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Abstract 

Large scale measuring systems, i.e. measuring systems characterized by a measurement volume from some meters up to some 
hundreds of meters, are gaining importance in industry to check large parts or track the position of automated vehicles. In contrast 
with classical monolithic measuring systems, modern large scale measuring systems are constituted by constellations of sensors 
able to track the position of objects by triangulation or trilateration. This new design allows a greater system flexibility, scalability, 
and portability, together with a general reduction of costs. The MScMS-II is a large scale measuring system based on infrared 
triangulation. It has been designed to guarantee the maximum flexibility and reconfigurability, so every set-up procedure has been 
reduced as much as possible, so that its deployment and calibration requires a short time. However, its accuracy could benefit of a 
more complete volumetric calibration through the definition of a model of the volumetric error to be compensated. 
This work continues the one proposed at the CAT2012 conference [1]. An artifact has been developed which is constituted by a 
series of infrared reflective spheres, thus being well visible by the MScMS-II system. It has been calibrated with a ~1 μm 
uncertainty. It carries two series of balls. A pair of spheres with a reciprocal distance equal to 800 mm can be used for system 
calibration. A series of couples of balls with reciprocal distances equal to 200, 400, 600, 800, and 1000 mm respectively can be 
adopted for performance verification similarly to what is suggested in the ISO 10360 series of standards for CMMs. Experimental 
results are proposed for the calibration and performance verification procedure of the MScMS-II system. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of 13th CIRP conference on Computer Aided Tolerancing. 
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1. Introductioni 

Large Scale Dimensional  Metrology [2, 3] deals with 
all those 3D measurement tasks which involve a large 
measurement volume (from some meters up to some 
hundreds of meters). Application of these systems are 
more and more often found in industry, e.g. for the 
geometric control of large products (aerospace industry, 
large machine tool manufacturing), and to locate and 
track the position of robots or automated vehicles within 
large environments. 

Traditional Large Scale Measuring Systems are 
simply larger version of classical coordinate measuring 
systems, e.g. large Coordinate Measuring Machines. 
However, the improvements in optics and laser systems 
have given rise to a new generation of Large Scale 
Measuring Systems, which instead of being monolithic 
measuring machines are constituted by smaller devices, 
able to locate the objects within the measurement 
volume usually by means of triangulation or trilateration.  
Several instruments of this kind are already available 
(laser trackers, laser radars, digital photogrammetry 
systems, indoor GPS). These instruments are usually 
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cheaper than traditional measuring systems of similar 
size, and more portable, flexible and scalable. 

The Mobile Spatial coordinate Measuring Machine 
System – II (MScMS-II) [4] is a large-scale measuring 
system based on (at present six) infrared cameras which 
take images of one or more infrared targets. The position 
of the target(s) within the measurement volume can then 
be identified by means of triangulation. A mobile 
measuring probe has been developed which can measure 
points on the surface of any object by contact. Compared 
to other large scale measuring systems, the MScMS-II 
shows advantages in portability, flexibility, handiness, 
scalability, and cost. The MScMS-II has in fact been 
developed to guarantee a system which can be easily 
relocated and set-up with a simple and lean procedure. 

MScMS-II main drawback is its accuracy, which can 
be evaluated in the order of 1 mm in a measurement 
volume equal to 2 X 2 X 2 m [4]. This performance is 
influenced by both random errors, which cannot be 
corrected, and systematic errors, which are due to an 
imperfect determination of the system calibration 
parameters and to other not corrected aberrations, like 
camera lens distortion, and can be compensated if 
known. Therefore, the knowledge of a model of the 
systematic (volumetric) error can lead to an 
improvement of the system performance. 

In a previous work [1], to which the reader can refer 
for a complete discussion about calibration and self-
calibration, a test has been conducted on the use of an 
uncalibrated artifact for the self-calibration of the 
MScMS-II. However, the results indicated that most of 
the volumetric error present in the system was linked to 
the lack of traceability of the system itself: the residual 
volumetric error was quite small, but the measurement 
result on a reference calibrated artifact where 
systematically smaller than the calibrated value. 
Therefore, the self-calibration procedure proposed in 
that work has been slightly modified, in order to support 
the use of a calibrated artifact instead. Coherently, a 
calibrated artifact has been designed, which carries a 
couple of balls separated by about 800 mm, the distance 
between the balls having been calibrated with 
micrometric accuracy. The artifact carries as well six 
more balls. The distances between a reference ball and 
the other balls has been calibrated, so that it is possible 
to use the calibrated artifact for the performance 
verification (and evaluation) of the MScMS-II in a way 
similar to the one proposed by the ISO 10360-2 standard 
[5] for cartesian CMM. This paper proposes the design 
of the new calibrated artifact, the methodology 
developed to exploit it, and the first results about its 
effectiveness on the performance of the MScMS-II. 

For a complete description of the MScMS-II, please 
refer to the paper by Galetto et al. [4] 

2. MScMS-II calibration 

The problem of calibration can be considered as the 
problem of correctly turning the sensor outputs into the 
measurement results. If calibration is perfect, then no 
volumetric error model is required. However, because 
the model for calibration usually assumes sensors are 
perfect, usually some residual volumetric is present, and 
a correction is required. Therefore, to understand 
completely the MScMS-II calibration, some hint on the 
conversion of the camera output into the Cartesian 
coordinates of the point is required. 

2.1. MScMS volumetric error model 

Two steps compose the mathematics that turns the 
cameras output into the corrected coordinates of the 
sampled points. The first step is the so called 
“localization algorithm”. The localization algorithm is 
well defined in the literature concerning 
photogrammetry [6, 7]. Its complete description goes 
beyond the aims of the present work; here it is sufficient 
to remember that to apply the localization algorithm a 
series of parameters, summarized for every camera by 
the projection 3 x 4 real matrices Pi, have to be defined. 
The application of the localization algorithm turns the 
camera output into the cartesian coordinates of the point 
x=

T, ,x y z . An incorrect definition of these parameters 
leads to a distortion in this conversion, i.e. a volumetric 
error. Then the definition of the camera projection 
matrices can be considered as a “first order error model”, 
which can then take into account part of the volumetric 
error. In practice, every error which would be generated 
by an incorrectly calibrated but optically perfect camera 
is considered by this first error model. 

However, usually the localization algorithm does not 
take into account optics aberrations and other similar 
errors which go beyond a perfect system. To describe the 
volumetric error generated by these defects, a “second 
order error model” is required. In general, the output of 
the first order error model is a vector of Cartesian 
coordinates. Any function fx x  can be in principle 
considered as a possible “second order volumetric error 
model”, which can correct the residual volumetric error 
after the first order model has been correctly evaluated 
and the localization algorithm applied. The choice of the 
correct model can be suggested by the actual kind of 
sensors and optics adopted, but probably it would be 
easier to empirically choose the model among generic 
(polynomial, linear, spline) models, which are easier to 
manage. 
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2.2. Model parameters estimate 

When a calibration procedure is adopted, turning the 
measurement results of the calibrated artifact into the 
parameters of the volumetric error model is most often 
straightforward. Ordinary Least Squares or similar 
techniques may be applied. This is possible because 
“supervised learning” is adopted. In self-calibration one 
deals with “unsupervised learning” instead, thus 
requiring more complex approaches. 

Kruth et al. [8] supposes that the artifact is perfectly 
rigid, so that the distances between couples of points are 
constant. The application of this concept is particularly 
simple in the considered case: for the MScMS-II a ball-
bar, can be adopted; therefore, it should be sufficient to 
verify that the length of the artifact is constant in every 
view. The general principles for this self-calibration are 
then the following: 

1. Measure the artifact in several views; 
2. define a volumetric error model which guarantees 

the length of the artifact is constant every view. 
However, this is not sufficient to guarantee the 

traceability of the measurement. In fact, a simple 
degenerate solution could satisfy this criterion: x 0 . 
With this solution, the artifact length is perfectly 
constant, but this is not, of course, an acceptable solution. 
Therefore, Kruth et al. introduced the need of a reference 
measurement performed on an artifact of known length. 
The original objective function introduced by Kruth et al. 
was then 

1 22

1
1 1

min
m r

j j
m R

j j
j j

d d d da a a a  (1) 

where m  is the number of views, r  is the number of 
measurement of the reference artifact, a  is a vector of 
parameters on which the first and second order error 
model depend, jd a  is the measured length of the 
uncalibrated artifact in the jth view, m

jd a  is the jth  
measurement result of  the calibrated artifact, R

jd is the 
reference length of the calibrated artifact, and r is the 
number of measurements of the calibrated artifact. As 
apparent, due to the compensation of the measurement, 
every measured length depends on a . 

However, has it is been noted in a former work [1], 
the MScMS-II suffers of a relevant scale error. This has 
suggested to switch from a self-calibration procedure to 
a calibration procedure .In order to avoid the need of a 
complete redesign of the procedure, it is sufficient ot 
drop the first part of Eq. (1), in order to retain only the 
calibrated artifact related part of the optimization 
function. The final objective function is then 

2

1
min

m Rr

j

j jd d

ra

a
  (2) 

This is the objective function adopted in this work for 
the definition of the correct value of a . The problem is 
essentially a non-linear least squares problem, to solve 
with classical least squares numerical algorithms. 

2.3. Design of the experiment 

We need to define how to obtain data to feed Eq. (2). 
When choosing how to sample the ball-bar to yield an 
accurate evaluation of the model, some general 
recommendations can be suggested: 

3. The whole measuring volume of the MScMS-II 
should be covered; 

4. Several different positions and orientations of the 
artifact should be considered in order to guarantee 
reversal [9]. 

The MScMS-II makes these requirements easy to 
fulfill. In fact, the MScMS-II is a very fast measuring 
system able to track the position of the artifact with a 50 
Hz sampling rate. Therefore, the operator just needs to 
move the artifact in the measurement volume at a not too 
fast speed, so that the system is allowed to take a large 
number of measurements. The operator will also take 
care of randomly rotating the artifact while moving it, so 
that reversal in ensured. To cover the whole 
measurement volume, an adequate size of the 
uncalibrated artifact should be chosen. 

2.4. Proposed artifact 

The proposed artifact consists of a series of eight 
infrared retroreflective spheres fixed to an aluminium 
bar (Fig. 1). This artifact can be used as both calibration 
and verification artifact: a couple of “reference” balls, 
located at a nominal distance of 800 mm. form each 
other, serves for calibration. Among the reaming balls, 
the leftmost is considered as 0-ball. The set of 200, 400, 
600, 800 and 1000 mm distances from this ball can be 
considered for performance evaluation/verification like 
in the ISO 10360-2 standard [5]. 

The manufactured artifact is shown in Fig. 2. It has 
been wrapped in black tape to reduce reflections. As Fig. 
2 shows, its temperature can be easily measured by 
means of a contact thermometer. This artifact can be 
easily calibrated by means of a CMM: Table 1 reports 
the calibrated lengths and uncertainties. All uncertainties 
are lower than 3 μm, which can is adequate for the 
expected performance of the system (around 0.1 mm). 
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3. Methodology application and first results 

To test the effectiveness of the model, an 
experimental campaign has been undertaken. This 
campaign consisted in taking three series of data. The 
first dataset consists in a series of 9207 samplings of the 
artifact shown in Fig. 2, considering only the “reference” 
couple of balls, covering a measurement volume of 
about 2 x 2 x 1 m. Taking these measurements required 
about a couple of minutes. This “initial” data will serve 
to feed a non-linear least square optimization algorithm  

 

Fig. 1: Scheme of the proposed artifact. 

 

Fig. 2: Manufactured artifact. 

Table 1: Calibration results for the manufactured artifact. 

Nominal 
Distance [mm] 

Calibrated 
distance [mm] 

Expanded 
uncertainty 

[ m] 

Coverage 
factor 

200 200.432 1 2 

400 400.328 1.4 2 

600 600.818 1.3 2 

800 800.968 1.9 2 

1000 1001.030 2.1 2 

800 
(reference) 

800.852 2.8 2 

 
[10] which will solve problem in Eq. (2). Fig. 3 

shows the schematically the artifact as it is moved 
through the measuring volume to cover it a completely 
as possible. 

The second dataset is similar, consisting of 9402 
measurements of the artifact. This “check” data will 
serve to check that the model evaluated based on the 

initial data is good to compensate any measurement, and 
not adapted to the initial data. 

Finally, a series of about 5000 measurements has 
been taken for each of the five calibrated lengths given 
by the five couples of balls. These measurements will 
serve to propose an evaluation of the system 
performance. 

As mentioned in §2.1, the easiest way to define a 
second order volumetric error model is to choose it 
among general purpose fitting models. In the following, 
three structures for the second order error model will be  

 

Fig. 3: Visualization of the artifact measurements in the first series of 
measurements. 

considered: a polynomial model, a piecewise linear 
model, and piecewise spline model. Together with these 
models a “0” model will be considered, i.e. a model in 
which no second error correction is present but only the 
projection matrices parameters are adjusted. 

3.1. Polynomial model 

The polynomial model consists in a simple 
polynomial correction of the coordinate at which the 
point is measured, so the model can be written as 
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where the various are optimization parameters and 
g is the polynomial degree (in this experience 4g ). In 
this case, the parameter vector a in Eq. (2) is constituted 
by 12 9cn g  parameters, where cn  is the number of 
cameras constituting the MScMS-II. 
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3.2. Piecewise linear and spline model 

In piecewise models a cubic grid of np x np x np points 
covering the measurement volume is defined (in this 
experience np = 5). For each point, a value of the 
volumetric correction which has to be applied at that 
coordinate is defined for x, y, z, so that there are 33 pn
values of the correction.  To obtain the correction value 
at any coordinate, the 3

pn  corrections at the defined 
points are interpolated either linearly (piecewise linear 
model) or by mean of a cubic spline (piecewise spline 
model). In this case, the parameter vector a in Eq. (2) is 
constituted by 312 3c pn n  optimization parameters.  

3.3. Volumetric error compensation results 

Table 2 reports the values of the average value and 
standard deviation of the residuals from the calibrated 
distance of the reference couple of balls. The column 
“optimization data” refers to the measurements that have 
been fed to the optimization algorithm to evaluate the 
parameters. The colum “check data” refers to the 
additional measurement which have been performed on 
the reference couple of balls. A high (absolute) value of 
the mean indicates the presence of some bias, while the 
standard deviation is related to the repeatability of the 
measurement. The row “no model” refers to the 
condition in which no optimization is performed, neither 
on the first or second order error model. The remaining 
four rows refer to the various error models considered. 

Table 2: Calibration results. 

model 

Optimization data Check data 

mean standard 
deviation 

mean standard 
deviation 

no model -11.08 11.1044 -4.4548 8.1370 

0 -0.006 1.0054 -0.4130 1.6060 

polynomial 0.001 1.0046 -0.4130 1.6036 

linear -0.001 0.7518 -0.3618 4.2353 

spline -0.001 0.6437 88.0815 295.0452 

 
 
From the first row, it is apparent that if no error 

model is considered the measurements performed by the 
MScMS-II are both biased and scarcely repeatable. Now, 
consider the column “optimization data”: this column 
suggests that any model is capable of correcting the bias. 
In fact, all the mean values are almost equal to zero. The 
standard deviation reduces significantly, too, indicating a 
repeatability improvement. However, this appearance 

could be explained by an “over-fitting” of the 
optimization data. To understand whether the calibration 
of the first and second order error model is effective, one 
should then consider the “check data” column, which is 
not affected by the optimization algorithm, and then will 
not be affected by over-fitting. This column suggests 
that bias is at least reduced by an order of magnitude 
(from approximately 4 mm to 0.4 mm). the repeatability 
improves as well of approximately an order of 
magnitude for the 0 and polynomial model. This does 
not apply to the spline model, which gives anomalous 
results. In fact, the spline model seem to be the best one 
when applied to the optimization data, and the worst 
when applied to the check data. This suggest that the 
spline model is very prone to over-fitting, and needs an 
improvement in robustness. By reducing the number of 
nodes, it could be possible to avoid over-fitting, but this 
could also neglect the expected advantages of the spline 
model. Anyway, one can conclude that the best 
performance is yielded when either the 0 or the 
polynomial model is applied. 

3.4. Performance results 

Now consider the third set of data that has been taken. 
These refer to the measurement of the couple of balls 
placed at a reciprocal nominal distance equal to 200, 400, 
600, 800 and 1000 mm respectively. Fig.4 plots the 
residuals from the calibrated lengths for the various 
proposed models. Again, the 0 and polynomial models 
seem to be the best models, significantly improving the 
results available when no correction is applied, while the 
spline models yield inconsistent results. Fig.4 proposes 
an evaluation of the Maximum permissible error for the 
various models, as suggested in the ISO 10360-2 
standard. The red lines graphically represent this 
performance in Fig.4. The green lines indicate the 
performance when no correction is applied. Please note 
that this performance evaluation does not neglect the 
probing error: in fact, the camera adopted do not give as 
output the a cloud of points on the surface of the sphere 
constituting the retroreflective target, but only the center 
of retroreflective target itself. Therefore, this 
performance correctly estimates the performance of the 
system considered as tracking system. However, the 
portable measuring probe has not been used in this 
performance evaluation, thus his influence is neglected. 
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Fig. 4: Performance of the MScMS-II. 

4. Conclusions 

This work has proposed a model for the calibration 
and volumetric error compensation of the MScMS - II. 
The model differs from the classical volumetric error 
models and is specific for the MScMS-II, meaning that it 
considers the specific calibrations parameters that define 
the geometry of the MScMS-II. In particular, the 
proposed model is a two level one – the first one refines 
the calibration, the second one corrects residual errors. 

To be able to apply the proposed calibration and 
volumetric error compensation model, a specific 
calibrated artifact has been designed, which can be 
applied both for calibration and performance verification. 
The artifact is constituted by a series of eight 
retroreflective balls whose reciprocal distances has been 
calibrated. A couple of these balls serves as reference 
distance for model parameters calibration. The 
remaining six balls define five calibrated distances, 
measuring which by means of the MScMS-II. It is 
possible to verify the performance of the MScMS-II 
itself. The artifact is handy to use and only few minutes 
are needed to take the measurements required for 
calibration/verification. 

Finally, the MScMS-II has been experimentally 
calibrated and verified. The tests have shown that the  

 
proposed calibration procedure can significantly 
improve the MScMS-II performance. However, the error 
compensation model is not very effective at present. 
Most of the improvement is just due to the refinement of 
the projection matrices parameters in the first order error 
model, as proven by the effectiveness of the 0 model. 
More research is then required to understand whether the 
second order error model can bring some real 
improvement or not. Besides, a renewal of the MScMS-
II hardware is scheduled, in order to improve its 
performance by adopting more performing cameras. 
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