Stenotritidae from our analysis, since it has only 21 spe-

cies restricted to Australia).11

Plotting the total number of records per year in both datasets

shows that the number of worldwide bee occurrence records fol-

lows a mostly monotonic increasing trend that becomes steeper

after 1990 (Figure 1A). Since the four most recent years (2016–

2019, marked with an asterisk in Figure 1A) show a noticeable

drop in records, most likely because of time lags in data entry,37

we excluded those years from further analyses to avoid a down-

ward bias in the most recent years. In contrast, while the number

of recorded species per year during the same period also in-

creases initially, it reaches a steady maximum after 1950 but

then shows a noticeable decline starting near the end of the

20th century (Figure 1B). This negative temporal trend persisted

even when number of records and of contributing collections, in-

stitutions, and datasets were considered (generalized least

squares estimate + SE for the period 1986–2016: �31.9 ±

11.0, t value�2.9, p = 0.008). Thus, fewer species have been re-

ported globally within GBIF records since approximately

the 1990s.

To remove potential biases introduced by year-to-year hetero-

geneity of data sources, we binned records every 10 years start-

ing from 1946 (after the end of World War II, which caused a

noticeable dip in collection intensity; see Figure 1A) until 2015 (in-

clusive); we call these bins ‘‘idecades’’ and name them by the

multiple-of-10 year in the middle (e.g., ‘‘1960’’ for the period be-

tween 1956 and 1965). We then used rarefaction-based interpo-

lation/extrapolation (iNEXT) curves and asymptotic richness es-

timators38,39 to compare idecadal changes in richness of species

records. This assumes that (1) relative sampling of rare versus

common species and (2) representation of biodiversity hotspots

are both consistent across decades and that inconsistencies be-

tween years are averaged out by idecadal binning. In this anal-

ysis, accumulation curves are very similar from the 1950s to

the 1990s but flatten considerably to reach lower asymptotes

for the 2000s and 2010s (Figures 1C and 1E). By comparing

the values of the asymptotic richness estimators, we found a

reduction of about 8% during the 2000s in both datasets and a

reduction of 22%and 26%during the 2010s for the full and spec-

imen-only datasets, respectively (Figures 1D and 1F). These re-

sults suggest that the number of species among bee specimens

collected worldwide is showing a sharp decline.

Patterns of record richness show phylogenetic
structure
Bee families in our dataset are heterogeneous in terms of rich-

ness and abundance, and the observed trends might be driven

by just a few bee clades. To make a more phylogenetically

explicit analysis exploring whether bees show a differential tem-

poral trend compared with that of their closest relatives and

whether particular bee families are more endangered than

others, we re-analyzed the specimen dataset and this time

also retained records for two families of carnivorous apoid

wasps, Crabronidae and Sphecidae, that are sister to Anthophila

and for another highly diverse, non-apoid hymenopteran family,

the Formicidae (ants).40 The results show different patterns of

species richness in records of each family with noticeable phylo-

genetic structure (Figure 2). Long-tongued bees (Megachilidae
One Earth 4, 114–123, January 22, 2021 115
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Figure 1. Despite increasing number of specimen records, the number of worldwide recorded bee species is sharply decreasing

(A) Number of worldwide GBIF records of Anthophila (bees) occurrences per year in the full (cyan) and specimen-only (red) datasets. The curves represent loess

fits with a smoothing parameter of a = 0.75 up to 2015. The four most recent years (2016–2019, labeled with an asterisk) were excluded from further analysis.

(B) Number of bee species found each year in the full (cyan) and specimen-only (red) datasets.

(C) Chao’s interpolation/extrapolation (iNEXT) curves based on the full dataset. Data were binned into 10-year periods (idecades) from 1946 to 2015. The circles

show actual number of specimen records and separate interpolated (left, full line) from extrapolated (right, dashed line) regions of each curve.

(D) Values of the asymptotic richness estimator by idecade (see main text) for the full dataset (error bars mark upper and lower 95% confidence intervals).

(E) Chao’s iNEXT curves based on the specimen-only dataset.

(F) Values of the asymptotic richness estimator by idecade for the specimen-only dataset.

See also Figures S2–S6.
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Figure 2. Patterns of decline in worldwide records of bees are generalized but phylogenetically structured

Phylogenetic relationships among each of the six families of bees (Anthophila, lower six rows), two related families of non-flower-associated apoid wasps (second

and third rows), and the less-related, highly speciose ant family (top row). The left column shows the number of species per year in GBIF records from 1946 to

2015 according to the preserved specimen dataset; the curves represent loess fits with a smoothing parameter of a = 0.75. The middle column shows Chao’s

iNEXT curves based onGBIF records, grouped by idecade for the period 1946–2015. The right column shows the asymptotic estimates of richness by idecade for

the same period (error bars mark upper and lower 95% confidence intervals). See also Figure S1.
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and Apidae) show a steepening decline starting in the 2000s,

whereas short-tongued bees show declines starting earlier (An-

drenidae and Halictidae) or later (Colletidae). These declines in

richness of recorded species relative to the average number

found between 1950 and 1990 ranged from 17% for Halictidae

to over 41% for Melittidae. Comparisons between Anthophila

families and two families of apoid wasps sister to bees and a

more distantly related family, the true ants (Formicidae), revealed

contrasting trends (Figure 2). While both wasp families also show

declining trends, they present different patterns than bees do.
Record richness of sphecid and crabronid wasps both show a

smoother decrease initiating earlier than the 2000s. In contrast,

ants show very little evidence of global record richness decline

but rather a trend toward an increase in the number of recorded

species. Although the limited number of bee families precludes a

formal analysis of phylogenetic patterning, closely related fam-

ilies (e.g., Apidae andMegachilidae, or Colletidae andHalictidae)

seem to share more similar trends in terms of timing and magni-

tude of species richness decline than less-related families. This

hint of phylogenetic patterning becomes even more apparent
One Earth 4, 114–123, January 22, 2021 117



Figure 3. Overall representation of bee species within global re-

cords is becoming increasingly uneven over time

Estimate of Pielou’s index of sample evenness per year in the full (blue) and

specimen-only (red) datasets from 1900 to 2016. The lines show respective

loess-fit curves with a smoothing parameter of a = 0.75. See also Figure S5.
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when considering the two apoid wasp families, Crabronidae and

Sphecidae (Figure 2). Interestingly, a very similar pattern—in

which bees show a strong, recent decline; wasps show a gentler

decline starting earlier; and ants remain steady—was recently

reported by a quite different analytical approach on a substan-

tially different and more geographically limited dataset.41 All

together, family-specific trends and asymptotic richness esti-

mates show that the apparent overall decline in global bee re-

cord richness is not driven by any particular family. Instead, a

generalized decline seems to be a pervasive feature within the

bee lineage.

To rule out the possibility that the method we used to esti-

mate richness does not correlate with actual bee diversity,

we compared the asymptotic estimator of total richness for

each family according to GBIF records with the total known

number of species and found a linear correlation between

both estimates across families (Figure S1). Another potential

artifact causing a decline in recorded bee diversity in the last

two idecades could be an increasing loss in taxonomic exper-

tise during that period.42–44 Under such scenario, we would

expect the fraction of records unidentified to the species

level—a reasonable proxy for lack of expertise35—should

have stayed approximately constant until the last two decades

and then increased noticeably. Whereas the fraction of records

missing species’ identification shows an overall increase in the

last 120 years, this trend has actually reversed since the 2000s

(Figure S2). This result is consistent with previous analyses of

the GBIF dataset35 and shows that potential loss of taxonomic

expertise cannot explain the decline in bee record diversity

seen in the last two decades.
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Most continents contribute to recorded species decline
Next, we explored the geographic distribution of the dataset by

subsetting the data by continent and repeating the analyses.

Overall, GBIF has a strong bias toward North American and Eu-

ropean records,37 and this bias results in a very uneven contribu-

tion of each continent to the decadal number of records (Fig-

ure S3). North America (including Central America and the

Caribbean) has the largest and most even representation of re-

cords across decades (between 46% and 75% of global re-

cords) and shows its steepest apparent decline in species rich-

ness between the 1990s and the 2010s (Figure S4). In contrast,

Europe shows two separate periods of decline, one between

the 1960s and the 1970s and a more recent drop between the

1980s and 1990s, but stabilizes afterward (Figure S4). Africa ap-

pears to show a sustained fall in species richness since the

1980s, whereas in Asia the decline seems to have started two

or three decades earlier (Figure S4). The trend in South America

is less clear, although estimated richness also decreases in the

last 10 years of the dataset (Figure S4). Overall, analyses of the

dataset at a continental scale show heterogeneity in both the

proportional and the absolute contributions to the records and

in the timing and magnitude of the decline in species richness.

However, despite large differences in data availability, all conti-

nents except for Oceania seem to be contributing to the

observed global decline in species richness of bee records.

Relative species representation is increasingly uneven
A global decline in bee record diversity could relate to a propor-

tional decrease in bee abundance so that rare species become

rarer or even extinct and abundant species become less abun-

dant. Alternatively, the less abundant species could be declining

strongly, whereas abundant speciesmight be declining at a lower

rate or even thriving. These different scenarios are expected to

leave a distinctive signature in the temporal pattern of relative re-

cord abundances. Under the first scenario, the sharp decrease in

species richness estimates should not be accompanied by a

decrease in evenness, a measure of how equally total record

abundance is partitioned among species, whereas under the sec-

ond scenario there should be a parallel decrease in record even-

ness. As expected from the hypothesis of an abundance-related

differential species decline, plotting Pielou’s index (a common

measure of evenness45) per year of bee records shows a strong

decreasing trend since the 1990s for both datasets (Figure 3).

Therefore, this decline in species richness of records can relate

to a global change in how an invariant bee diversity is sampled,

leading to more infrequent reporting of many species and much

more frequent reporting of a few other species. Alternatively,

this trend of decreasing evenness can reflect a true global biolog-

ical phenomenon by which thousands of species are becoming

too rare to be sampled while fewer species are becoming domi-

nant and perhaps even increasing in abundance. These two alter-

natives are not mutually exclusive, but the global trend of

decreasing evenness is consistent with reported regional trends

of increasing dominance by one or a few bee species associated

with large-scale anthropogenic disturbance.46,47

Global records agree with regional bee decline reports
Our results support a hypothesis of overall decline in bee diversity

at a global scale. If trends in species richness of GBIF records are
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reflecting an actual trend in bee diversity, then this decline ap-

pears to be occurring with distinctive characteristics in every

bee family and on most continents. Interestingly, this trend ap-

pears to be a relatively recent phenomenon that accentuated in

the 1990s, at the beginning of the globalization era, and continues

to the present. The globalization era has been a period not only of

major economic, political, and social change but also of acceler-

ated land-use transformation.48 Bees thrive in heterogeneous

habitats, even those driven by humans,18,49 where they find a di-

versity of floral and nesting resources. However, land devoted to

agriculture, particularly to monoculture, has expanded in several

regions of the world since the 1990s.48 This has led not only to

higher habitat homogeneity, which can relate by itself to more im-

poverished and spatially homogeneous bee assemblages,18,50

but also to higher use of pesticides andother agriculture chemical

inputs that have direct and indirect lethal and sublethal effects on

bee health.51 Effects of climate change on shrinking bee

geographical ranges have been also documented in Europe and

North America.4 Lastly, a booming international bee trade has

involved the co-introduction of bee pathogens, which may cause

bee decline, like in the emblematic case of the giant Patagonian

bumble bee, Bombus dahlbomii.52 These drivers can act syner-

gistically, which could have accelerated a process of bee decline.

Phylogenetic patterning in the trend of recorded species diversity

among the different bee families (Figure 2) suggests that different

lineages can be differentially affected by different drivers, most

likely via both their common geographical distribution and their

shared clade-specific biological and ecological traits.22,53,54

Associated with the declining trend of richness of species re-

cords is a trend of increasing dominance of records by a few

species. Increasing dominance by one or a few species can be

observed at the regional scale, like the case of Bombus terrestris

in Scandinavia within its native geographical range46 and in

southern South America within its invaded range55 or the west-

ern honeybee Apis mellifera in the Mediterranean.47 In particular,

the western honeybee has been introduced into every continent

except Antarctica from its original geographical range in Europe

and Africa. Although both domesticated and wild populations of

the western honeybee seem to be declining in several countries,

this species is still thriving globally.56 Correspondingly, an

increasing fraction of the total global bee records is composed

of Apis mellifera occurrences (Figure S5). A consequence of

increasingly less diverse and uneven bee assemblages could

be an increase in pollination deficits, causing a reduction in the

quantity and quality of the fruits and seeds produced by both

wild and cultivated plants. Less diverse bee assemblages at

both local and regional scales have been associated with lower

and less stable yields of most pollinator-dependent crops.13

GBIF is certainly not a source of systematically collected data,

and this should be borne in mind when interpreting the results of

our analyses.22,28,37,57,58 Spatial and temporal biases in collection

intensity (e.g., targeted programs might enrich the abundance of

specific species or groups at specific spans and regions) can

generate spurious trends. In our analysis, we counted every spe-

cies only once per year regardless of howmany records it had for

a given year; this filters out biases due to sporadic intensive sam-

pling campaigns. Biases introduced as a result of targeted collec-

tion efforts or local or regional events (e.g., changes in research

and conservation policies, economic downturns, and social un-
rest) are possible, yet most such biases tend to be spatially and

temporally restricted and are less likely to systematically affect

trends at the global, multidecadal scale of this analysis. Plausible

biases could enhance the appearance of a declining trend; others

might act to hide it. For example, an increasing tendency for col-

lectors targeting rare species would be expected to enrich the

number of species (unless many species are becoming so scarce

that they just cannot be found). By contrast, shifts in collection

trends (driven by changing museum priorities, restrictions on the

movement of biological material from biodiversity hotspots, de-

funding of natural history research and taxonomy, or the imple-

mentation of systematicmonitoring programs) could lead to a shift

away from rare to common species, thus creating a false signal of

decline in apparent species richness. Supplementation of dwin-

dling specimen collection data with exponentially growing citi-

zen-science observations is not devoid of issues either,28,35,59

including less reliable species identification and a strong bias to-

ward sampling well-populated, more accessible areas rather than

more remote and potentially more biodiverse areas (which could

result in observing a general declining trend that is actually driven

by species being lost mostly in urban and suburban areas).

Although focusing on the presence or absence of species across

large areas may make our analytical approach more robust to

many of these sources of bias, they are not to be dismissed,

and thus results should be approached with caution.

Despite the above concerns, and consistent with the hypoth-

esis of a global decline in recorded bee richness, our continent-

level analysis showed that regions with the best temporal and

spatial coverage (i.e., Europe and North America; Figure S3)

are the ones exhibiting the clearest signal of decline (Figure S4);

our results agree with several existing reports at local, national,

and subcontinental levels.14,16,17,41,60–65 Furthermore, none of

those biases can explain the noticeable phylogenetic contagion

seen in the trends (Figure 2) better than the fact that the hyme-

nopteran groups we analyzed have a considerable phylogenetic

signal in their ecology and life history traits and would be ex-

pected to show phylogenetic clustering in their response to

drivers of decline.54

Unsurprisingly, when data are disaggregated by country,

agreement between country-level results and existing reports im-

proves as the number of records increases. For example, our

data reflect a clear and continuous decline in bee diversity in

the United States60,61,64 (with over one million records) and a

decline in Brazil65 during the last two decades (�190,000 records)

but show no clear loss of richness in Great Britain (�25,000 re-

cords) and much uncertainty in an apparent trend in bee species

loss in Panama (�9,000 records) despite reports of bee decline in

all those countries14,16,17,66 (Figure S6). Interestingly, reports on

the decline of British bees are based on occurrence data that

are not publicly available, i.e., �300,000 records from the Bees,

Wasps & Ants Recording Society (http://www.bwars.com/).

This suggests that, in addition to data source heterogeneity, ob-

stacles to data mobilization are a major source of bias and inac-

curacy of results derived fromGBIF data, highlighting the need to

increase efforts to remove barriers to data sharing and encourage

funding agencies to implement policies that minimize data

sequestration while implementing a system of incentives to pro-

mote data sharing by privately funded natural history societies

and private collectors. Seeing that a larger number of records
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also reduces uncertainty is also encouraging since it implies that

a much better picture would be obtained as vast troves of infor-

mation currently held within institutional and private collections

become digitized and added to the public domain. For example,

a recent specimen record digitization effort from the collections of

a singleChilean institution has increased 4-fold the number of bee

records for this South American country,67 proving that even a

relatively modest investment can yield a sizable improvement in

occurrence record numbers of data-deficient regions. Thus,while

the inherent heterogeneity and biases of aggregated datasets

such as those offered by GBIF may make them unreliable as a

direct (i.e., unfiltered or uncorrected) data source of predictive

models, they can still be used within a hypothesis-driven frame-

work to test whether bees (or any other taxon) as a group are

declining worldwide. In this context, our results largely agree

with the hypothesis that current regional reports of declining

bee diversity reflect a global phenomenon.
Conclusions
One of the most important pieces of missing information from the

IPBES Assessment Report on Pollinators, Pollination and Food

Production68 was the lack of data on global bee decline, despite

the many local and few regional reports pointing out that this

decline could reflect a global phenomenon. With all of its short-

comings, GBIF still is probably the best global data source avail-

able on long-term species occurrence and has the potential to

contribute to filling this critical knowledge gap. Our analysis sup-

ports the hypothesis that we are undergoing a global decline in

bee diversity that needs the immediate attention of governments

and international institutions.Under themost optimistic interpreta-

tion—that bees are not declining and that the trendswefind are an

artifact of heterogeneous data collection—our results would indi-

cate that global efforts to record and monitor bee biodiversity are

either decreasing over time or becoming increasingly focused on

widespread species and/or outside biodiversity hotspots. Howev-

er, given the current outlook of global biodiversity,4,5,10,12 it ismore

likely that these trends reflect existing scenarios of declining bee

diversity. In the best scenario, this can indicate that thousands of

bee species have become too rare; under the worst scenario,

they may have already gone locally or globally extinct. In any

case, a decline in bee diversity driven by either increasing rarity

or irreversible extinction will affect the pollination of wild plants

and crops and have broader ecological and economic conse-

quences.8,12 In this context, plans to establish national monitoring

programs for native bees (as recently proposed for the United

States) could help fill the information gaps and perhaps serve as

a model for a more global effort.69 Slowing down and even

reversing habitat destruction and land conversion to intensive

uses, implementing environmentally friendly schemes in agricul-

tural and urban settings, and creating programs to re-flower our

world are urgently required. Bees cannot wait.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and code should be directed to

and will be fulfilled by the lead contact, Eduardo E. Zattara (ezattara@

comahue-conicet.gob.ar).
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Materials availability

This study did not generate new unique materials.

Data and code availability

Occurrence record data used in this paper can be downloaded from https://

doi.org/10.15468/dl.ysjm4x; original sources are traceable via https://GBIF.

org. The R language scripts used for analyzing the data and reproducing re-

ported results and plots are available at http://doi.org/10.5281/zenodo.

4312055; this code is open and can be used and/or modified for analyzing up-

dated datasets and additional taxa.
Dataset

An initial query to the database of occurrence records at GBIF (http://www.

gbif.org) using the filters [Scientific Name = ‘‘Hymenoptera’’, Basis of Record =

‘‘PRESERVED_SPECIMEN’’ | ‘‘HUMAN_OBSERVATION’’, Year <2020] on

May 7, 2020, resulted in 9,176,688 total records involving 2,374 datasets.34

Data were downloaded as a text file and filtered for records identified to

species levels and belonging to Anthophila (defined as the families Melittidae,

Andrenidae, Halictidae, Colletidae, Megachilidae, and Apidae; 3,459,086 re-

cords). We also retrieved records for two closely related families of apoid

wasps (Crabronidae and Sphecidae; 283,331 records) or true ants (Formici-

dae; 1,121,857 records). Phylogenetic relations among all nine of these fam-

ilies follow recent phylogenomic results.40
Analyses

Data were analyzed with a customized script written and executed within the R

computing environment.70 The complete annotated script can be used to fully

reproduce all results or be adapted to re-run the analyses on other datasets.71

Data were processed with the tidyr,72 dplyr,73 and data.table74

packages.

After records without ‘‘year’’ data were removed, yearly counts of records

and species were plotted with ggplot2.75 We tested the significance of a

negative trend by fitting yearly counts of records, species, collections, insti-

tutions, and datasets with a generalized least-squares model with the

formula sp � year + records + collections + institutions +

datasets and an autoregressive-moving average autocorrelation structure

of order (1,0). Then, each year was assigned to a 10-year period termed

‘‘idecade’’ (for interdecade) corresponding to a regular decade shifted

4 years into the past (e.g., the 1990s idecade spans 1986–1995).

Records by species and idecade were counted and stored in a matrix of

m species 3 7 idecades (1950s–2010s). We used this matrix as abundance

data input for the iNEXTfunction of the iNEXT package39 to estimate rare-

faction-based iNEXT curves and Chao1 asymptotic estimators of species

richness.38 We also compared the asymptotic estimator of species richness

for each family with the total number of species listed for each family in the

taxonomic framework of the Integrated Taxonomic Information System

(http://www.itis.gov).

To estimate potential biases caused by changes in taxonomic expertise

over time, we re-filtered the initial GBIF query without excluding records

without a species ID and then counted the number of records with or

without a species ID per year.35 To analyze trends at the continental level,

we added a ‘‘continent’’ field to the base dataset via table joining to a list

of countries, country codes, and continents from https://datahub.io/

JohnSnowLabs/country-and-continent-codes-list. We then repeated the

analyses by splitting the dataset by continent. Continent- and country-

specific shapes were taken from https://github.com/djaiss/mapsicon. To

show trends in equitability of species abundance across records over

time, we calculated Pielou’s evenness index,45 J = Spiln(pi)/log(S), for

i = 1 to S, the total number of species, for each year between 1900 and

2018 by using the diversity functions from the package vegan.76 The

contribution of a given species (e.g., Apis mellifera) was calculated as yearly

number of the species records divided by the total number of records for

that year and plotted as a function of year.
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Barahona-Segovia, R.M., Arbetman, M.P., Montalva, J., Garibaldi, L.A.,

Inouye, D.W., et al. (2019). Coordinated species importation policies are

needed to reduce serious invasions globally: the case of alien bumblebees

in South America. J. Appl. Ecol. 56, 100–106.
122 One Earth 4, 114–123, January 22, 2021
53. De Palma, A., Abrahamczyk, S., Aizen, M.A., Albrecht, M., Basset, Y.,

Bates, A., Blake, R.J., Boutin, C., Bugter, R., Connop, S., et al. (2016).

Predicting bee community responses to land-use changes: effects of

geographic and taxonomic biases. Sci. Rep. 6, 31153.

54. Bartomeus, I., Ascher, J.S., Gibbs, J., Danforth, B.N., Wagner, D.L.,

Hedtke, S.M., and Winfree, R. (2013). Historical changes in northeastern

US bee pollinators related to shared ecological traits. Proc. Natl. Acad.

Sci. USA 110, 4656–4660.

55. Geslin, B., and Morales, C.L. (2015). New records reveal rapid geographic

expansion ofBombus terrestris Linnaeus, 1758 (Hymenoptera: Apidae), an

invasive species in Argentina. Check List 11, 1620.

56. Aizen, M.A., and Harder, L.D. (2009). The global stock of domesticated

honey bees Is growing slower than agricultural demand for pollination.

Curr. Biol. 19, 915–918.
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Supplemental Figures 
 

Figure S1. Correlation of family species richness values between asymptotic estimators and total known 
species. Related to Figure 2. 

 
While often underestimating the known richness of each family, Chao’s asymptotic estimators of species 
richness based on all-times GBIF global records of preserved specimens show a linear correlation with actual 
species diversity. The dotted line shows the identity diagonal. ITIS stands for Integrated Taxonomic Information 
System (www.itis.gov). 
  



   

 

Figure S2. Fraction of the dataset records that lack a species ID. Related to Figure 1. 

 
Points show the proportion of records unidentified at the species level in a given year, relative to the total 
number of records for that year. The curve shows a loess-smoothed trend line with a smoothing parameter α = 
0.75. 

 
  



   

 

Figure S3: Contribution by idecade of each continent (Antarctica excluded) to the full bee record dataset. 
Related to Figure 1. 

 

 
(A) Absolute number of GBIF records with a species ID for each continent, grouped by idecade since the 
1950’s. (B) Relative contribution of each continent to worldwide idecadal GBIF records with a species ID. 

 
  



   

 

Figure S4: Trends shown in GBIF records for each continent. Related to Figure 1 

 
The left two rows of plots show number of yearly bee records and species in GBIF (blue: full dataset; red: 
specimens-only dataset); the right two rows show Chao’s interpolation/extrapolation curves based on the 
specimens-only dataset grouped every ten years (idecades) for the period 1946-2015 and bar plots of the 
asymptotic estimates of richness by idecade for the same period (error bars mark upper and lower 95% 
confidence intervals). 
  



   

 

Figure S5: Representation of the honeybee Apis mellifera is increasing since the year 1900. Related to 
Figure 3. 

 
Fraction of global records of preserved specimens at GBIF represented by the honeybee Apis mellifera since the 
year 1900. Points represent yearly proportion of total records belonging to A. mellifera (cyan: full dataset; red: 
specimens-only dataset). Lines show respective loess fit curves with a smoothing parameter α = 0.75. 

  



   

 

Figure S6: Reliability of trends shown in records of GBIF preserved specimens for specific countries 
increases with the number of records. Related to Figure 1. 

 

The left two rows of plots show number of yearly bee records and species in GBIF for each country – fitted 
trends are loess curves with a smoothing parameter α = 0.75; the right two rows show Chao’s 
interpolation/extrapolation curves based on records grouped every ten years (idecades) for the period 1946-2015 
and bar plots of the asymptotic estimates of richness by idecade for the same period (error bars mark upper and 
lower 95% confidence intervals). 
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