

Increasing Stability of Meso/Micro Milling Cutting by means of Ultrasonic Vibration Assisted Machining

Paolo Parenti*, Chaneel I. Park**, Simon S. Park**, Massimiliano Annoni*

*Dept. of Mechanical Engineering, Politecnico di Milano **Dept. of Mechanical and Manufacturing Engineering, University of Calgary

Ultrasonic Vibration Assisted Machining

- **Chip Removal** (cutting kinematics and cutting action)
- Cutting force reduction (friction) •
- Machinable Materials (hard/brittle)
- **Burr formation**

Milling Process instability (Regenerative Chatter)

- Poor Surface finish
- **Reduced Productivity**
- **Excessive Tool Wear**
- **Tool Breakage**

• **Toll Wear** (including thermal and chemical)

Process Improvement

GOALS:

- To verify experimentally the force reduction by applying **UVAM** in different directions with very high vibration frequency
- To investigate the increased cutting stability with respect to the regenerative chatter phenomenon

Experimental Setup

Kern CNC machining center Spindle: 60000 / 150,000 rpm Resolution 0.1 µm Positioning tolerance ±1.0 µm Controller Heidenhain

to avoid

Effects on Cutting Stability

- **Cutting Coefficients reduction (rake angle)**
- **Tool dynamic modification (clamping)**
- **Increased Process damping**

Dynamic Charachterization

	0.30	!	!	!
	0.25	 · · ·		
obes Diagram	0.20	 · · · · ·		
Calculation	۳ ۳ ۵.15	 		/ i

End mill 2 Flutes Diameter=500µm Edge radius≈2µm Helix=30° / Clearance=10° Young's Module≈690Gpa

Piezo-Electric Actuators

3-Axial Vibration at 20KHz #2 **L**# Workpiece etup Aluminum Q tu Ð S S

 Reduction of cutting forces are measured through dynamometer during stable cutting

- Chatter detection is based on AE sensor/ Accelerometer
- Stability Lobes diagram is verified with and without application of UVAM technique

 Effects of high assisting frequency (>100KHz) are investigated and compared with lower frequency (20KHz) Process cutting modelling through Mechanistic and FEM approach are foreseen

Coupling (RC)

Receptance

Industrial exploitability of the solution is also addressed

RF Amplifier

Micro Engineering **Dynamics** Automation Lab (MEDAL)

Corresponding Authors:

Prof. Simon Park simon.park@ucalgary.ca http://www.ucalgary.ca/medal/ Tel: 403 220 6959

Prof. Massimiliano Annoni massimiliano.annoni@polimi.it http://www.mecc.polimi.it/ Tel: (+39) 02 2399 8536

