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Abstract— One of the measures for saving energy in man-
ufacturing is the implementation of control strategies that
reduces energy consumption during the machine idle periods.
Specifically, the paper proposes a framework that integrates
different control policies for switching the machine off when the
production is not critical, and on either when the part flow has
to be resumed or the queue has accumulated to a certain level.
A general policy is formalized by modeling explicitly the power
consumed in each machine state. A threshold policy is analyzed
and the optimal parameter is provided for an M/M/1/K system.
Numerical results are based on data acquired with dedicated
experimental measurements on a real machining centre, and
a comparison with common practices in manufacturing is also
reported.

I. INTRODUCTION

Finding technical solutions able to reduce the energy
consumption in manufacturing is becoming a challenging
goal. One of the most relevant measures for reducing energy
consumption at machine level is the implementation of
control strategies for the efficient usage of components by
minimizing processing time and non-value tasks [1]. This
paper proposes a framework for deciding the most suitable
energy state for the machine during non productive phases
using three control parameters. The machine is switched off
when the production is not needed because the part flow is
interrupted, then it is switched on when the production has
to be resumed or the machine has to be ready before the
arrival of a part.

II. BRIEF LITERATURE SURVEY

The power requirement of a machine tool can be divided
into two main components. A Fixed Power, demanded for
the operational readiness of the machine and independent
from the process, and a Load Dependent Power, demanded
to distinctively operate components enabling and executing
the main process [2]-[6]. At machine level the state control
can achieve significant savings because it aims at reducing
the fixed power consumption, which is required even if the
production is not requested. Indeed, the machine auxiliary
equipment keeps consuming energy during non productive
states. This generates a supply excess that could be reduced
by controlling the machine state. As a consequence, sev-
eral research efforts focused on the problem of controlling
production systems by scheduling startup and shutdown
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of machines to minimize total energy consumption. Some
research studies did not consider any warm-up transitory
when the machine tool is switched off. In order to give
some examples, Prabhu et al. [8] developed an analytical
model by combining an M/M/1 model with an energy
control policy. Considering firstly a station, they calculate
the time interval for switching the machine off during its
idle period, with respect to a target energy waste limit. In
this study, the machine switch-off accounts for a certain
idling power, but the switch-on is instantaneous once the
part arrives. Chang et al. [9] analyzed several real-time
machine switching strategies using energy saving opportunity
windows in a machining line under random failures. Other
research studies considered a deterministic and constant
warm-up duration whenever the machine is switched off.
Mouzon et al. [10] presented several switch-off dispatching
rules for a non-bottleneck machine in a job shop. Chen et al.
[11] [12] formulated a constrained optimization problem for
scheduling machines on and off modes in a production line
based on Markov chain modeling and considering machines
having Bernoulli reliability model. Sun and Li [13] proposed
an algorithm to estimate opportunity windows for real-time
energy control in a machining line under random failures.
Mashahei and Lennartson [14] proposed a control policy to
switch off machine tools in a pallet constrained flow shop.
The policy aims to minimize the energy consumption under
design constraints and considering two idle modes with de-
terministic warm-up durations. Frigerio and Matta [15] [16]
studied analytically several policies to control a machine with
deterministic warm-up. The policies are assessed in terms of
expected energy consumed and they are optimized under the
assumption of general arrival distribution. They also modeled
explicitly the warm-up time as dependent on the time period
the machine stays in a low power consumption state [17].

Queueing systems where machines may become unavail-
able for a period of time, due to a variety of reasons, are
called in the literature vacation queueing system. Excellent
surveys on vacation models have been reported by Doshi
[18], Takagi [19], Tian and Zhang [20], Ke et al. [21],
and, particularly, Tadj and Choudhury [22] focused on the
optimization problem. Yadin and Naor [23] proposed firstly
the so called N-Policy in a queueing system where the
machine becomes unavailable after a random closedown time
has elapsed from the end of a productive period, and the
service is resumed after a random warm-up time when the
queue length reaches a threshold N. They also provided an
approximate optimal solution that minimizes a cost-based
objective function. Baker [24] analysed the model intro-
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ducing exponentially distributed warm-up time for resuming
the service. With instantaneous exahustive switch-off, Sikdar
[25] analyzed a G/M/1/K queueing system and studied the
effects of model parameters on performance indicators. Ke
and Wang [26] proposed an algorithm in order to determine
the optimal value of N at minimun cost for a G/M/1 finite
queueing system. Another intuitive approach is given by the
T-Policy, where a customer that arrives to an empty system
starts a timer that counts down T time units until the machine
is activated. The combination of the two policies leads to
the hybrid NT-Policy where the machine will be reactivated
when either N customers have accumulated in the queue or
the first customer arrived has been in the queue for T time
units, whichever happens first. A variation of the NT-Policy
considers T as the time after the machine switch-off. In order
to give some examples, Feyaerts et al. [29] analyzed in the
discrete time the effects of an NT-Policy on an M/G/1 queue
with a reliable machine and no warm-up. Using fixed N
and T , they evaluated performances varying the arrival rate
by means of numerical examples. Ke analyzed an M/G/1
system with a random warm-up time and closedown time
[28], and he proposed an algorithm to find out the optimal
NT-Policy for an M/G/1 system with random warm-up time
[28]. A practical problem is used as numerical illustration of
algorithm application.

The literature analysis points out a lack of theoretical mod-
eling concerning the machine energy efficient control prob-
lem for systems under uncertainty. The problem of vacations
queueing system has been deeply developed without referring
to energy objective function. Moreover, vacation policies
have been assessed without giving a complete analysis on
where the policies perform efficiently. A queueing system
with a single machine tool where the buffer capacity is finite,
the warm-up time is not negligible, and the closedown time is
considered as an additional control parameter to be optmized
has not been studied yet. This paper studies a general
framework for energy oriented control of machine tools in
manufacturing, considering a new three-parameter control
policy—i.e., the TNT-Policy. The machine is controlled by
activating a transition from the on-service to the out-of-
service state—i.e., Switch-off command— based on a time
threshold τoff. A second transition from the out-of-service to
the warm-up state—i.e., Switch-on command— is activated
when the queue has accumulated to level N or according to a
time threshold τon. Referring to a real CNC machining center,
experimentally characterized to estimate the power demand,
an N-Policy is studied as a special case of the TNT-Policy.
Specifically, this work considers an M/M/1/K system with a
reliable machine tool and warm-up. The optimal conditions
are analyzed on the basis of a set of numerical cases built
to provide useful guidelines for practical implementation
of energy saving control policies. A comparison with the
common practices in manufacturing is also reported.

III. ASSUMPTIONS

A workstation composed by a finite input buffer and a
single machine working a single part type is considered as

the system to be controlled. This assumption is valid for
machines specialized for one single part-type or for a family
of similar items, and for machines working large batches
while considering the single batch.

The machine can be in one of the following states: out-
of-service, on-service, warm-up and working. In the out-of-
service state—i.e., the stand-by state— some of the machine
modules are not ready, indeed, only the emergency services
of the machine are active while all the others are deactivated.
In this state, the machine cannot process a part being in
a kind of “sleeping” mode. The power consumption of the
machine when out-of-service is denoted with xout, generally
lower compared to that in the other machine states. In
the on-service state—i.e., the idle state— the machine is
ready to process a part upon its arrival. The machine power
consumption when on-service, denoted with xon, is due to
the activation of all machine modules that have to be ready
for processing a part. From the out-of-service to the on-
service state the machine must pass through the warm-up
state, where a procedure is executed to make the modules
suitable for processing. The warm-up procedure has duration
and power consumption equal to twu and xwu, respectively.
The value xwu is generally greater compared to that in the
other machine states. The duration twu of the warm-up is
assumed to be a random value because the machine can
request different times to reach the proper physical working
condition according to system and machine conditions—
e.g., room temperature. In the working state the machine is
processing a part and the requested power changes according
to the process.

We assume the machine has an input buffer with finite
capacity K controlling the release of parts to the machine.
In more details, a part is sent to the machine only during
its idle or non productive periods, otherwise, the part has
to wait in the queue with a First-Come First-Served (FCFS)
service rule—the FCFS assumption does not influence the
developed analysis. After the completion of the process the
part leaves the system. The number of parts in the system
is represented as the integer variable n ∈ [0,K +1], because,
given the buffer capacity K, the system can be either empty
(i.e., n = 0), or not-empty (i.e., 0 < n ≤ K + 1). If a part
arrives when the machine is busy—this can happen when
the machine is in out-of-service, on-service, or executing the
warm-up procedure— there is a penalty. We express this
penalty by the power consumption xq necessary for keeping
a part waiting in the queue. An infinite buffer is assumed
downstream the machine.

For simplicity, the machine is assumed to be perfectly
reliable, thus failures cannot occur; this assumption can be
relaxed without requiring large extensions to the developed
analysis. The interarrival time is a random variable ti with
the probability density function (PDF) fi(ti) modeling the
time Ti between two part arrivals at the station—where ti is
the realization of Ti. Similarly, the machine processing time
Tp is random with the PDF fp(tp). The stochastic processes
involved in the system are assumed to be independent of
each other. The transition between two states can be triggered



by the occurrence of an uncontrollable event—e.g., the part
arrival— or a controllable event. During the idle periods
of the machine it is not necessary to keep all the machine
modules active, and the machine can be moved, with a proper
control, into the out-of-service state characterized by a low
power consumption.

IV. TNT CONTROL POLICY

A general control policy is now presented describing the
system behavior in terms of machine states and transitions.
First of all, the number of parts in the system varies accord-
ing to the part arrivals and departures as represented in Fig.
1. Upon an arrival the value n increases until the station is
full (n = K+1) and cannot contain more parts. Furthermore,
each departure decreases n until the station is empty (n = 0).
This behaviour is not affected by the control policy applied.

Policy 1 (TNT-Policy): If the buffer is empty,
switch off the machine after a time interval τoff
has elapsed from the last departure. Then, switch
on the machine when the number of parts in the
queue reaches a proper level N or after a time
interval τon has elapsed from the last departure—
i.e., when τon−τoff has elapsed from the switch-off
command.

The behavior of the machine is represented in Fig. 2. From
the initial on-service state, two situations may happen: both
an arrival occurs and the machine starts working the part, or
the time interval τoff has elapsed and the machine is switched
off. During the processing time, other parts can enter in the
system until the station is full (n≤ K +1) and the machine
continues processing the parts in the queue until the last
part is cleared from the system. Once in out-of-service, the
machine is warmed up when the number of parts in the queue
exceeds a certain level N ∈ [1,K]. Otherwise, after τon the
machine can be switched on in advance to be ready to process
the next part, even if the queue did not accumulate N parts.
In order to be time consistent, the switch-on command has
to be issued after the switch-off command [16]:

τon ≥ τoff (1)

If a part arrives while the machine is in the warm-up state, the
part must wait in the queue. The queue level cannot exceed
buffer capacity K. When the warm-up procedure ends the
machine enters in the on-service state, if the station is empty
(n = 0), or in the working state, otherwise. The control for
Policy 1 is a1:

a1 = {τoff;N;τon} (2)

that is a vector composed by the three control parameters.
As special cases, four simpler strategies of managing a

machine are discussed. Policy 2 to Policy 4 have been
analyzed in previous works [15]-[17] and represent situations
in which the machine is controlled according to timed-
constrained control parameters, i.e., when the threshold level
N = 1.

Policy 2 (Always on): Stay in the on-service state
after the departure of a part.

n=n+1 n=n+1
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Fig. 1. Station state according to the number of parts in the system n
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Fig. 2. Machine state model with TNT-Policy active

The machine stays in the working state as long as there are
new parts available in the buffer and returns on-service when
the station is empty. Indeed, for every value of the threshold
(N = ∗) the machine is kept on-service because the switch-off
command is never issued. The control becomes:

a2 = {∞;∗;∞} (3)

Policy 3 (Off): Switch off the machine after the
departure of the last part in the station.

As soon as a part enters in the system, the machine starts
working and it serves the train of custormers who may arrive
while it is engaged. After the last departure, the machine
moves immediately to the out-of-service state and returns
on-service at the next part arrival. The control is:

a3 = {0;1;∞} (4)

Policy 4 (Switching): Switch off the machine after
a time interval τoff has elapsed from the last
departure. Then, switch on the machine after a time
interval τon has elapsed from the last departure—
i.e., after τon−τoff from the switch-off command—
or when a part arrives.

Similarly to Policy 1, the machine is switched off-on accord-
ing to two time control parameters: τoff for the switch-off,
and τon for the switch-on. Moreover, the machine is warmed
up upon the first arrival, if this event occurs first:

a4 = {τoff;1;τon} (5)

Policy 5 (N-Policy): Switch off the machine upon
the departure of the last part in the station. Then,
switch on the machine when the queue has accu-
mulated to level N.

Similarly to Policy 3, the machine is switched off as soon as
the station empties. But, once in out-of-service, the machine
is warmed up only upon the N-th arrival:

a5 = {0;N;∞} (6)
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Fig. 3. System state model. The number n of parts in the system is
incremented and decremented by arrivals and departures, respectively. The
machine can be on-service only if the system is empty. The machine can be
in the working state for any value of n with exception of n = 0, i.e., when
there is no part to work. The system cannot contain more then n = K if the
machine is out-of-service or executing the warm-up because there are only
K positions available for holding parts inside the buffer. If the machine is
in out-of-service, but not switched on yet, the system cannot contain more
then n = N−1, because the machine is switched on upon the N-th arrival.

V. SYSTEM MODEL AND DYNAMIC BEHAVIOUR

In order to properly model the whole system, it is neces-
sary to consider interactions between the machine and the
buffer. Indeed, the automata of the machine and the buffer
share some events, and the synchronized model contains only
the feasible combinations where the system can operate [30].

A. TNT-Policy

The general system state s j is represented by the duple
s j = {m j,n j}, where m j is the machine state and n j the
number of parts in the sistem when state j-th. The total
number of system states Ns depends on the threshold level
N—i.e., Ns = 2K +3+N. Thus, the power hs j requested by
the system in the state s j can be calculated as the sum of
the machine power requested in m j, and either the penalty
xq(n j−1), when the machine is working, or the penalty xqn j,
otherwise. As a consequence, the total energy consumed by
the system is the sum of the product power× time for each
system state visited within a certain time horizon. When
Policy 1 is applied, the machine evolution may follow one
of the different paths represented in Fig. 3 depending on the
random arrival Ti of the parts. The model is assumed to be

ergodic, and a unique stationary state probability vector π

exits such that πs j > 0 and:

πs j = lim
u→∞

πs j(u) (7)

where πs j(u) is the probability of being in state s j at a certain
time instant u. Let be S the irriducible set of feasible states
s j of the system in Fig. 3, the average power requested by
the machine can be calculated as:

Pavg = lim
u→∞

∑
s j∈S

hs j πs j(u) (8)

Since the arrivals are random, the probability of being in
a certain state is the output of a stochastic process and the
expected power consumed by the machine is the objective
function to be minimized in this work.

B. N-Policy

Policy 5 represents a way to control the system where the
control parameters τoff and τon are set to zero and infinity,
respectively. As a consequence, the number of system states
Ns = 2K+2 is independent from N. Furthermore, the arrival
time Ti, the processing time Tp, and the warm up duration Twu
are assumed to follow exponential distributions with means
t̄i, t̄p, and t̄wu respectively. Under those further assumptions,
the system model becames a Markov chain characterized by
the Ns-vector s composed by the feasible system states s j
in S , and the Ns-by-Ns transition matrix Q [30]. Given the
transition matrix Q, the probability π can be calculated as:{

πQ = 0
∑s j∈S πs j = 1 (9)

Since each transition can be associated to an event, it is
possible to describe the structure of matrix Q according to
the occurence of three random events: the arrival Ti, the
departure Tp, and the warm-up duration end Twu. The arrival
increments the number of parts in the system and triggers
four types of transition. Firstly, if the machine is working,
the system can hold up to K + 1 parts and the transition
(10a) occurs. If the machine is in warm-up, the number
of parts in the system is limited by the buffer capacity K
and transition (10b) is feasible. When the machine is out-of-
service, the arrival can increment the entities in the system up
to N−1 with transition (10c), or it can switch on the machine
with transition (10d). Furthermore, if there are no other parts
waiting in the queue the departure empties the system and
switches off the machine as in transition (11a). Otherwise,
the machine stays in the working state and the transition
(11b) occurs. When the warm-up ends, the transition (12) is
triggered and the machine goes in the working state without
changing the number of parts in the system.

VI. NUMERICAL RESULTS

A real CNC machining center with 392 dm3 of workspace,
five axes, horizontal synchronous spindle, and local chiller—
cooling both spindle and axes— is considered. The machine
executes machining operations on an aluminum cylinder head
for automotive purpose. The machine requires 5.35 kW when



qi, j = λa if


i = {working,n}; j = {warm-up,n+1} ∀n = 1..K (10a)
i = {warm-up,n}; j = {warm-up,n+1} ∀n = 0..K−1 (10b)
i = {out-of-service,n}; j = {out-of-service,n+1} ∀n = 0..N−2 (10c)
i = {out-of-service,N−1}; j = {warm-up,N} (10d)

qi, j = λp if
{

i = {working,1}; j = {out-of-service,0} (11a)
i = {working,n}; j = {working,n−1} ∀n = 2..K +1 (11b)

qi, j = λwu if i = {warm-up,n}; j = {working,n} ∀n = N..K (12)

Fig. 4. Contour plot: optimal threshold N∗ varying machine utilization and
warm-up duration (K = 10 ; tp = 100 s).

Fig. 5. Contour plot: optimal policy among Always on (label 0), Off
(label N∗ = 1), and N-Policy (labels N∗ = 2 and N∗ = 3) varying machine
utilization and warm-up duration (K = 10 ; tp = 100 s).

on-service, and 0.52 kW when out-of-service. The warm-up
is characterized by a power consumption of 6 kW and the
penalty for part waiting is xq = 1 kW. The data reported has
been acquired with dedicated experimental measurements.

Firstly, the effect of the threshold N over system per-
formances is discussed. Then, the optimal control a∗5 =
{0;N∗;∞} is analyzed varying the buffer capacity K, and
the means of the stochastic processes (t̄i, t̄p, and t̄wu).

A. Threshold Level N

In the steady state condition, system performances change
according to the threshold N because the probability of being
in a certain state s j changes. In more details, by increasing N,
the probability of being out-of-service increases because the
system needs more time to accumulate N parts. Indeed, the
average number of parts in the system n̄ increases because it
is composed by a constant contribution due to the M/M/1/K

system without control, and the additional queue length, that
is increasing with N, due to threshold policy [20]. Parallely,
the average waiting time increases due to Little’s law. As a
consequence, the probability of being in warm-up decreases
as well as the probability of having the machine working.

B. Buffer Capacity K

Having an input buffer with a higher capacity, means
that system performances tend asyimptotically to the infi-
nite buffer capacity ones. For this reason, the steady state
converges to that of an infinite queueing system with same
characteristics, as well as the average power requested. As a
consequence, the optimal threshold level N∗ for the M/M/1/K
converges to the optimal value for an M/M/1.

C. Machine Utilization and Warm-Up Time

Let be the buffer capacity K = 10 and the mean process
time t̄p = 100 s, by varying t̄a and t̄wu the optimal parameter
N∗ minimizing the average power consumed Pavg is repre-
sented in Fig. 4. The higher the utilization ρ = t̄p/t̄i, the
higher the probability of being in working states; whereas
the probability of being out-of-service states is low. As a
consequence, given high values of ρ it is advantageous to
not fill up the buffer—i.e., to switch-on the machine for low
values of N— in order to not waste energy holding parts,
even if the system empties rarely. Whereas, if the machine
is low utilized, the system empties often and the probability
of being in out-of-service states is high. In such a case,
the system spends more time to accumulate parts and it is
advantageous having low N in order to not waste energy
holding parts. A trade-off exists between the energy saved
triggering the machine in a low power consuming state, and
the energy consumed holding parts and executing the warm-
up. Thus, for medium utilized machines, the value N∗ is
properly set to avoid both high n̄ and too frequent warm-up.
This analysis holds for different values of warm-up time twu.
Given a certain utilization ρ , if the warm-up time increases
the optimal threshold N∗ increases. Indeed, the warm-up
procedure accounts large time, thus energy. For this reason,
once the machine has been switched-off, it is better to wait
for more arrivals to increase the time spent in low power
consumption states.

D. Always on and Off Policies

Policy 5 degenerates in Policy 3 every time the optimal
threshold N∗ = 1, whereas Policy 5 does not include the



possibility to keep the machine always on because the
machine is switched off at τoff = 0. However, it is possible to
compare Policy 5 with Policy 2. In Fig. 5 is represented the
optimal policy among Policy 2 (label zero), Policy 3 (label
N∗ = 1), and Policy 5 (label N∗ = 2 or N∗ = 3).
For highly utilized machines (ρ > 1), the optimal policy
is the always on because the production is saturated and
the machine should never be switched off. If the warm-
up requires very short time or the machine is low utilized,
the optimal policy is the off (Policy 3) and the threshold is
N∗ = 1. If the mean warm-up time twu increases, it becomes
advantageous to keep the machine on-service even if the
machine is not saturated because of the high warm-up energy
requested. These remarks are aligned with the analysis in
Frigerio and Matta [16] on a single machine without buffer
information. For all other cases the optimal policy is the N-
Policy with a proper value of N∗.

VII. CONCLUSIONS

A general framework with three-parameter control policy
applied to a single server has been proposed in this paper. A
special case of the TNT-Policy has been studied analytically
for exponential stochastic processes. A real case application
has showed that the benefits achievable by implementing the
threshold policy are significant compared to the common
always on and off policies. Moreover, the optimal control
has been provided numerically for different values of the
stochastic process means. Future developments will be de-
voted to analyze Policy 1 by including the possibility of
switching the machine with time-based control parameters
together with the threshold N. Other perfomance indicators,
e.g., throughput and lead time, should also be evaluated in
future studies.
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