

POLITECNICO DI MILANO

Fifth FreeFem workshop on Generic Solver for PDEs: FreeFem++ and its applications

NUMERICAL INVESTIGATION OF BUOY-ANCY DRIVEN FLOWS IN TIGHT LATTICE FUEL BUNDLES

Paris, December 12th, 2013

Giuseppe Pitton¹ Hisashi Ninokata Davide Baroli²

Energy department MOX, Mathematics department

¹giuseppe.pitton@gmail.com ²davide.ba

²davide.baroli@polimi.it

 Index
 Introduction
 Mathematical model
 Numerical method
 Results
 Conclusions

 OOOO
 OOOOOOOO
 OOOOOOOOO
 OOOOOOOOO
 OO

Gianluigi Rozza SIS All the people in the Cesnef-MOX collaboration: Marco Enrico Ricotti Lelio Luzzi Antonio Cammi Luca Formaggia M

SISSA-mathLab

Energy dep. Energy dep. Energy dep. MOX, Math dep.

Index	Introduction 0000	Mathematical model	Numerical method	Results 0000000000	Conclusions 00
INDEX					

- 1. Introduction
- 2. Mathematical model
- 3. Numerical method
- 4. Results
- 5. Conclusions

INTRODUCTION

Index	Introduction ●○○○	Mathematical model	Numerical method	Results 0000000000	Conclusions 00

NEW SODIUM FAST REACTORS

- Generation-IV International Programme
- breeder or burner reactors
- low pitch-diameter ratio
- natural convection

Reactor	<i>P</i> (mm)	$D \ (mm)$	P/D
BN-600	9.82	6.9	1.42
FFTF	7.2644	5.842	1.24
Monju	7.87	6.5	1.21
Phénix	7.8	6.65	1.17
Superphénix	10.5	8.5	1.24
4S	15.1	14	1.08

 Index
 Introduction
 Mathematical model
 Numerical method
 Results

 ○●○○
 ○○○○○○○○○
 ○○○○○○○○○○
 ○○○○○○○○○○○○○

EXAMPLE: SUPERPHÉNIX

Figure: Detail of fuel assemblies for the Superphénix reactor.

Index	Introduction ○○●○	Mathematical model	Numerical method 0000000	Results 000000000	Conclusions 00

NEW SODIUM FAST REACTORS

- low pitch-diameter ratio
- natural convection

Thermohydraulic consequences:

flow oscillations between subchannels

increased heat, mass and momentum transfer between subchannels

not shown by subchannel analysis codes (COBRA, RELAP,...) require modeling

 $\hookrightarrow \mathsf{can}\ \mathsf{CFD}\ \mathsf{support}\ \mathsf{subchannel}\ \mathsf{analysis}\ \mathsf{codes}?$

H. Ninokata, E. Merzari and A. Khakim, Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration. Nuclear Engineering and Design 239 (2009)

MATHEMATICAL MODEL

Index

Mathematical model

Numerical metho

Results 0000000000 Conclusions 00

COMPUTATIONAL DOMAIN

Krauss & Meyer experiment: 37-pin rod bundle P/D = 1.06too expensive

T. Krauss and L. Meyer, *Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle*. Nuclear Engineering and Design 180 (1998)

Index

Mathematical model

Numerical method

Results 0000000000 Conclusions

COMPUTATIONAL DOMAIN

Krauss & Meyer experiment: 37-pin rod bundle

P/D = 1.06

too expensive

 $\hookrightarrow \text{simulate a small} \\ \text{periodic part} \\$

T. Krauss and L. Meyer, *Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle*. Nuclear Engineering and Design 180 (1998)

Index	Introduction 0000	Mathematical model	Numerical method	Results 000000000	Conclusions 00		
MATHEMATICAL MODEL							
	The hypothe	eses					
	Incompre	essible flow					
	Stokesian flow Boussinesq approximation						
	The equatio	ns					

$$\begin{cases} \partial_t \boldsymbol{u} - \boldsymbol{u} \times (\nabla \times \boldsymbol{u}) - \nabla \cdot (2\nu \boldsymbol{D}(\boldsymbol{u})) + \nabla p_{\mathrm{T}} = \boldsymbol{g}\beta(\vartheta - \vartheta_0) \\ \nabla \cdot \boldsymbol{u} = 0 \\ \partial_t \vartheta + \boldsymbol{u} \cdot \nabla \vartheta - \alpha \Delta \vartheta = 0 \\ + \text{ b.c. and i.c.} \end{cases}$$

Index	Introduction 0000	Mathematical model	Numerical method	Results 000000000	Conclusions 00

VARIATIONAL FORM

Variational Navier-Stokes

Find $\boldsymbol{u} \in \mathbf{H}^{1}(\Omega)$, $\boldsymbol{u} = \boldsymbol{t}$ on Γ_{D} , $p \in \mathrm{L}^{2}_{0}(\Omega)$ such that $\forall t > 0$, $\forall \boldsymbol{v} \in \mathrm{H}^{1}_{0,\Gamma_{\mathrm{D}}}(\Omega)$, $\forall q \in \mathrm{L}^{2}(\Omega)$

$$\begin{cases} m(\boldsymbol{u}, \boldsymbol{v}) + a(\boldsymbol{u}, \boldsymbol{v}) + \widehat{c}(\boldsymbol{u}, \boldsymbol{u}, \boldsymbol{v}) + b(\boldsymbol{v}, p) = F(\boldsymbol{v}) \\ b(\boldsymbol{u}, q) = 0 \\ \boldsymbol{u}(t = 0, \Omega) = \boldsymbol{u}_0. \end{cases}$$

Variational forms introduced:

$$\begin{split} a(\boldsymbol{u},\boldsymbol{v}) &= (\nabla \boldsymbol{v}, \nu \nabla \boldsymbol{u}) \quad b(\boldsymbol{v}, p) = -(\nabla \cdot \boldsymbol{v}, p) \\ m(\boldsymbol{u}, \boldsymbol{v}) &= (\boldsymbol{v}, \partial_t \boldsymbol{u}) \quad F(\boldsymbol{v}) = (\boldsymbol{v}, \boldsymbol{f}) + \langle \boldsymbol{v}, \boldsymbol{d} \rangle_{\Gamma_{\mathrm{N}}} \\ \widehat{c}(\boldsymbol{w}, \boldsymbol{u}, \boldsymbol{v}) &= -(\boldsymbol{v}, \boldsymbol{u} \times (\nabla \times \boldsymbol{w})) \end{split}$$

Index	Introduction 0000	Mathematical model	Numerical method	Results 000000000	Conclusions 00
VAR	RIATIONAL F	ORM			
	Variational e	energy equatior	١		
	Find $\vartheta \in \mathrm{H}^1(\mathbb{R})$	$arOmega)$, $artheta=artheta_{ m D}$ on $arGamma_{ m D}$, such that		
	$\begin{cases} (\varphi, \mathbf{d}_t \vartheta) \\ \vartheta(t = 0) \end{cases}$	$(\vartheta, \varphi) = \langle \varphi, \varphi \rangle = \langle \varphi, \varphi \rangle$ $(\vartheta, \Omega) = \vartheta_0$	$\alpha \nabla \vartheta \rangle_{\Gamma_{\mathrm{N}}} \forall \varphi$	$\varphi \in \mathrm{H}^{1}_{0, \varGamma_{\mathrm{D}}}(\varOmega)$	

where

$$e(\vartheta,\varphi)=(\nabla\varphi,\alpha\nabla\vartheta)$$

where d_t denotes the total derivative:

$$\mathbf{d}_t \boldsymbol{\vartheta} = \partial_t \boldsymbol{\vartheta} + \boldsymbol{u} \cdot \nabla \boldsymbol{\vartheta}$$

Index	Introduction 0000	Mathematical model	Numerical method 0000000	Results 0000000000	Conclusions 00
WELL	-POSEDNES	SS			

Before trying to solve a problem, see if it is correctly posed

Hadamard definition

A problem is well posed if:

- a solution exists
- the solution is unique
- the solution depends continuously on data

Index	Introduction	Mathematical model	Numerical method	Results	Conclusions			
	0000	○○○○○●	0000000	0000000000	00			
\//FLL	WELL-POSEDNESS							

Proved for energy equation, if \boldsymbol{u} is sufficiently regular (Hille-Yosida).

For Navier-Stokes,

Caution

- existence of weak solutions \rightarrow shown
- uniqueness of weak solutions \rightarrow open problem (proved for small times or small data)
- regularity of weak solutions \rightarrow open problem (only partial regularity results)

NUMERICAL METHOD

Index	Introduction 0000	Mathematical model 0000000	Numerical method	Results 0000000000	Conclusions 00
GALER	KIN PROJE	CTION			

Choose two finite dimensional spaces:

 $oldsymbol{V}_h \subset \mathbf{H}^1(arOmega)$ for velocity $Q_h \subset \mathrm{L}^2(arOmega)$ for pressure

and project the continuous solution onto these spaces.

How to choose V_h and Q_h ? Many possibilities:

Lagrangian elements $\mathbb{P}_0, \ldots, \mathbb{P}_4$ Discontinuous elements $\mathbb{P}_{0dg}, \ldots, \mathbb{P}_{4dg}$ Boundary elements (implemented using \mathbb{P}_{0edge}) Mortar

•••

Index	Introduction 0000	Mathematical model 0000000	Numerical method	Results 000000000	Conclusions 00
GALER	KIN PROJE	ECTION			

Choose two finite dimensional spaces:

 $oldsymbol{V}_h \subset \mathbf{H}^1(arOmega)$ for velocity $Q_h \subset \mathrm{L}^2(arOmega)$ for pressure

and project the continuous solution onto these spaces.

How to choose V_h and Q_h ? Many possibilities:

Lagrangian elements $\mathbb{P}_0, \ldots, \mathbb{P}_4$ Discontinuous elements $\mathbb{P}_{0dg}, \ldots, \mathbb{P}_{4dg}$ Boundary elements (implemented using \mathbb{P}_{0edge}) Mortar

...

Index	Introduction 0000	Mathematical model	Numerical method	Results 0000000000	Conclusions 00

TRIANGULATION

With bamg and TetGen:

Index Introduction Mathematical model Numerical method Results Conclusions

FINITE ELEMENT METHOD

Write velocity and pressure as linear combination of the basis functions $\{\phi_i\}$ and $\{\psi_k\}$ for each element:

$$oldsymbol{u}_h = \sum_{j=1}^{N_u} u_j oldsymbol{\phi}_j \qquad p_h = \sum_{k=1}^{N_p} p_k \psi_k.$$

New unknowns: the nodal values $\{u_j\}$ and $\{p_k\}$. Substituting into variational Navier-Stokes, and projecting on each dof $(v_h = \phi_j, p_h = \psi_k)$:

 $\begin{cases} m(\boldsymbol{v}_h, \boldsymbol{u}_h) + a(\boldsymbol{v}_h, \boldsymbol{u}_h) + \widehat{c}(\boldsymbol{v}_h, \boldsymbol{u}_h, \boldsymbol{u}_h) + b(\boldsymbol{v}_h, p_h) = F(\boldsymbol{v}_h) \\ b(\boldsymbol{u}_h, q_h) = 0 \qquad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h, \, \forall q_h \in Q_h. \end{cases}$

FINITE ELEMENT METHOD

Still a nonlinear problem \hookrightarrow Implicit Euler in time + Picard linearization For each time step n + 1, solve the problem:

$$\begin{cases} \frac{\boldsymbol{u}^{n+1}}{\Delta t} - \frac{\boldsymbol{u}^n}{\Delta t} - \boldsymbol{u}^n \times (\nabla \times \boldsymbol{u}^{n+1}) - \nabla \cdot (2\nu \boldsymbol{D}(\boldsymbol{u}^{n+1})) - \nabla p_{\mathrm{T}} = \boldsymbol{g}\beta\vartheta^n\\ \nabla \cdot \boldsymbol{u}^{n+1} = 0\\ \frac{\vartheta^{n+1}}{\Delta t} - \frac{\vartheta^n}{\Delta t} + \boldsymbol{u}^n \cdot \nabla \vartheta^{n+1} - \alpha \Delta \vartheta^{n+1} = 0. \end{cases}$$

Index Introduction Mathematical model Numerical method cooccocco conclusions

Eventually, a linear algebra problem appeared:

$$\begin{bmatrix} \mathcal{C}^n & \mathcal{B}^T \\ \mathcal{B} & 0 \end{bmatrix} \begin{pmatrix} U^{n+1} \\ P^{n+1} \end{pmatrix} = \begin{pmatrix} G^{n+1} \\ 0 \end{pmatrix}$$

Main difficulties

- saddle point problem
- pressure locking (incompressibility)
- non symmetric matrix

Index	Introduction 0000	Mathematical model	Numerical method ○○○○○●○	Results 0000000000	Conclusions 00
CTNITT					

The algebraic formulation reads:

$$\begin{bmatrix} \mathcal{C}^n & \mathcal{B}^T \\ \mathcal{B} & 0 \end{bmatrix} \begin{Bmatrix} U^{n+1} \\ P^{n+1} \end{Bmatrix} = \begin{Bmatrix} G^{n+1} \\ 0 \end{Bmatrix}$$

Main difficulties

- saddle point problem
 - $\hookrightarrow \textit{bubble-stabilization on velocity}$
- pressure locking (incompressibility)
 → add penalization
- non-symmetric matrix
 → GMRES

Index	Introduction 0000	Mathematical model	Numerical method ○○○○○○●	Results 000000000	Conclusions 00	
TURBULENCE MODEL						

cannot resolve all the motions' scales (too expensive) ↔ solve only the large eddies, and model the small eddies

Smagorinsky LES

model the unresolved scales with subgrid diffusion:

$$s(\boldsymbol{v}_h, \boldsymbol{u}_h^n)\boldsymbol{u}_h^{n+1} = (\nabla \boldsymbol{v}_h, -2C_{\mathrm{S}}^2\Delta^2 | \boldsymbol{D}(\boldsymbol{u}_h^n) | \boldsymbol{D}(\boldsymbol{u}_h^n))\boldsymbol{u}_h^{n+1}$$

to be added to momentum balance equation similarly for energy balance equation:

$$(\nabla \varphi_h, \boldsymbol{h}) = -(\nabla \varphi_h, \frac{\nu_{\mathrm{T}}}{\mathrm{Pr}_{\mathrm{T}}} \nabla \vartheta_h^{n+1})$$

Index	Introduction 0000	Mathematical model	Numerical method	Results •000000000	Conclusions 00
GENE	RAI PARAN	IFTFRS			

Main data

- P/D = 1.06
- $\operatorname{Re} = 38754$
- Gr = 1181
- $q'' = 1.05 \cdot 10^4 \,\mathrm{Wm^{-2}}$

Software used: FreeFem++-mpi

 Index
 Introduction
 Mathematical model
 Numerical method
 Results
 Conclusions

 OCOCOCO
 OCOCOCOCO
 OCOCOCOCO
 OCOCOCOCO
 OCOCOCOCO
 OC

curved sides: no-slip for velocity and imposed heat flux for energy straight sides: periodic b.c.

Results A NOTE ON PERIODICITY

velocity: fully periodic periodic pressure and temperature are not physical \hookrightarrow decompose pressure and temperature:

$$p_{\mathrm{T}}(\boldsymbol{x},t) = \frac{\Delta p}{H} z + \widetilde{p}_{\mathrm{T}}(\boldsymbol{x},t) \qquad T(\boldsymbol{x},t) = \frac{\Delta T}{H} z + \widetilde{T}(\boldsymbol{x},t)$$

and impose periodic b.c. only on the fluctuating part \widetilde{p}_T , \widetilde{T} New equations:

$$\begin{cases} \partial_t \boldsymbol{u} - \boldsymbol{u} \times \nabla \times \boldsymbol{u} - \nabla \cdot (2\nu \boldsymbol{D}(\boldsymbol{u})) + \nabla \widetilde{p}_{\mathrm{T}} = \boldsymbol{g}\beta(\vartheta - \vartheta_0) - \frac{\Delta p}{H}\boldsymbol{\kappa} \\ \nabla \cdot \boldsymbol{u} = 0 \\ \partial_t \widetilde{\vartheta} + \boldsymbol{u} \cdot \nabla \widetilde{\vartheta} - \alpha \Delta \widetilde{\vartheta} = -\frac{\Delta T}{H} u_z \end{cases}$$

Figure: Profile of time averaged wall temperature as computed (left) and from the results of Krauss and Meyer (right).

Results 0000000000

AVERAGED TEMPERATURE

Figure: Time averaged fluctuating temperature along the mid-height slice plane.

 Index
 Introduction
 Mathematical model
 Numerical method
 Results
 Conclus

 0000
 0000000
 0000000
 0000000
 0000000
 0000000

TEMPERATURE TIME EVOLUTION

Oscillation frequency: 117 Hz, in line with experiment

 Index
 Introduction
 Mathematical model
 Numerical method
 Results
 Conclusions

 0000
 0000000
 0000000
 0000000
 0000000
 0000000

VELOCITY TIME EVOLUTION

Oscillation frequency: 117 Hz, in line with experiment

Index	Introduction 0000	Mathematical model	Numerical method	Results ○○○○○○●○○	Conclusions 00
COHE	RENT STRL	ICTURES			

Defined by Zaman and Hussain as

Connected, large-scale turbulent fluid mass with a phase correlated velocity over its spatial extent.

or, iso-value for the Q-factor:

$$Q = \Pi_{\nabla \boldsymbol{u}} = \frac{1}{2} (\boldsymbol{\Omega} \boldsymbol{\Omega} - \boldsymbol{D} \boldsymbol{D})$$

where

$$\boldsymbol{\varOmega} = \frac{1}{2} (\nabla \boldsymbol{u} - \nabla \boldsymbol{u}^T)$$
$$\boldsymbol{D} = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)$$

K. B. M. Q. Zaman and A. K. M. F. Hussain, *Taylor hypothesis and large-scale coherent structures*. Journal of Fluid Mechanics 112 (1981)

x Introduction

Mathematical mode

Numerical metho

Results

Conclusions

HOW TO TREAT THE CONVECTIVE TERM?

Problem	Matrix	RHS	Factorization	Solution	All
2d str A	11.72	0.595	8.99	20.74	47.36
2d str R	11.11	0.613	10.21	22.38	54.72
2d str L	7.09	9.265	6.268	19.73	49.95
3d str A	5.318	4.062	14.70	10.27	70.32
3d str R	5.570	6.497	15.90	10.59	73.15
3d str L	2.058	25.76	15.61	10.84	70.77
3d ustr A	4.186	0.997	15.93	10.48	41.55
3d ustr R	5.939	0.975	13.41	17.08	50.52
3d ustr L	3.739	28.80	16.88	9.498	78.56

 $\mathbf{A}: \boldsymbol{u} \cdot (\nabla \boldsymbol{u}) \quad \mathbf{R}: \boldsymbol{u} \times (\nabla \times \boldsymbol{u}) \quad \mathbf{L}: \frac{D\boldsymbol{u}}{Dt}$

Index	Introduction 0000	Mathematical model	Numerical method	Results ○○○○○○○○●	Conclusions 00
SCAL	ABILITY				

CONCLUSIONS

Index	Introduction 0000	Mathematical model	Numerical method 0000000	Results 0000000000	Conclusions
CONCL	USIONS				

Results agree quite well with experimental data:

- oscillations' frequency
- wall temperature distribution

Index	Introduction 0000	Mathematical model	Numerical method	Results 0000000000	Conclusions ●○
PERS	PECTIVES				

- full fuel bundle simulation
- domain decomposition
- improve turbulence modeling (VMS)
- POD in time and Reduced Basis for optimal control

THANK YOU FOR YOUR ATTENTION

QUESTIONS? SUGGESTIONS? NEW IDEAS?

THANK YOU FOR YOUR ATTENTION

QUESTIONS? SUGGESTIONS? NEW IDEAS?