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Glassy dynamics of a polymer monolayer on a
heterogeneous disordered substrate

Raffaele Pastore*a and Guido Raos*b

We present molecular dynamics simulations of a polymer monolayer on randomly functionalized

surfaces that are characterized by different fractions of weakly and strongly attractive sites. We show

that the dynamics slow-down upon cooling resembles that of a strong glass-forming liquid. Indeed, the

mean-square displacements show an increasingly lasting subdiffusive behaviour before the diffusive

regime, with signs of Fickian yet not Gaussian diffusion, and the dynamic correlation functions exhibit a

stretched exponential decay. The glassy dynamics of this relatively dilute system is dominated by the

interaction of the polymer with the substrate and becomes more marked when the substrate composition is

heterogeneous. Accordingly, the estimated glass transition temperature shows a non-monotic dependence

on surface composition, in agreement with previous results for the activation energy and with an analysis

of the potential energy landscape experienced by the polymer beads. Our findings are relevant to the

description of polymer–surface adhesion and friction and the development of polymer nanocomposites with

tailored structural and mechanical properties.

1 Introduction

The interaction of polymers with solid substrates is relevant
for a wide range of problems and applications, including
adhesion,1 friction2 and nanocomposites3,4 (in the latter case,
the interaction occurs at the internal interface, between the
polymer matrix and the nanoparticles). In addition, polymer
brushes can play an important role in the adsorption and
the assembly of nanoparticles at liquid interfaces.5,6 Similar
problems occur everywhere in molecular biology and living
organisms, as exemplified by biocomposites (e.g. bone), bio-
mineralization and biopolymer-cell recognition. Due to their
pervasiveness and intrinsic interest, these issues have been
extensively studied since the early days of polymer physics. It is
now well established that the interaction of a single chain or a
polymer melt with a solid surface is usually accompanied by
major changes in their statistical conformation and dynamics –
see ref. 7–10, for example – and that ‘‘quenched’’ disorder in
the polymer sequence (copolymers) or on the surface (chemical
heterogeneity and roughness) can also play a major role.11–13

One of the most important indicators of the properties and
potential use of a polymeric material is its glass transition
temperature, Tg.14 A bulk amorphous polymer is said to be
rubbery above its Tg, glassy below it. The neighbourhood of a

solid substrate may either increase or decrease the polymer Tg

with repect to the bulk value, depending on the nature and
strength of the polymer–substrate interactions.15–23 Similar effects
are also seen in nanocomposites,24 where they are actually
amplified due to the high extension of the interfacial region
between the polymer and the nanoparticles.3,4,25 Several aspects
of the mechanical properties of elastomeric nanocomposites
(filled rubbers) can indeed be interpreted on the basis of a two-
phase model, whereby the polymer chains within a few nano-
metres from the nanoparticles are glassy, whereas those away
from them have a rubbery response, similar to that of the bulk,
unfilled polymer. While the fundamental understanding of the
glass transition is still a major open issue in condensed matter,26

it is also interesting to investigate the behaviour of glassy systems
in these technologically relevant situations.

Many glass forming materials, such as molecular liquids,
colloids and polymer melts, can be suitably modeled by systems
of spheres interacting by a combination of Lennard-Jones and
harmonic or FENE (Finitely Extensible Non-linear Elastic)
potentials, respectively representing the bonded and non-bonded
interactions.27 For these systems, glassy dynamics typically
emerges upon cooling at rather high densities. Models of bulk
and confined polymer melts (in 3D and quasi-2D, respectively)
approaching the glass transition temperature are usually equili-
brated at zero or positive pressures, yielding monomer number
densities around r C 1 or slightly larger.28,29 Here we show that
the glassy dynamics can be relevant for polymer chains adsorbed
on solid substrates – a common situation for many of the
applications mentioned above – even in the case of a rather
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dilute system. Previous simulation work demonstrated that
glassy behaviour can be brought about also by strong chemi-
sorptive interactions, which often occur on metallic surfaces,30

and that there can be significant differences between the
glassy polymer dynamics on a ideally flat substrate and on an
atomically structured one.31 Following a previous work by one
of us,32 in this paper we have carried this idea one step further
by considering the emergence of glassy dynamics on a chemi-
cally heterogeneous surface. For comparison, we have also investi-
gated the behaviour of the same polymer system on a homogeneous
substrate, which can be either perfectly smooth or have some
atomic-scale roughness. We find that the polymer on the flat
substrate has a trivial behaviour, with weak temperature depen-
dence and no glassy dynamics (see the Appendix). The glassy
behaviour appears only on a structured substrate and is enhanced
by heterogeneity. Upon cooling, the mean-square displacement of
the polymer chains displays an increasingly lasting subdiffusive
behaviour before entering the diffusive regime, with the distribution
of particle displacements highlighting a Fickian yet not Gaussian
diffusion. The autocorrelation of the Rouse Normal Modes decays
as a stretched exponential function, and, overall, the dynamics
resembles that of strong glass-forming liquids. This enables us to
estimate the glass transition temperature of the systems, evidencing
a non-monotonic dependence on the substrate composition. This
feature can be related to the characteristics of the potential energy
landscape experienced by the polymer segments.

2 Model and methods
2.1 Model

We performed equilibrium molecular dynamics (MD) simulations
of the model introduced in ref. 32 and 33. Briefly, the systems
contain several flexible polymer chains of N ‘‘P’’ beads, connected
by harmonic springs and deposited on a solid surface (see Fig. 1).
The substrate consists of a single layer of two types of atoms,

strongly ‘‘S’’ and weakly ‘‘W’’ interacting, rigidly arranged on a
square planar lattice, at a height z = 0.0. Substrates characterized
by different compositions were generated by randomly assigning
the type to the surface atoms, with probability f for the S atoms
and 1 � f for the W ones. In particular, we sampled the whole
range of surface compositions, focussing on five evenly spaced
values of f, i.e. f = 0.00, 0.25, 0.50, 0.75, and 1.00. Two additional
values in between the latter, f = 0.12, 0.88, have also been
considered for some analysis. In our model, all non-bonded
interactions (between two particles p and q) are described by
truncated and shifted Lennard-Jones (LJ) potentials:34,35

VLJ
PQ(r) = 4ePQ[(s/r)12 � (s/r)6] � VPQ (1)

if r o rPQ, VLJ
PQ(r) = 0 otherwise. Here the subscript Q is the type

of particle q (i.e., P, W or S; particle p is always of P type,
as indicated), s is the hard-core diameter of all atoms (P, W,
and S), ePQ is the interaction strength (LJ well depth), rPQ is a
cutoff distance and VPQ an energy shift factor which exactly zeroes
the potential at the cutoff, thus preserving its continuity over all
distances. The interaction strength between polymer beads and
strong sites is twice the other strengths, i.e. ePP = ePW = e and
ePS = 2e. All polymer surface interactions are truncated at a cutoff
distance of rPW = rPS = 2.5s, whereas the polymer–polymer
interactions are truncated at rPP = 21/6s C 1.122s to produce a
purely repulsive potential. With this choice the chains adopt an
essentially two-dimensional ‘‘pancake’’ conformation. Units are
reduced so that s = m = e = kB = 1, where m is the mass of all
atoms and kB is the Boltzmann constant. Periodic boundary
conditions were adopted in the directions parallel to the surface
(x and y). We used n = 450 chains of length N = 16 and a substrate
of side L = 100, resulting in a density r = Nn/L2 = 0.72, and
investigated a temperature range T A [0.4, 1.2]. Temperature
was controlled by a standard Langevin thermostat,36 and the
resulting equations of motion were integrated with a (reduced)
timestep Dt = 0.01. The simulations were carried out with the
COGNAC code.39

A small constant force fz = �0.1 (in LJ units) was applied to all
the P beads along the z direction, gently pressing them against the
underlying surface to prevent any detachment and long-range
‘‘jumps’’ of the chains. This possibility has been seen experimen-
tally under appropriate conditions37,38 and sometimes we also
observed it in a preliminary set of simulations at the highest
temperatures (T Z 1.0). Thus, the force was applied in order to
simplify the analysis and interpretation of the MD results, by
preventing these rare adsorption/desorption events and concen-
trate exclusively on the planar dynamics of the adsorbed chains.
The force itself does not have a special physical meaning, but
we note that a similar effect could have been obtained by
running the MD simulations in an extremely narrow slit (width
comparable to the chains’ radius of gyration).

2.2 Mapping

To connect our results with real material properties, we adopted an
approximate mapping based on the following monomer proper-
ties:40 diameter s0 = 0.7 nm, mass m0 = 100 NA

�1 g, and interaction
energy e0 = 0.04 eV, where NA is the Avogadro’s number.

Fig. 1 Model system. An illustration of the investigated system with f =
0.75, at T = 0.7. The P chains are white, W surface sites red, S surface sites
blue. The black area corresponds to different replicas of the system’s unit
cell, with periodic boundary conditions.
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With this mapping, each bead would roughly correspond to 6–7
carbon atoms in a real polymer chain. This leads to resonable,
semiquantitative results for typical polymer properties. In
particular, the characteristic time and temperature of our
bead-and-spring model are t0 = (m0/e0)1/2 s0 = 3.56 ps and T0 =
e0/kB = 464.35 K, where kB is the Boltzmann constant. These will
be used to extrapolate the simulation results to experimental
time and temperature scales in Section 3.3.

3 Results
3.1 Diffusion

We start by illustrating the diffusive properties of the system.
The double logarithmic plots in Fig. 2 show the mean-square
displacements (MSD’s) hr2(t)i of the polymers’ center of mass
for different temperatures and surface compositions. At f = 0
(panel a) and high temperature the motion is diffusive from the
beginning, as hr2(t)i p t within our temporal resolution (MD
snapshots were saved at intervals Dt = 50, in our reduced LJ
units). At lower temperature, the long-time diffusivity decreases,
and the diffusive regime is preceded by a sub-diffusive one
which becomes increasingly lasting upon cooling. This beha-
viour is more marked at higher values of f (panels b, c and d),
inasmuch as at low temperature the diffusive regime is not
recovered within the simulated time. This resembles the inter-
mediate time plateau which is observed in the MSD of glass-
forming materials.42 This distinctive property of glass-formers is
typically ascribed to the particle crowding and to the consequent
cage-jump motion, recently investigated in detail in simulations
of molecular liquids43–45 and of concentrated polymer melts,28

and in experiments on colloidal glasses.46 In our case, the primary
cause of transient confinement is not the particle crowding, but
rather the interaction with the substrate. This not only slows
down the polymer motion as a result of the mutual affinity, but
also creates the heterogeneous energy landscape shown in Fig. 9.

In the case of a single-species substrate (f = 0 and f = 1), this
heterogeneity merely arises from the surface’s atomic discreteness.
Conversely, at intermediate values of f, heterogeneity is enhanced
by the presence of S and W particle clusters of different sizes and
shapes and therefore it might also be related to the random
percolation properties of the substrate. As a matter of fact, accurate
inspection of Fig. 2 reveals that at the lowest temperatures the sub-
diffusive regime is longer for f = 0.75 than for f = 1, suggesting that
heterogeneity does play an important role.

The last statement becomes more evident by focussing on
the diffusion constant D, defined by the long-time limit of
the MSD: lim

t!1
r2ðtÞ
� �

¼ Dt. Fig. 3 shows that its temperature

dependence is well described by the Arrhenius law,

D p exp(�Ea/T), (2)

characterizing activated processes in a static energy landscape. The
present data do not suggest any crossover to a super-Arrhenius
behaviour typical of fragile glass-formers (including bulk polymers),
in agreement with the scarce relevance of cooperative effects in our
dilute system (see Appendix). The estimated activation energy Ea,
shown in the inset of Fig. 3, has a maximum at f = 0.75, where the
diffusivities vanish faster. This confirms earlier findings by one of
us,32 the final numerical values being only slightly different since
here we have been more careful to exclude the sub-diffusive regime
and some truly glassy data points from the fits.47 The maximum in
the activation energy results from the combined effects of inter-
action strength and heterogeneity. The former increases linearly
between f = 0.00 and f = 1.00, while the latter is maximum between
f = 0.50 and f = 0.75, depending on the statistical quantity used to
describe it, as we discuss later (see Section 3.4).

As a final characterization of the diffusion properties, we
investigate the distribution of particle displacements, i.e. the
van Hove function,

Gs(x,t) = hd[x � |Xi(t) � Xi(0)|]i, (3)

Fig. 2 Mean square displacement as a function of time, for T = 1.2, 1.1, 1.0,
0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.45, and 0.4 from top to bottom. Different
panels report different values of f, as indicated. Dashed lines are guides to
the eye of slope 1.

Fig. 3 Diffusion constant D as a function of 1/T and at different values of f,
as indicated. Solid lines are Arrhenius fits to the data: D p exp(�Ea/T).
Inset: Activation energy Ea as a function of f.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
A

ug
us

t 2
01

5.
 D

ow
nl

oa
de

d 
on

 0
4/

09
/2

01
5 

12
:4

8:
12

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1039/c5sm01440a


Soft Matter This journal is©The Royal Society of Chemistry 2015

where Xi(t) is the center-of-mass position of polymer i at time t
along a given direction and the brackets indicate an ensemble
average. As typical of Brownian systems, at short times Gs(x,t)
decays exponentially and progressively evolves into a Gaussian as
time passes. Fig. 4a shows that this crossover is fully manifested
at high temperature, even for f = 0.75. Fig. 4b, instead, refers to
the lowest temperature where the diffusive regime can still be
observed within the simulated time. In this case, the van Hove
function retains the exponential tails at the longest available
time, i.e. well after the system enters the diffusive regime. This is
a typical manifestation of the Fickian yet non-Gaussian diffusion
found also in glass-formers and other soft materials.37,48

3.2 Conformational relaxation

The glassy dynamics of the polymer chains is reflected also by
their slowed-down conformational relaxation. This has been
investigated via the autocorrelation function Cp(t) = hQp(0)�
Qp(t)i of the Rouse Normal Modes (RNMs):49

QpðtÞ ¼
1

N

XN
j¼1

rjðtÞ cos
ð j � 1=2Þpp

N

� �
; (4)

where rj(t) is the position of monomer j at time t and p = 1, 2, . . .,
N � 1 is the mode index (the polymer center-of-mass formally
corresponds to mode p = 0). We first focus on the surface producing
the most glassy dynamics, f = 0.75. Fig. 5a shows Cp(t) for different
values of p at temperature T = 0.7, where the slowest mode still
relaxes over the simulated time. The decay is not consistent with a
simple exponential, as predicted by the original Rouse model, but it
is well described by a stretched exponential,

Cp(t) C exp[�(t/ts
p)b] (5)

with b r 1. This rather general form of relaxation in equili-
brium supercooled liquid has been related to heterogeneous
dynamics,50 while also compressed exponentials (b Z 1) can be
typical of non-equilibrium aging glasses.51 The predictions of
the Rouse model are respected in a melt of short polymer
chains, where excluded-volume, entanglement and hydrodynamic

interactions are negligible.49 Away from these conditions,
‘‘stretching’’ of the Rouse modes may occur for a variety of
reasons, such as the approach to the glass transition,52 dynamic
asymmetries in blends of flexible and stiff chains,53 geometrical
constraints due to randomly dispersed nanoparticles.54 In their
theoretical analysis of the Langevin dynamics of a polymer chain
in a random potential, Vilgis and coworkers13,55 also predicted
that the stretching of the Rouse modes should be accompanied by
an incomplete relaxation (i.e., lim

t!1
CpðtÞ ¼ fp whenever b o 1,

where fp 4 0 is the so-called non-ergodicity parameter for
mode p). Here, however, we find that this is not the case, possibly
because the disorder strength in our model is not high enough
(it could be increased by including more surface types, with a
greater disparity in interaction energy).

Fig. 5b shows that b is smaller at larger p (i.e., for more
localized modes), indicating a more heterogeneous relaxation,
while the RNM relaxation times increase by more than two orders
of magnitude, as reported in Fig. 5c. The decrease of b at larger p is
reflected in the deviation from the quadratic scaling tp p p�2

predicted by the Rouse model. Indeed, we find a quite strong
deviation tp p p�a, with a = 2.8 � 0.08. This agrees qualitatively
with the generalized Langevin Model, which predicted a = 2/b
under some simplifying assumptions.53 Incidentally, note the good
agreement between the relaxation times obtained from the fits
(ts

p, see again eqn (5)) and those measured on the relaxation curves
(tp, where Cp(tp) = 1/e). The RNM relaxation properties are ratio-
nalized by considering that mode p is associated with a typical
length-scale, as it describes the collective motion of chain sections
containing N/p beads. The most collective modes (small p) require
longer times to relax (large tp), but the heterogeneity of the surface
is averaged on the corresponding length scale, becoming less
relevant for the polymer dynamics (b C 1).

Fig. 6a shows the most collective mode C1(t) at different
temperatures. At very low temperature the dynamical

Fig. 4 Particle displacement distribution divided for its maximum Gs(x,t)/
Gs(0,t) at f = 0.75, at different times and temperatures, as indicated. Solid
lines are Gaussian fits exp(�x2/2l2(t)) to the data at the longest time.

Fig. 5 (a) RNM autocorrelation function Cp(t) at f = 0.75, T = 0.7 and p = 1,
2, . . ., 8, from right to left. Solid lines are stretched exponential fits to the
data, Cp(t) = exp[�(t/ts

p)b]. (b) Exponent b as a function of p. (c) Fitted ts
p and

measured tp relaxation time (Cp(tp) = 1/e) as a function of p. The solid line
is a fit to the data, tp p p�a (a = 2.8 � 0.08).
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correlation function does not relax on the simulated timescale,
precluding a reliable fit to the data. At larger T, b increases, as
shown in Fig. 6b, and becomes 1 in the high temperature limit,
where exponential decay is recovered. The very good agreement
between ts

1 and t1 is confirmed (see Fig. 6b). Although less
markedly, a similar scenario holds for different values of f.

The different panels of Fig. 7 show the temperature dependence
of the RNM relaxation times tp(T). The inverse diffusion constant
D�1 is reported for comparison. As distinctive of strong glass-
formers, the relaxation times follow the Arrhenius behaviour of
eqn (2), a kind of Stokes–Einstein relation being valid:

tp(T) p D�1(T). (6)

3.3 Glass transition temperature

The glass transition temperature Tg can be defined as the
temperature where the shear relaxation time exceeds a given time
threshold, compatibly with the available observation timescale.
In experiments this threshold is conventionally set at tg =
102–103 s,56 while in simulations it is constrained by the CPU
time, resulting in simulated times tsim

g substantially short
compared to experiments.

We obtain a rough estimation of the characteristic relaxation
time from the relation t = D�1.57 Fig. 2 clarifies that the equili-
brium systems become diffusive for t o t and that hr2(t)i C 1.
Thus t is the time required by a chain to diffuse a distance of
the order of the atomic spacing in the underlying surface,
which for our short polymers is also of the order of its radius
of gyration. In analogy of the mentioned definition of Tg and of
the approach recently used in ref. 23, we can obtain by extra-
polating the temperature at which t would reach an arbitrarily
large threshold, exploiting the robust Arrhenius behaviour
found on the investigated timescale. By using the mapping
described in Section 2.2, we convert the reduced MD units in
the experimental ones and obtain Tg from t(Tg) = tg = 100 s. This
procedure is illustrated in the two panels of Fig. 8, where the
corresponding MD units are also reported on the axes. Besides,
it is worth noticing that any (reasonably) different choice of
the time threshold or of the mapping scheme has a negligible
effect on Tg. Differentiating the Arrhenius law, it results dTg p

exp(�Ea/Tg)dtg and thus a change in tg is exponentially weakened,
resulting in a very small change in the estimated glass transition
temperature. For comparison, we also extrapolate Tsim

g , which is
akin to a ‘‘glass transition temperature’’ on the simulated time:
t(Tsim

g ) = tsim
g , where tsim

g C 10�5 s after the mapping.
Fig. 8 shows Tg and Tsim

g as a function of the surface
composition. Similar to the activation energy, both tempera-
tures have a maximum at around f = 0.75. We note that Tsim

g is

Fig. 6 (a) C1(t) at f = 0.75, p = 1 and T = 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5,
and 0.4 from left to right. At low temperature the correlation function does
not decay within the simulated time. Solid lines are stretched exponential
fits to the data, Cp(t) = exp[�(t/ts

p)b]. (b) Exponent b, (c) ts
p and tp as a

function of T.

Fig. 7 RNM relaxation times tp for different values of p, and inverse
diffusion constant D�1 as a function of the inverse temperature. The
different panels report different values of f, as indicated. Dahed lines are
Arrhenius guides to the eye p exp(�Ea/kBT).

Fig. 8 (a) Relaxation time t = D�1 as a function of inverse temperature and
at different values of f, as indicated. The horizontal dashed lines mark the
typical experimental observation time tg and the simulation duration tsim

g ,
respectively. These timescales are used to define the experimental Tg and
numerical Tsim

g glass transition temperatures, from the intercepts with the
Arrhenius fits (solid lines). (b) Tg and Tsim

g as a function of f. The horizontal
dashed line marks the lowest investigated temperature.
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higher than the lowest investigated temperature, for f 4 0.25.
This is consistent with the behaviour found for the MSD, which
at low temperature and large f no more reaches the diffusive
regime within the simulated time (see Section 3.1). Finally,
we point out that glass transition temperatures of the order of
50–100 K are low in comparison with typical elastomer values
(200–250 K), but this is understandable considering that ours is
a dilute system with purely repulsive polymer–polymer interac-
tions, and there are no conformational barriers in our bead-
and-spring model.

3.4 Potential energy landscape

We rationalize the system dynamics presented above, investi-
gating the potential energy landscape seen by the polymer
beads. In earlier publications by one of us,32,33 we did this by
sampling their adsorption energies, placing a P bead at a fixed
height above the centre of the squares formed by four neigh-
bouring surface atoms. The resulting histograms demonstrated
that (a) the average polymer–surface interaction energy increases
linearly from f = 0 to f = 1, and (b) the broadest distribution of these
energies is obtained for f = 0.5, which can thus be considered
the ‘‘most disordered’’ substrate. However, this procedure does
not yield any information about the energy barriers separating
the absorption energy minima, which are important for the
dynamics of the adsorbed polymers. Here we provide a more
extensive characterization, including information about the
energy barriers to diffusion.

Fig. 9 shows some representative plots of the potential
energy of a P bead, as it slides horizontally along a short section
of five different surfaces. These plots were obtained by running
MD simulations at a very low temperature (T = 0.01), constrain-
ing the y coordinate of the bead at a value corresponding to a
row of absorption minima, and its x coordinate to move at a
constant velocity vx = 1.0 (see the inset in Fig. 9). Thus, the z
coordinate of the bead is the only degree of freedom in these
simulations, and this oscillates up and down as the bead moves
from a minimum, to a maximum (actually, a transition state),
to the next minimum.41 As expected, the two homogeneous

surfaces have a periodic potential energy pattern, the energies
for f = 1 being twice as large as those for f = 0. Instead, those for
f = 0.25, 0.50, and 0.75 are non-periodic and irregular, reflecting
the randomness in the chemical identity (W or S) of the
underlying atoms. The average energy appears to decrease (i.e.,
to become more negative) as f increases, but it is hard to draw
further conclusions about the ‘‘roughness’’ in the potential
energy landscape by visual inspection of these plots.

Fig. 10 shows the histograms of the energies of the minima
(negative values, in green) and of the barriers separating these
minima (positive values, in red), as obtained by scanning across
a surface with f = 0.75. The information contained in the former
is essentially equivalent to that given in earlier papers.32,33

It shows that on a random, heterogeneous surface there can
be different types of absorption sites. The distribution can be
rather broad, but the energies are always comprised between
those on the f = 0 and f = 1 surfaces. Instead, the information in
the red histogram is new and demonstrates that on this surface
there is also a broad distribution of energy barriers. Unlike the
energy minima, these can be both smaller and larger than those
for f = 0 and f = 1, respectively. In particular, the large fraction of
high energy barriers can be expected to have a significant effect
on the polymer dynamics on this surface.

Table 1 collects some significant statistical properties, for all
the studied surfaces. The mean value of the potential hV i
changes linearly with f, and so does the mean barrier height
hVbi. Instead, the standard deviation sV (=h(V � hVi)2i1/2) is
maximum for f = 0.5, confirming that this is the ‘‘energetically
roughest’’. Notice that the values of hVi, hVbi and sV for the f = 1
surface are equal to twice those for the f = 0 one, suggesting a
linear relationship between activation energy and surface–
polymer interaction strength in the homogeneous case. Finally,
we give in Table 1 also the fraction bf of energy barriers which
are strictly larger than that on the most strongly interacting
surface, with f = 1. This appears to achieve its maximum

Fig. 9 Potential energy scans. Representative potential energy profiles,
for a P bead sliding along surfaces with different f’s, as shown in the inset.

Fig. 10 Potential energy histograms. Histograms of the energies of the
minima (in green) and of the barriers separating these minima (in red), for
the surface with f = 0.75. The vertical lines represent energies of the
minima (continuous) and of the barriers (dashed) of the homogeneous
surfaces, with f = 0 (blue) and f = 1 (black).
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between f = 0.75 and f = 0.88, where more than one in four
monomer ‘‘hops’’ involves such a large energy requirement. We
conclude that the latter is probably the most significant
descriptor of the surfaces, as it is the one that correlates best
with the polymer dynamics described in the previous sections.

In the present model, there are no correlations in the positions
of the surface sites. However, one could also think of situations
with S-rich and W-rich ‘‘patches’’ on the surface. The composi-
tion, the size and the shape of these patches would clearly be
important and affect the chain dynamics through the potential
energy landscape. For example, considering the situation with
f = 0.50, one could gradually switch from broad monomodal
(randomly intermixed case) to bimodal distributions of both the
energy minima and the barriers (fully segregated case). What
would be the consequences on the dynamics of an absorbed
chain? In principle, many situations are possible. Considering for
example a weakly segregated situation, the chains would clearly
tend to populate the S-rich patches, thus feeling an ‘‘effective
composition’’ corresponding to a locally enhanced value of f
(0.75, say). The result would be a shift of the maxima in the
effective activation energy and Tg, to a smaller f.

4 Conclusion

We have shown that the dynamics of a molecularly thin
polymer layer on a solid substrate becomes glassy upon cool-
ing, in spite of the fact that cooperative effects are not an
intrinsic property of the investigated polymer system, which is
indeed quite dilute. Instead, such a slow dynamics is induced
by the affinity for the surface and by the structural hetero-
geneity of the latter, which in our model are both controlled by
the fraction f of strongly interacting sites. Upon increasing the
affinity, the polymer motion becomes slower as in a more
viscous medium, while the structural heterogeneities create a
corrugated energy landscape which also interferes with diffu-
sion. The glassy dynamics is more marked at f = 0.75, as a sort
of compromise between interaction strength and heterogeneity.
In this respect, the most relevant description of the potential
energy landscape appears to be the fraction of large barriers,
where here ‘‘large’’ means exceeding the value for the most
strongly interacting surface. The spatial extension of the poly-
mer chains tends to average out the effects of heterogeneity, but

never completely, as polymer diffusion always proceeds through
a series of discrete hopping events involving individual mono-
mers or short chain sections.

The Arrhenius behaviour of the relaxation time suggests that
activated events are not cooperative at all or that their size is
temperature independent. In order to clarify this issue we plan
to investigate the segmental dynamics for different chain
length N. This includes not only the behaviour of much longer
polymer chains, but also N = 1, i.e. soft spheres. This simpler
system should allow us to identify more precisely the relation-
ship between structural heterogeneity of the substrate and
dynamical heterogeneity of the diffusing particles. It would
also be interesting to extend these studies to confined and
nanoparticle-filled polymer melts. With an increased polymer
density, we would expect to observe a growth in cooperativity
upon cooling, with fragile glass behaviour eventually taking
over the strong glass behaviour observed in the present case.
Another possibility is to examine surfaces with different geo-
metrical features (hexagonal instead of square planar arrange-
ments of atoms, say), to enhance the surface heterogeneity
(using eS/eW 4 2), or to introduce some ‘‘patchiness’’ on the
surfaces (correlations in the positions of W and S sites). In
principle, each of these variations should produce a shift in the
surface composition corresponding to the maxima in Ea and Tg.

Appendix: dynamics on a smooth
surface

In order to better appreciate the dynamic effects of the hetero-
geneous surfaces described in the main text, here we discuss
the behaviour of the same polymer system but interacting with
a perfectly smooth surface. In this case, the potential energy of
a polymer bead interacting with a surface at z = 0 is obtained
by integrating the pairwise Lennard-Jones interactions over all
the atoms making up the wall, and is a function only of its z
coordinate:58

UwallðzÞ ¼ 4prwew
1

5

sw
z

� �10
�1
2

sw
z

� �4
þUcutoff

� �
: (7)

The number density of wall atoms (rw) and their Lennard-Jones
parameters (ew and sw) have all been taken equal to unity, to be
comparable with the f = 0 discrete surface.

Fig. 11a shows that the mean square displacement is diffu-
sive at short time, even at very low temperature, without the
intermediate time subdiffusive behaviour found for the discrete
surfaces (cf. Fig. 2). Fig. 11b shows that the decrease of the
diffusion constant upon cooling is compatible with a power law,
D(T) p Tb (b = 1.18 � 0.05), i.e. much slower than the Arrhenius
behaviour found for the heterogeneous surfaces (cf. Fig. 3). The
decay with time of the RNM autocorrelation functions is fully
compatible with that predicted by the Rouse model, Cp(t) =
exp(�t/tp), even at the lowest investigated temperature. Indeed,
Fig. 11c shows that log(Cp(t)) at different p collapse on a straight
master curve when plotted as a function of t/tp. By contrast, for

Table 1 Potential energy statistics. Properties of the potential energy
landscapes, for different values of f. hVi and sV are the mean and standard
deviation of the potential energy. hVbi is the mean barrier height. bf is the
percentage of energy barriers which are larger than that on the surface
with f = 1

f hVi sV hVbi bf (%)

0.00 �3.97 0.34 0.95 0.0
0.12 �4.53 0.71 1.12 1.6
0.25 �4.98 0.85 1.23 4.3
0.50 �5.97 1.00 1.49 14.6
0.75 �6.97 0.93 1.73 27.6
0.88 �7.51 0.84 1.86 26.9
1.00 �7.97 0.69 1.97 0.0
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the heterogeneous surface we have found Cp(t) = exp(�t/tp)b, with
b o 1 decreasing at larger p (cf. Fig. 5).

Accordingly, major and even qualitative differences arise in
the case of a smooth surface, clarifying that glassy dynamics is
not an intrinsic property of this rather dilute polymer system,
but it results from the interaction with a discrete surface,
especially when this is also chemically heterogeneous.
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