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Profile Monitoring via Sensor Fusion: the use of PCA Methods for 

Multi-Channel Data  

Abstract: Continuous advances of sensor technology and real-time computational 

capability is leading to data rich environments to improve industrial automation 

and machine intelligence. When multiple signals are acquired from different 

sources (i.e., multi-channel signal data), two main issues must be faced: i) reduce 

data dimensionality, to make the overall signal analysis system efficient and 

actually implementable in industrial environment, and ii) fuse together all the 

sensor outputs to achieve a better comprehension of the process. In this frame, 

Multi-way Principal Component Analysis (PCA) represents a multivariate 

technique to perform both the tasks. The paper investigates two main multi-way 

extensions of the traditional PCA to deal with multi-channel signals, one based on 

unfolding the original datasets, and one based on multi-linear analysis of data in 

their tensorial form. The approaches proposed for data modelling are combined 

with appropriate control charting to achieve multi-channel profile data monitoring. 

The developed methodologies are demonstrated with both simulated and real data. 

The real data come from an industrial sensor fusion application in waterjet cutting, 

where different signals are monitored to detect faults affecting the most critical 

machine components. 

Keywords: Principal Component Analysis, Multi-way Analysis, Sensor Fusion, 

Profile Monitoring 

1 Introduction 

The development of low-cost, non-intrusive and smart sensors on one hand, and 

the continuous improvement of real-time computational capability on the other hand, 

make a large amount of data potentially available in industry. In this frame, sensor signals 

acquired during the process provide a suitable source of information to develop an in-

process quality control and to allow a faster implementation of corrective actions. In 

several applications, the acquired signals present cyclically repeating patterns; in those 

cases the suite of profile monitoring techniques (Woodall et al., 2004; Williams et al., 

2007) provides the natural framework to evaluate the stability over time of process 



quality. An overview of parametric and nonparametric approaches for profile data as well 

as application domains investigated at this time can be found in the recent book edited by 

Noorossana et al. (2012). 

This paper focuses on the specific case of monitoring profiles that are signal data. 

On this topic, the first seminal paper on signal profile monitoring is due to Jin and Shi 

(1999), who suggested using wavelet analysis to monitor tonnage signals in stamping 

processes. Some years later, the same authors (Jin and Shi, 2001) proposed a feature 

extraction and classification approach based on wavelet analysis for force signals in 

welding processes. With a similar approach, Chang and Yadama (2010) combined 

wavelet decomposition and B-spline smoothing for quality control of tonnage signals. 

Zhou et al. (2005) studied a directionally variant multivariate control chart in forging 

processes. 

The largest portion of profile monitoring literature focuses on single signal 

analysis, regardless the strong industrial interest for multi-signal applications. Data-rich 

environments in industry, in fact, are leading to an increasing demand for multi-sensor 

data fusion methods to solve quality-related problems. The most widely studied 

applications in literature include stability analysis and chatter detection (Kuljanic et al., 

2009; Inasaki, 1999) and tool condition monitoring (Cho et al., 2010; Wang et al., 2007; 

Chen and Jen, 2000; Bahr et al., 1997; Bhattacharyya and Sengupta, 2009; Lezanski, 

2001; Shi and Gindy, 2007; Aliustaoglu et al. 2009). However, only few authors studied 

profile monitoring approaches in the field of sensor fusion. Among them, Kim et al. 

(2006) proposed a multi-channel profile monitoring method based on Principal Curves to 

monitor multiple homogeneous signals in forging processes. Amiri et al. (2013) 

investigated the problem of integrated monitoring of mixed-type data, i.e. profile data and 

multivariate quality characteristics, possibly coming from multiple sources. Recently, 



Paynabar et al. (2013) proposed a multi-way extension of the Principal Component 

Analysis (PCA) technique to classify multi-channel profile data. 

In this study, we consider the use of multi-way extensions of the PCA to deal with 

information fusion of multi-channel signals. The goal consists in transforming a set of 

profile data from multiple sources into a synthetic feature set that explains the correlation 

structure of original data.  

Two different multi-way PCA control chart formulations are proposed: one based 

on unfolding the multi-way dataset into a matrix, in order to apply the traditional PCA on 

the transformed matrix (hereafter called Vectorized PCA - VPCA), and one based on 

applying the PCA directly on the multi-way dataset, preserving its higher-order tensor 

representation (Multi-linear PCA - MPCA). 

The two techniques have different features that make them suitable to multi-

channel signal analysis and monitoring problems. In some cases, the VPCA may provide 

reasonable performances, and it may result more flexible than the MPCA. In some other 

cases, however, the MPCA may be preferred because of its higher computational 

efficiency, and because it provides a better interpretability of results.  

This study extends the work of Paynabar et al. (2013) in two directions: by 

introducing a multi-way generalization of PCA-based control charts, whereas Paynabar 

et al. (2013) focused on clustering techniques, and by considering the general case of 

heterogeneous signals. Differently from Paynabar et al. (2013), an unconstrained and 

more general formulation of the MPCA has been exploited in our study, in which the 

principal components obtained by the method may be correlated, contrary to regular PCA, 

but they are not limited by the number of channels considered in the specific test case. 

This study is also an extension of the previous studies of Colosimo and Pacella (2007; 

2010), which presented the use of the PCA for profile monitoring of single profiles. 



The proposed methods are tested both on simulated and real industrial data. Monte 

Carlo simulations based on multi-channel combinations of benchmark signals were used 

to evaluate the performances in a number of controlled scenarios. Then, real data are used 

to demonstrate the main features of the proposed methods on a real test case of industrial 

interest. Multi-sensor signals were acquired in a waterjet cutting process, and multi-way 

PCA methods were applied to detect faults affecting the most critical machine 

components. In waterjet processes the aggressiveness of abrasive particles and the 

challenging operative pressure conditions affect the reliability of machine tool 

components, which are subject to different types of faults and performance degradation. 

The lifetime of most stressed components is difficult to predict and the nature of different 

types of faults makes them almost impossible to prevent. Therefore, there is the need for 

a reliable health monitoring equipment able to provide a continuous automated 

assessment of machine conditions. These capabilities are required to cope with 

unattended processes, to implement remote monitoring services and to enhance 

maintenance and production management strategies. 

In Section 2, a review of the theoretical background of multi-way PCA methods 

is provided; Section 3 reports the results achieved by comparing the two methods in the 

frame of Monte Carlo simulations; Section 4 briefly describes the real test case in waterjet 

machining; Section 5 discusses the comparative analysis results; and Section 6 concludes 

the paper. 

2 Theoretical Background 

Multi-way data analysis is the extension of two-way methods to higher-order 

datasets (Acar and Yener, 2009; De Latheuwer et al., 2000). A 2-way dataset may be 

represented in terms of a 𝑁 × 𝑃 matrix, where 𝑁 is the number of samples and P is the 

number of variables: in this frame the PCA is a well understood and used multivariate 



technique to explain the variance-covariance structure through a few linear combinations 

of the original variables (Jolliffe, 2002). The first proposals for 3-way and higher-way 

generalizations of the PCA date back to the 1960s and early 1970s (Kiers, 2000).  

One possible approach to deal with multi-way arrays involves the ‘matricization’ 

operation (Kiers, 2000), which consists of unfolding the multi-dimensional dataset into a 

bidimensional one. As far as the PCA for process monitoring is concerned, this is the 

Multi-way PCA approach proposed by Nomikos and MacGregor (1995) for batch 

processes. The application of the PCA to unfolded datasets is the VPCA technique, which 

is a commonly exploited approach in a number of applications. A different technique 

consists in performing the PCA directly on the original tensorial data representation, 

without pre-processing the data by the unfolding procedure. This second approach is 

referred to as MPCA (Lu et al., 2008, 2009).  

Different multi-linear extensions of the PCA have been proposed in literature: 

some of them are limited to the case of 2D data (and are especially used in image 

analysis), like 2D-PCA (Yang et al., 2004) or the Generalized PCA (Ye et al., 2004), and 

some other may be applied to tensors of any order (Jolliffe, 2002).  

Several authors pointed out different advantages of the multi-linear approach over 

the one based on matricization, concerning the higher efficiency in terms of 

computational costs and memory demands, the easer interpretation of retained Principal 

Components (PCs), and the possibility to better characterize the actual multi-linear 

correlation structure (Acar and Yener, 2009; Lu et al., 2009; Paynabar et al., 2013). 

Regardless the respective pros and contras, the two methods may lead to different 

interpretation of results, and are both suitable to deal with multi-channel data.   

The VPCA and MPCA for multi-channel profile data are described hereafter. In 

both cases, a multivariate control chart approach is combined to the multi-way PCA for 



statistical process control. The application of Multi-way PCA techniques to synthetic 

indexes extracted from multi-channel signals is discussed at the end of the Section. 

2.1 The VPCA Approach 

A 𝑄-way array χ is a tensor object 𝜒 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑄 such that 𝐼𝑞 represents the 

dimension of the 𝑞-mode, 𝑞 = 1, … , 𝑄, where the term ‘mode’ refers to a generic set of 

entities (Kiers, 2000). In the frame of multi-channel profile data, the simplest 𝑄-way 

dataset is a (𝑁 × 𝑃 × 𝐽) 3-way array such that 𝑁 is the number of channels, 𝑃 is the 

number of data points collected on each profile, and 𝐽 is the number of multi-channel 

profiles. Note that more articulated datasets may be generated by introducing additional 

modes, e.g. by adding a further mode to group together different families of profiles.  

The VPCA approach consists of unfolding the array χ slice by slice, rearranging 

the slices into a large two-dimensional matrix 𝐗, and then performing the regular PCA on 

𝐗 (Nomikos and MacGregor, 1995). 

Notice that there are multiple possible rearrangements of the original array χ into 

a matrix, and each of them corresponds to looking at a different type of variability. 
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As far as the aforementioned multi-channel 3-way array is concerned, the most 

meaningful unfolding approach consists in concatenating the 𝑁 (channel) 𝑃-dimensional 

profiles in the 𝑗𝑡ℎ sample (𝑗 = 1, 2, … , 𝐽) into a single 1-dimensional vector of length 𝑃𝑁 

as shown in Fig. 1. 

In this case a (𝐽 × 𝑃𝑁) matrix 𝐗 is obtained. Although an equal number 𝑃 of data 

points in each channel is required to generate the 3-way array χ, such a constraint is not 

necessary with VPCA (even though samples from the same channel must be of equal 



length). If the number of data points in the 𝑛𝑡ℎ channel (𝑛 = 1, 2, … , 𝑁) is 𝑃𝑛, then the 

transformed data matrix will have dimensions 𝐽 × (∑ 𝑃𝑛
𝑁
𝑛=1 ). This may lead to a more 

flexible approach than Multi-linear PCA in some applications.  

The control chart approach based on regular PCA (Colosimo and Pacella, 2007) 

may be applied to the matricized data. Let 𝑃’ be the number of columns obtained by 

unfolding the original multi-way dataset, and 𝑀 the number of sample to be used to 

estimate the PCA model (each sample is a realization of 𝑁 profiles, one from each 

channel). Then, the PCA-based method consists of performing a spectral decomposition 

of the sample variance-covariance matrix 𝐒1:𝑀 of the (𝑀 × 𝑃′) data matrix 𝐗1:𝑀, i.e. 

finding the matrices 𝐋 and 𝐔 that satisfy the relationship: 

 

𝐔𝑇𝐒1:𝑀𝐔 = 𝐋 

(

1) 

 

Where 𝐋 is a diagonal matrix whose diagonal elements are the eigenvalues of 𝐒1:𝑀 

(𝜆𝑖; 𝑖 = 1, … , 𝑃′), while 𝐔 is an orthonormal matrix whose 𝑖𝑡ℎ column 𝐮𝑖 is the 𝑖𝑡ℎ 

eigenvector of 𝐒1:𝑀. 

When the profiles refer to heterogeneous quantities, data standardization is 

required before computing the sample variance-covariance matrix 𝐒1:𝑀. Standardization 

consists of subtracting to each column of 𝐗1:𝑀 the corresponding sample mean value 

computed on the M samples, and dividing the result by the corresponding sample standard 

deviation. The projection of the 𝑗𝑡ℎ sample onto the 𝐾-dimensional Principal Component 

(PC) orthogonal space is defined as follows: 

 



𝐳𝑗 = 𝐔𝑇(𝐱𝑗 − 𝐱̅) = [𝑧𝑗,1, … , 𝑧𝑗,𝐾]
𝑇

           (𝑗 = 1,2, …) (2) 

 

Where 𝐱𝑗 is the 𝑗𝑡ℎ row of the data matrix 𝐗1:𝑀 and 𝐱̅ = (1/𝑀) ∑ 𝐱𝑗
𝑀
𝑗=1  is the 

average profile among the 𝑀 ones used to estimate the PCA model. 𝐾 is the maximum 

number of PCs that can be extracted, i.e. the maximum number of non-zero eigenvalues. 

𝐾 is upper-bounded by min{𝑃′, 𝑀}. 

The 𝑖𝑡ℎ eigenvector 𝐮𝑖 contains the weights (loadings) associated with the 𝑖𝑡ℎ PC, 

and hence it weights the contribution of each profile data point to the corresponding linear 

combination. 

The first PC is the maximum variance linear combination; the second PC is the 

maximum variance linear combination having zero-correlation with the first one; and so 

on. The relative importance of each PC, i.e. the amount of explained variance, is 

represented by the value of the corresponding eigenvalue. Therefore, the relevant 

information content may be captured by a reduced number of PCs, providing the 

dimensionality reduction at the origin of the PCA popularity. Different methods have 

been proposed to automatically select a number 𝑚 of PCs to be retained. A very effective 

one was proposed by Wold (1978) and it is based on a cross-validation algorithm. For a 

comparison of methods see Valle et al. (1999). 

By retaining the first 𝑚 PCs, each sample – i.e. each row of the matrix 𝐗1:𝑀 –  

may be reconstructed as follows: 

 

𝐱̂𝑗(𝑚) = 𝐱̅ + ∑ 𝑧𝑗,𝑖𝐮𝑖
𝑚
𝑖=1           (𝑗 = 1,2, …) (3) 

 



The process monitoring strategy requires the computation of two statistics 

(Colosimo and Pacella, 2007): one is the Hotelling’s 𝑇2 statistics, used to detect possible 

deviations along the directions of the first 𝑚 PCs: 

 

𝑇𝑗
2(𝑚) = ∑

𝑧𝑗,𝑖
2

𝜆𝑖

𝑚
𝑖=1            (𝑗 = 1,2, …) (4) 

 

The second is the Sum of Squared Errors (𝑆𝑆𝐸) statistics, used to detect possible 

deviations in directions orthogonal to the ones associated to the first 𝑚 PCs, given by: 

 

𝑆𝑆𝐸𝑗(𝑚) = (𝐱̂𝑗(𝑚) − 𝐱̅)𝑇(𝐱̂𝑗(𝑚) − 𝐱̅)           (𝑗 = 1,2, …) (5) 

 

For the design procedure of control charts based on the 𝑇2 and 𝑆𝑆𝐸 statistics see 

Sec. 2.3. 

2.2 The MPCA Approach 

The Multi-linear methodology allows applying the PCA technique without 

unfolding the original dataset. 

The basic MPCA approach (as all the other multi-linear extensions of regular 

PCA) produces correlated PCs, contrary to PCA (Lu et al. 2008). An extension of the 

MPCA named Uncorrelated Multi-linear PCA (UMPCA), which introduces the zero-

correlation constraint among PCs derived from an iterative procedure aimed at finding 

directions capturing maximum variance, has been also proposed in the literature (Lu et 

al. 2009). The zero-correlation constraints introduces a limitation on the maximum 

number of PCs that may be extracted: such a number is upper-bounded by 

min{min𝑞𝐼𝑞, 𝑀}, whereas the remaining portion of data variability may be captured by 



removing the zero-correlation constraint. In the frame of process monitoring applications, 

the existence of correlation among the extracted PCs does not affect the performances, 

since the information content is summarized by the Hotelling’s 𝑇2 statistics. Because of 

this, the MPCA approach is here adopted instead of the UMPCA one. In particular, the 

method proposed by Lu et al. (2008) is hereafter reviewed, and a novel control chart 

approach is proposed. 

Given a 𝑄-way array 𝜒 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑄, we assume, without loss of generality, that 

the last mode represents the sample replicates (i.e., 𝐼𝑄 is the number of samples). Thus, 

𝜒∙,𝑗 is the 𝑗𝑡ℎ sample of 𝑄 − 1 dimensional tensor objects 𝜒∙,𝑗 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑄−1. The 

MPCA objective is to determine a multilinear transformation {𝐔̃(𝑞) ∈ ℝ𝐼𝑞×𝑃𝑞 , 𝑞 =

1, … , 𝑄 − 1} that maps the original tensor space ℝ𝐼1×𝐼2×…×𝐼𝑄−1 into a tensor subspace 

ℝ𝑃1×𝑃2×…×𝑃𝑄−1 with 𝑃𝑞 < 𝐼𝑞 for 𝑞 = 1, … , 𝑄 − 1:  

 

𝛶𝑗 = (𝜒∙,𝑗 − 𝜒̅∙) ×𝑞=1
𝑄−1 {𝐔̃𝑖

(𝑞)𝑇

, 𝑞 = 1, … , 𝑄 − 1}     (𝑗 = 1,2, …,) (6) 

 

where 𝜒̅∙ = (1/𝑀) ∑ 𝜒∙,𝑗
𝑀
𝑗=1  is the average (𝑄 − 1)-way array among the 𝑀 ones 

used to estimate the MPCA model. The symbol ×𝑞 denotes the mode 𝑞 multiplication, 

i.e., the multiplication of an array by a matrix along the 𝑞-mode of the array. 

The variability captured by the projected tensor 𝛶𝑗 ∈ ℝ𝑃1×𝑃2×…×𝑃𝑄−1 is measured 

by the total tensor scatter defined as ψ𝛶 = ∑ ‖𝛶𝑗‖
𝐹

2𝑀
𝑗=1 , where ‖∙‖𝐹 is the Frobenius norm 

defined by ‖∙‖𝐹 = √〈∙,∙〉.  

Thus, the goal is to compute the 𝑄 − 1 projection matrices {𝐔̃(𝑞) ∈ ℝ𝐼𝑞×𝑃𝑞 , 𝑞 =

1, … , 𝑄 − 1} that maximize the total tensor scatter ψ𝛶. As far as the full projection is 

concerned, i.e. the projection with 𝑃𝑞 = 𝐼𝑞 for 𝑞 = 1, … , 𝑄 − 1, 𝐔̃(𝑞) ∈ ℝ𝐼𝑞×𝐼𝑞 is the 



matrix comprised of the eigenvectors of 𝚽(𝑞) = ∑ (𝐗𝑗(𝑞) − 𝐗̅(𝑞))𝑀
𝑗=1 (𝐗𝑗(𝑞) − 𝐗̅(𝑞))

𝑇
, 

where  𝐗𝑗(𝑞) is the equivalent matrix representation of 𝜒∙,𝑗 by unfolding the 𝑞𝑡ℎ mode, 

and 𝐗̅(𝑞) = (1/𝑀) ∑ 𝐗𝑗(𝑞)
𝑀
𝑗=1 . 

Let 𝛵𝑆 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑄−1 be the total scatter tensor of the full projection such that 

each entry is defined as: 

 

𝛵𝑆(𝑖1, 𝑖2, … , 𝑖𝑄−1) = ∑ [𝛶𝑗(𝑖1, 𝑖2, … , 𝑖𝑄−1)]
2𝑀

𝑗=1        

(𝑖𝑞 = 1, … , 𝐼𝑞, for 𝑞 = 1, … , 𝑄 − 1) 

(7) 

 

where 𝛶𝑗 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑄−1, then the (𝑖𝑞)𝑡ℎ eigenvalue 𝜆𝑖𝑞

(𝑞)
 is the sum of all the 

entries of the (𝑖𝑞)𝑡ℎ 𝑞-mode slide of 𝛵𝑆: 

 

𝜆𝑖𝑞

(𝑞)
= ∑ … ∑ ∑ …

𝐼𝑞+1

𝑖𝑞+1=1
∑ 𝛵𝑆(𝑖1, … , 𝑖𝑞−1, 𝑖𝑞 , 𝑖𝑞+1, … , 𝑖𝑄−1)

𝐼𝑄−1

𝑖𝑄−1=1

𝐼𝑞−1

𝑖𝑞−1=1
𝐼1
𝑖1=1        

(𝑖𝑞 = 1, … , 𝐼𝑞, for 𝑞 = 1, … , 𝑄 − 1) 

(

(8) 

 

An approximate approach for dimensionality reduction consists of truncating the 

𝑞-mode eigenvectors beyond the (𝑃𝑞)𝑡ℎ such that the retained fraction of the total scatter 

in the 𝑞-mode is about 𝑆𝑞 = (∑ 𝜆𝑖𝑞

(𝑞)
/ ∑ 𝜆𝑖𝑞

(𝑞)𝐼𝑞

𝑖𝑞=1

𝑃𝑞

𝑖𝑞=1
), being 𝑆1 ≅ 𝑆2 ≅ ⋯ ≅ 𝑆𝑄−1 ≅ 𝑆. 

This approach allows retaining a reduced number of PCs such that a given percentage of 

the overall variability is captured in each mode. This method is an extension of the 

dimensionality reduction strategy of the regular PCA to the multi-linear case. 

In the 3-way case of multi-channel data above mentioned, given the tensor 𝜒∙𝑗 ∈

ℝ𝑁×𝑃, the full projection consists of two matrices 𝐔̃(1) ∈ ℝ𝑁×𝑁 and 𝐔̃(2) ∈ ℝ𝑃×𝑃, such 



that the (𝑖1)𝑡ℎ column of 𝐔̃(1) includes the loadings associated to the (𝑖1)𝑡ℎ 1-mode PC 

(𝑖1 = 𝑛 = 1, … , 𝑁), i.e., one weight per channel, and the (𝑖2)𝑡ℎ column of 𝐔̃(2) includes 

the loadings of associated to the (𝑖2)𝑡ℎ 2-mode PC (𝑖2 = 𝑖 = 1, … , 𝑃), i.e., one weight per 

data-point. 

The distinction between weights associated to channels and weights associated to 

data-points is expected to improve the interpretability of extracted PCs with respect to the 

VPCA method. 

A different approach for dimensionality reduction has been proposed by Lu et al. 

(2008): it is based on an iterative procedure called Sequential Mode Truncation (SMT). 

The optimization of 𝐔̃(𝑞) ∈ ℝ𝐼𝑞×𝑃𝑞 with 𝑃𝑞 < 𝐼𝑞 depends on the projections in other 

modes, since 𝐔̃(𝑞) consists of the 𝑃𝑞 eigenvectors corresponding to the largest 𝑃𝑞 

eigenvalues of the following matrix: 

 

𝚽(𝑞) = ∑ (𝐗𝑗(𝑞) − 𝐗̅(𝑞))𝑚
𝑗=1 ∙ 𝐔̃Φ(𝑞) ∙ 𝐔̃

Φ(𝑞)
𝑇 ∙ (𝐗𝑗(𝑞) − 𝐗̅(𝑞))

𝑇
         

(𝑞 = 1, … , 𝑄 − 1) 

(9) 

 

where: 

 

𝐔̃Φ(𝑞) = (𝐔̃(𝑞+1)⨂𝐔̃(𝑞+1)⨂ … ⨂𝐔̃(𝑄−1)⨂𝐔̃(1)⨂𝐔̃(2)⨂ … ⨂𝐔̃(𝑞−1))   

(𝑞 = 1, … , 𝑄 − 1) 

(

(10) 

 

being ⨂ the Kronecker product. The proof of (9) can be found in Lu et al. (2008).  

Because of this, the dimensionality reduction in one mode cannot be determined 

independently from the others. The MPCA algorithm proposed by Lu et al. (2008) allows 

solving the optimization problem by an iterative truncation of 𝑞-mode eigenvectors, 



subject to a targeted dimensionality reduction specified by the user. However, Lu et al. 

(2008) demonstrated that the results provided by the approximated approach are very 

close to the ones provided by the SMT procedure, and they concluded that the former 

method could be safely used instead of the more computationally extensive SMT 

alternative. Because of this, the former approach is used in this study. 

Once a reduced number 𝑚 = ∏ 𝑃𝑞𝑞  of PCs is retained, for 𝑞 = 1, … , 𝑄 − 1, by 

capturing an approaximately equal percentage of total scatter 𝑆 in every mode, the 𝑗𝑡ℎ 

sample can be reconstructed as follows: 

 

𝜒̂∙,𝑗(𝑚) =  𝜒̅∙ + ∑ …
𝑃1
𝑖1=1 ∑ 𝛶𝑗(𝑖1, … , 𝑖𝑄−1)

𝑃𝑄−1

𝑖𝑄−1=1
𝐮𝑖1

(1)
∘ 𝐮𝑖2

(2)
∘ … ∘ 𝐮𝑖𝑄−1

(𝑄−1)
       

(𝑗 = 1,2, …) 

(

(11) 

 

where  𝐮𝑖𝑞

(𝑞)
 is the (𝑖𝑞)𝑡ℎ column of the projection matrix 𝐔̃(𝑞). 

In analogy with the regular PCA approach, the Hotelling’s 𝑇2 statistics can be 

used to detect possible deviations along the directions of the 𝑚 extracted PCs. Since the 

PCs may result correlated, the general formulation of Hotelling’s  𝑇2 statistics should be 

used as follows: 

 

𝑇𝑗
2(𝑚) = (𝜰𝑗

∗ − 𝜰∗̅̅ ̅)𝐒𝛶∗
−1(𝜰𝑗

∗ − 𝜰∗̅̅ ̅)𝑇          

(𝑗 = 1,2, …) 

(12) 

 

where 𝚼∗ is the matricized version of the projected tensor 𝛶 after 𝑞-mode 

eigenvectors truncation, such that 𝜰𝑗
∗ is a (1 × 𝑚) vector and Phase I 𝚼∗ is a (𝑀 × 𝑚) 



matrix;  𝜰∗̅̅ ̅ = (1 𝑀) ∑ 𝜰𝑗
∗𝑀

𝑗=1⁄ ; and 𝐒𝛶∗ is the (𝑚 × 𝑚) estimated covariance matrix of 𝚼∗ 

in Phase I. The estimated covariance matrix 𝐒𝛶∗ is computed as follows: 

 

𝐒𝛶∗ = 𝐕′𝐕 2(𝑀 − 1)⁄             (13) 

 

where 𝐕 is the (𝑀 − 1 × 𝑚) matrix that consists of row vectors of the differences 

𝒗𝑗 = 𝜰𝑗+1
∗ − 𝜰𝑗

∗, for 𝑗 = 1, … , 𝑀 − 1. The definition in Eq. 13 based on successive 

differences is an unbiased estimator of the variance-covariance matrix if the observations 

are i.i.d. in Phase I, and it provides better control chart performances than the common 

estimator, which pools all the Phase I observations (Williams et al., 2006). 

In addition, the 𝑆𝑆𝐸 statistics can be used to detect possible deviations in 

directions orthogonal to the ones associated to the 𝑚 extracted PCs. The 𝑆𝑆𝐸 statistics 

may be computed as follows: 

 

𝑆𝑆𝐸𝑗(𝑚) = (𝜒̂∙,𝑗(𝑚) − 𝜒̅∙)
𝑇(𝜒̂∙,𝑗(𝑚) − 𝜒̅∙)           (𝑗 = 1,2, …) (14) 

 

Finally, since the MPCA requires an equal number P of data points in all the 

channels, some synchronization step is required. In this study, a synchronous re-sampling 

procedure is implemented. The time reference is converted into a new reference expressed 

in terms of a percentage of a complete pumping cycle. The new reference step is selected 

in order to avoid any pattern distortion or relevant information loss. Then, a periodic cubic 

spline interpolation is used to compute the signal values in the new reference points. A 

discussion about the synchronization issue can be found in Gao (2012).  



2.3 Control Chart Design and Utilization 

The VPCA and MPCA techniques involve the same profile monitoring procedure, 

which consists of a control chart design phase (Phase I), and a monitoring phase (Phase 

II). 

During Phase I, a number 𝑀 of multi-channel samples representative of the 

normal working condition of the process must be collected. The VPCA or the MPCA 

procedure is then applied to those M samples, and two control charts are designed, for the 

𝑇2 and 𝑆𝑆𝐸 statistics, respectively. Control limits may be estimated as (1 − 𝛼′)% 

percentiles of the empirical distributions of 𝑇𝑗
2(𝑚) and 𝑆𝑆𝐸𝑗(𝑚), 𝑗 = 1, … , 𝑀, where 𝛼 

is the overall Type I error, and 𝛼 = 1 − (1 − 𝛼′)(1/2) is the Type I error associated to 

each chart, computed by using the Sidak correction (Montgomery, 2008). When few 

profiles are available during Phase I, the empirical percentiles can be estimated by using 

a bootstrap-based procedure (Liu and Tang, 1996), consisting of drawing 𝐵 bootstrap 

samples of size 𝑀 from the original one, computing the PCA model and the 𝑇𝑗
2(𝑚) and 

𝑆𝑆𝐸𝑗(𝑚) statistics for each sample, and then using the collection of 𝐵𝑀 realizations to 

estimate the empirical cumulative distribution function. During Phase II, i.e., the actual 

monitoring Phase, 𝑇𝑗
2(𝑚) and 𝑆𝑆𝐸𝑗(𝑚) values are estimated for each new observed 

multi-channel sample. When the VPCA approach is used, the computation of 𝑇𝑗
2(𝑚) and 

𝑆𝑆𝐸𝑗(𝑚) statistics for the 𝑗𝑡ℎ observed sample are based on Phase I estimates of 𝐋, 𝐔, 

and 𝐱̅. When the MPCA approach is used, those statistics are based on Phase I estimates 

of 𝐔̃(𝑞), 𝑆𝛶∗ and 𝜒̅∙ In both cases, a violation of at least one control limit leads to an alarm 

activation. 



3 Simulation Analysis 

The performances of the VPCA and MPCA methodologies are first compared by 

means of Monte Carlo simulations. The benchmark signals proposed by Donoho and 

Johnstone (1994) are used to generate a multi-channel test case. Those signals have been 

used by different authors to test wavelet-based algorithms, but also in the frame of 

statistical models and machine learning literature (e.g., see Koo and Kil, 2008; Ko et al., 

2009; Fan et al., 2012). 

Three signals proposed by Donoho and Johnstone (1994) are shown below; they 

are called respectively ‘blocks’, ‘heavysine’, and ‘bumps’. 
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Let 𝒙1, 𝒙2, and 𝒙3 be respectively the ‘blocks’, ‘heavysine’, and ‘bumps’ profiles 

shown in Fig. 2 (the number of data points is set to 𝑃 = 128 for all the signals). A 4-

channel profile dataset consisting of a three-way array 𝜒 ∈ ℝ𝑁×𝑃×𝐽 was generated, such 

that 𝑁 = 4 and 𝐽 is the overall number of simulated profiles. 𝜒 is generated as follows: 

 

𝜒1,∙,𝑗 = 𝑏1,𝑗𝒙1 + 𝑏2,𝑗𝒙2 + 𝜀1,𝑗 

𝜒2,∙,𝑗 = 𝑏3,𝑗𝒙1
2 + 𝑏4,𝑗𝒙3 + 𝜀2,𝑗 

𝜒3,∙,𝑗 = 𝑏5,𝑗𝒙2
2 + 𝑏6,𝑗𝒙3

2 + 𝜀3,𝑗 

𝜒4,∙,𝑗 = 𝑏7,𝑗𝒙1𝒙2 + 𝜀4,𝑗      

(𝑗 = 1,2, …) (15) 

 

where 𝜀𝑛,𝑗 is a random term (𝜀𝑛,𝑗~𝑁(0,0.5), 𝑛 = 1, …, 4 and 𝑗 = 1,2, …), and 𝒃𝑗 =

[𝑏1,𝑗, … , 𝑏7,𝑗]𝑇 is the model parameter vector, such that 𝒃𝑗~𝑀𝑁(𝝁𝒃, ∑𝒃), for 𝑗 = 1,2, …  

The following settings were used to generate the dataset: 



 

𝝁𝒃 = [0.2, 1, 1.5, 0.5, 1, 0.7, 0.8]𝑇 

∑𝑏 = 𝑑𝑖𝑎𝑔(𝜎𝑏1
, … , 𝜎𝑏7

)

= 𝑑𝑖𝑎𝑔(0.08, 0.015, 0.05, 0.01, 0.09, 0.03, 0.06) 

(

(16) 

 

The benchmark signals proposed by Donoho and Johnstone (1994) were chosen 

because their complex pattern features lead to profile modeling difficulties when a 

parametric modeling approach is used. PCA-based methods, instead, allows capturing the 

main pattern features without any further profile modeling or smoothing step. 

Different out-of-control scenarios were generated to simulate different kinds of 

deviations from the natural multi-channel pattern. The following out-of-control scenarios 

were considered. 

Mean shift of the reference signals: 

 

𝒙𝑢 = 𝒙𝑢 + 𝛿𝑎     (𝑢 = 1,2,3) (17) 

 

where 𝛿𝑎 ∈ {0.01, 0.025, 0.05, 0.075, 0.1}𝜎𝑥𝑢
, and 𝜎𝑥𝑢

 is the standard deviation 

of 𝒙𝑢 signal, 𝑢 = 1,2,3. 

Superimposition of a sinusoid term on the reference signals: 

 

𝒙𝑢 = 𝒙𝑢 + 𝛿𝑏𝒚𝑠     (𝑢 = 1,2,3) (18) 

 

where 𝛿𝑏 ∈ {0.025, 0.05, 0.075, 0.1, 0.125}𝜎𝑥𝑢
, 𝑢 = 1,2,3, and 𝒚𝑠 is the sine 

function over the domain [0, 𝑝], with period 𝑝 and peak-to-peak amplitude equal to 1. 

Standard deviation increase of the error term: 



 

𝜎𝜀𝑛,𝑗
= 𝛿𝑐𝜎𝜀𝑛,𝑗

     (𝑛 = 1, … ,4 and 𝑗 = 1,2, …) (19) 

  

where 𝛿𝑐 ∈ {1.1, 1.5, 2, 2.5, 3} and 𝜎𝜀𝑛,𝑗
 is the standard deviation of the error term. 

Mean shift of the model parameters: 

 

𝜇𝑏,𝑤 = 𝜇𝑏,𝑤 + 𝛿𝑑     (𝑤 = 1, … , 7) (20) 

 

where 𝛿𝑑 ∈ {1, 2, 3, 4, 5}𝜎𝑏𝑤
; 𝜇𝑏,𝑤 and 𝜎𝑏𝑤

 are respectively the mean value and 

the standard deviation of the 𝑤𝑡ℎ model parameter, 𝑤 = 1, … , 7. 

Standard deviation increase of the model parameters: 

 

𝜎𝑏𝑤
= 𝛿𝑒𝜎𝑏𝑤

     (𝑤 = 1, … , 7) (21) 

 

where 𝛿𝑒 ∈ {1.5, 2, 2.5, 3, 4}. 

3.1 Simulation Results 

The explained variance associated to the first PCs and the corresponding 

cumulative explained variance resulting from the VPCA and the MPCA applied to a set 

of 5000 in-control profile samples are shown in Fig. 3. 
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Fig. 3 shows that the variance explained by the first five PCs in the VPCA case is 

considerably higher than the one captured by the higher order PCs, even though the 



cumulative percentage of variance associated to the first five PCs is relatively low (about 

33%). This is because a large contribution to the overall variability is due to the noise 

term. In this case, the first five PCs are suitable to capture the variability associated to the 

systematic pattern of the signals, and to filter out the noise effect.  

In order to guarantee a comparison analysis under the same conditions, the VPCA 

and MPCA methods are compared being about equal the total percentage of explained 

variance (about 33%). With regard to the MPCA, this leads to retaining the first 1-mode 

PC and the first three 2-mode PCs, where 1-mode corresponds to channels and 2-mode 

corresponds to profile data points. Notice that the first 1-mode PC accounts for about 25% 

of variability, whereas the first two 1-mode PCs account for about 50%; however, we 

observed that, for the considered cases, by adding the second 1-mode PC no significant 

performance improvement was achieved, and hence only the first 1-mode PC was 

retained.    

The performances were compared in terms of the Average Run Length (ARL), for 

a targeted Type I error 𝛼 = 0.01. In each scenario, 1000 runs were performed. In each 

run, a set of 10000 randomly generated 4-channel profiles was used in Phase I. The 10000 

samples were divided into two sets of 5000 samples: the former set was used to estimate 

the VPCA or MPCA model, and the latter one was used to estimate the empirical control 

limits in order to guarantee an in-control ARL equal to 100. 

Table 1 summarizes the ARL results achieved under in-control conditions, and in 

out-of-control scenarios a), b), and c). Table 2 summarizes the ARL results in scenarios 

d) and e). 
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The batch means method was used to estimate the 99% confidence intervals of 

ARL estimates, by dividing the 1000 ARL values into 20 batches of 50 observations. 

Table 1 shows that the VPCA outperforms the MPCA in scenarios a), b), and c), 

i.e. in presence of deviations that involves the generating signals 𝒙𝑢 (𝑢 = 1, 2, 3) and the 

standard deviation of the error terms. Table 2, instead, shows that the MPCA approach 

becomes a feasible competitor in presence of more complex out-of-control scenarios, 

where the deviations involve the distribution of the model parameters. In this case, the 

MPCA performs better than the VPCA in three on six cases. 

Notice that the results of scenarios d) and e) for the model parameter 𝑏4,𝑗 (𝑗 =

1,2, …) are not included in Table 2 because no effect was observed at the considered 

severity levels for both the methods.  

The different behavior of the two methods is due to the different nature of the 

extracted PCs. The MPCA is thought to capture the correlation structure among different 

modes, and hence it is more sensitive to deviations that involve such a structure, e.g., 

model parameter modifications. The VPCA, instead, is more suitable to detect pattern 

changes that involve one or more profiles, including a mean shift or a variance increase. 
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Fig. 4 to Fig. 7 graphically depict the ARL performances and the corresponding 

99% confidence intervals for the two methods in each simulated scenario. When the 

VPCA performs better than the MPCA, e.g., in scenarios b) and c), the performance 

improvement is considerable; otherwise, when the MPCA performs better than the VPCA 

the margin of improvement is reduced. This leads to an overall preference for the VPCA 

approach, at least for applications characterized by a limited number of profiles, as the 

one considered in this study. 

4 A Real Case Study in Waterjet Cutting 

Waterjet/abrasive waterjet (WJ/AWJ) is a flexible technology that can be 

profitably exploited for different operations on a wide range of materials (Kovacevic et 

al., 1997). 

Due to challenging pressure conditions, cyclic pressure loadings, aggressiveness 

of abrasives and other factors, most of the components of the Ultra High Pressure (UHP) 

pump and the cutting head are subject to wear and unpredictable faults. Therefore, the 

continuous monitoring of machine health conditions is of great industrial interest, as it 

allows implementing condition-based maintenance strategies, and providing automatic 

reaction to critical faults as far as unattended processes are concerned. 

Different authors studied WJ/AWJ process monitoring solutions, aimed at 

assessing the cutting stability (Perzel et al., 2012; Krenicky and Miroslav, 2012) and 

detecting process malfunctions, including non-correct jet penetration (Axinte and Kong, 

2009; Rabani et al., 2012) and workpiece crack detection (Choi and Choi, 1997). A 

number of studies has been also focused on condition monitoring of cutting head 

components – orifice and mixing tube – (e.g., see Annoni et al. 2008; Annoni et al. 2009; 

Jurisevic et al. 2004). However, limited attention has been devoted to the condition 



monitoring of UHP pump components, which is extremely relevant for condition-based 

maintenance purposes. 

In this study, we consider a multi-sensor data fusion approach for health condition 

monitoring of some of the most stressed machine components, including both the UHP 

pump and the cutting head. 

The study refers to the most common pump configuration, characterized by two 

circuits – an oil circuit and a water circuit –, where water pressure intensification is 

provided by a positive-displacement pump including three single-acting pistons (see 

Annoni et al., 2008 for a detailed description of the plant). 

The pressure signal, acquired on the high pressure water duct, is a suitable source 

of information for monitoring purposes, as it is characterized by fluctuations that are 

influenced by both upstream and downstream flow rate modifications. A different type of 

signal that is strongly influenced by any variation in the pumping regime conditions is 

the plunger displacement signal, one for each pumping plunger. Since the two kinds of 

sensors provide correlated and partially complementary information, and different 

responses to process changes, we consider a multi-sensor fusion approach based on 

pressure and plunger displacement signals.  

The cutting process is characterized by repeating pressure and plunger 

displacement profiles, one for each pumping cycle. Fig. 8 shows the dynamic pressure 

profiles (i.e. pressure fluctuations around the static level) and plunger displacement 

profiles corresponding to three complete pumping cycles. The plunger displacement 

profile is the result of consecutive pumping steps indicated in Fig. 5: a pre-compression 

step, a compression step and a suction step (see Grasso et al. 2013 for details). The signals 

were acquired on a 45 kW pump with a water pressure set value of 350 MPa and a 0.25 

mm orifice with a sampling frequency of 2 kHz. 
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Real data were acquired both under normal health conditions and in presence of 

actual faults. The following faults scenarios were considered, as they involve the most 

critical components and refer to common contingencies in WJ shop floors:  

 Fault A: cracked high pressure cylinder 

 Fault B: cracked discharge check valve 

 Fault C: worn discharge check valve seat 

 Fault D: broken orifice 
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The experimental settings and the Multi-way PCA procedures are shown in Fig. 

9. The availability of dead centre digital triggers allows performing the signal 

segmentation directly on-line. The signals under normal and faulty conditions were 

acquired by replicating the same cutting process on an aluminum plate. Regarding fault 

scenarios A, B and C, different faulty components were made available by the machine 

tool builders, and they came from actual faults. Dye penetrant analysis and visual 

inspection were applied to rank the components based on the fault severity. In case of 

fault D, instead, the effect of a broken orifice was simulated by installing orifices with a 

larger diameter (0.33 mm). For details about the working principle of the machine tool 

and the designed experiments used to collect the data, the interested reader may refer to 

Grasso et al. (2013). 



5 Real Test Case Results 

5.1 Phase I 

The dataset to be used in Phase I includes 𝑀 = 130 profiles acquired under 

normal working conditions.  

The different methods are compared being equal the percentage of data variability 

explained by the retained PCs (a target value of 80% was set). The relative importance of 

each PC in the two considered methods is shown in Fig. 10. 
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The number of retained PCs to capture at least the 80% of overall data variability 

is 𝑚 = 16 for the VPCA approach and 𝑃1 = 3 (1-mode) and 𝑃2 = 7 (2-mode) for the 

MPCA approach. 

The loadings obtained when VPCA is applied directly to profile data are shown 

in Fig. 11. For sake of space only a subset of retained PCs is shown (notice that the first 

4 PCs explain about 50% of the overall variability). The weights are associated to data 

points, and hence the loadings are profiles in the time domain. Regarding the 

displacements signals, the first PCs associate different weight levels to different pumping 

steps, with largest weight to the steps characterized by largest variability. Regarding the 

pressure signal, instead, the first PCs mainly capture the transient features, the low 

frequency ripples or a combination of them.  
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Fig. 12 shows the loadings obtained by applying the MPCA approach, i.e. two 

sets of loadings, one associated to channels (1-mode loadings) and one associated to data 

points (2-mode loadings).  

The first 1-mode PC averages the contribution of the three displacement signals, 

with a lower weight given to the pressure signal. The second 1-mode PC is mainly 

influenced by the pressure signal and the third PC contrasts the third displacement signal 

against the other two. The 2-mode loadings of the seven retained 2-mode PCs capture 

both the different steps of the pumping cycle that characterize the plunger displacement 

signals (e.g. see PC 1, 2, 4, 5, and 6), and the fluctuations of the pressure signal (PC 3 and 

7).  
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5.2 Testing Data (Phase II) 

The effect of different faults on signal patterns are shown in Fig. 13, where the 

average Phase I profiles are compared with the average profiles in each fault scenarios, 

corresponding to the highest severity level. As far as Fault A, B, and C are concerned, the 

faulty components were installed into the plunger/cylinder group number 1. Fault A 

increases the compression speed of plunger 1, with a consequent impact on the duration 

of the pumping steps of other signals. Faults B and C mainly impact the pre-compression 

step of plunger 1 stroke, since the discharge check valve is closed during that step, and 

any leakage influences the pre-compression equilibrium state. Fault D is a downstream 

fault (it involves the orifice in the cutting head), and hence it has the same effect on all 

the plungers.  
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With regard to the dynamic pressure signal, a broken orifice results in a 

considerable reduction of the 6x harmonic component.  

The fault detection percentage for the three different approaches is shown in Table 

3. In this case the bootstrap-based approach was used to estimate the empirical control 

limits (Liu and Tang, 1996). A number 𝐵 = 1000 of bootstrap samples were generated, 

with a targeted Type I error 𝛼 = 0.01. 
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The VPCA method provides a 100% detection capability. The MPCA method 

approaches the 99% detection rate: the only small fraction of missed detection occurs 

with Fault C, when medium and low wear levels are considered. Thus, the two methods 

provide very similar results, even though the interpretation of extracted PCs is different. 

Since the MPCA loadings associate different sets of weights to each mode, the 

quantification of the role played by each channel in the final PCA model may be simpler. 

However, as shown by the simulations discussed in previous Sections, the interpretability 

improvement provided by the MPCA approach is not necessarily associated to an 

improvement of monitoring performances. 

6 Conclusions 

The multi-way analysis provides a framework to extend the PCA technique to 

multi-dimensional datasets, like those encountered in multi-sensor data fusion problems. 

Two Multi-way PCA extensions are considered in this study: the VPCA approach, 

consisting of applying regular PCA to a matrix generated by unfolding the original multi-



way dataset, and the MPCA approach, based on applying the PCA directly to the multi-

way dataset, preserving its higher-order tensor representation. We reviewed the 

theoretical background of the two methods, and proposed the corresponding extensions 

of PCA-based control charts.  

The interpretability of results provided by Multi-way PCA methods is expected 

to be an important advantage with respect to black box data fusion techniques widely 

exploited in mainstream literature. 

The Monte Carlo simulations demonstrated that the VPCA may provide better 

performances than the MPCA with regard to simple out-of-control scenarios, including 

mean shifts and noise variance increase. The MPCA may be an effective competitor in 

presence of some departures from the natural pattern that affect the correlation structure 

among different channels. However, in terms of overall ARL performances, our 

simulation results suggest that the VPCA should be preferred, at least in applications 

characterized by a small number of channels, as the one considered in this study.  

The application to real multi-channel profile data acquired in waterjet cutting 

showed the different nature of extracted features. In particular, MPCA loadings associate 

different sets of weights to each mode, which may improve the quantification of the 

contribution of each channel on the final PCA model. However, the MPCA requires an 

equal number of data points in each channel. From this last point of view, the VPCA is 

more flexible, since it can be applied to generic vectors of features with different length. 

As highlighted by different authors, the MPCA could be a more efficient method 

from a computational and memory saving point of view, especially when high numbers 

of channels and variables/data points are involved (Lu et al. 2008). One could be 

interested in evaluating both the methods during the design phase, since they lead to 

different PC interpretations and to different subspace projections. The choice between the 



two approaches should take into account the various features mentioned above, including 

the fact that their performances depend on the nature of the out-of-control condition. 

Further research and simulation efforts are expected to further clarify the benefits and 

limitations of the two proposed approaches in different scenarios, and in presence of a 

larger number of channels. 

 

Nomenclature 

𝐵  Number of bootstrap samples 

𝒃𝑗 𝑗𝑡ℎ model parameter vector used in simulated scenarios 

(𝒃𝑗~𝑀𝑁(𝝁𝒃, ∑𝒃)) 

𝐼𝑞  Dimension of the 𝑞-mode of a 𝑄-way array 

𝐽  Number of samples 

𝐋  Eigenvalue matrix in VPCA (diagonal elements are denoted by 𝜆𝑖) 

𝑚  Number of retained PCs 

𝑀  Number of samples used in Phase I 

𝑁  Number of channels 

𝑃  Number of data points (or generic number of variables) in each sample 

𝑃′  Number of matrix columns after unfolding 

𝑃𝑞  Number of retained PCs in the 𝑞𝑡ℎ mode 

𝑄  Number of modes 

𝐒1:𝑀  Sample variance-covariance matrix of 𝐗1:𝑀 

𝑆𝑞  Fraction of the total scatter captured by the retained PCs in the 𝑞𝑡ℎ mode 

𝑆𝑆𝐸𝑗(𝑚) 𝑗𝑡ℎ sample of Sum of Squared Error statistics based on the first 𝑚 PCs 

𝑇𝑗
2(𝑚)  𝑗𝑡ℎ sample of Hotelling 𝑇2 statistics based on the first 𝑚 PCs 

𝛵𝑆  Total scatter tensor 



𝐔  Eigenvector matrix in VPCA (column elements are denoted by 𝐮𝑖) 

𝐔̃(𝑞)  𝑞𝑡ℎ projection matrix in MPCA (column elements are denoted by 𝐮𝑖𝑞

(𝑞)
) 

𝐔̃Φ(𝑞)  Kronecker product of projection matrices – see Eq. 10 

𝐕   Consecutive differences matrix used in Eq. 13 

𝐗  Resulting matrix after unfolding; the 𝑗𝑡ℎ sample is denoted by 𝐱𝑗 

𝐱̅ Average profile (or multivariate vector) among the 𝑀 samples used in 

Phase I 

𝐗1:𝑀 Unfolded Phase I matrix (it includes only the 𝑀 samples used in Phase I) 

𝐗𝑗(𝑞)  Equivalent matrix representation of 𝜒∙,𝑗 by unfolding the 𝑞𝑡ℎ mode 

𝐗̅(𝑞)  Average of the matrix obtained by 𝑞𝑡ℎ mode unfolding of 𝜒∙,𝑗 

𝒙1, 𝒙2, 𝒙3 Blocks, heavysine, and bumps profiles 

𝐱̂𝑗(𝑚)  Reconstructed profile (or multivariate vector) by using the first 𝑚 PCs 

𝒚𝑠  Sine function, used in simulated scenarios 

𝐳𝑗  Projection of the 𝑗𝑡ℎ sample onto orthogonal space spanned by retained 

PCs 

𝛼, 𝛼′  Type I error 

𝛿𝑎, … , 𝛿𝑒 Shifts applied in simulated out-of-control scenarios 

𝜀𝑛,𝑗 Random error term added to the 𝑛𝑡ℎ channel of the 𝑗𝑡ℎ sample in 

simulated scenarios 

𝜆𝑖𝑞

(𝑞)
  (𝑖𝑞)𝑡ℎ eigenvalue in the 𝑞𝑡ℎ mode (MPCA) 

𝜎𝑥𝑢
 Standard deviation of the 𝑢𝑡ℎ benchmark signal (blocks, heavysine, or 

bumps) 

𝛶𝑗   𝑗𝑡ℎ projected tensor 



𝚼∗ Matricized version of the projected tensor 𝛶, with Phase I estimates of 

mean vector and covariance matrix respectively denoted by 𝜰∗̅̅ ̅ and 𝐒𝛶∗ 

𝚽(𝑞)  𝑞-mode matrix in MPCA 

𝜒  𝑄-way array 

𝜒∙,𝑗  𝑗𝑡ℎ sample of 𝑄 − 1 dimensional tensor objects 

𝜒̅∙ Average (𝑄 − 1)-way array among the 𝑀 ones used to estimate the 

MPCA model 

𝜒̂∙,𝑗(𝑚)  Reconstruction of  𝑗𝑡ℎ (𝑄 − 1)-way sample by using 𝑚 PCs 

ψ𝛶  Total tensor scatter 

Subscripts 

𝑖  Data point or variable index (𝑖 = 1, … , 𝑃) 

𝑖𝑞  𝑞-mode index (𝑖𝑞 = 1, … , 𝐼𝑞) 

𝑗  Sample index (𝑗 = 1, … , 𝐽) 

𝑛  Channel index (𝑛 = 1, … , 𝑁) 

𝑞  Mode index (𝑞 = 1, … , 𝑄) 

𝑢  Benchmark signal index used in simulated scenarios (𝑢 = 1, 2, 3) 

𝑤  Model parameter index used in simulated scenarios (𝑤 = 1, … , 3) 
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Table 1 – ARLs and 99% Confidence Intervals for VPCA and MPCA – in-control and 

out-of-control scenarios a), b), and c) 

Scenario 
Affected 

signal 
Severity 

VPCA MPCA 
ARL CI 99% ARL CI 99% 

In-control   100.80 [98.03, 103.58] 101.97 [98.52, 105.43] 

a) 
Signal mean shift 

𝒙1 

0.01 84.61 [82.09, 87.13] 86.32 [83.00, 89.64] 
0.025 38.23 [37.48, 38.98] 45.18 [43.52, 46.84] 
0.05 5.67 [5.62, 5.73] 11.45 [11.01, 11.89] 

0.075 1.34 [1.34, 1.35] 3.61 [3.53, 3.69] 
0.1 1.00 [1.00, 1.00] 1.65 [1.61, 1.69] 

𝒙2 

0.01 77.04 [74.87, 79.21] 92.33 [88.98, 95.68] 
0.025 13.83 [13.64, 14.03] 58.06 [54.24, 61.87] 
0.05 1.10 [1.10, 1.11] 19.51 [16.69, 22.33] 

0.075 1.00 [1.00, 1.00] 5.57 [4.80, 6.35] 
0.1 1.00 [1.00, 1.00] 1.68 [1.53, 1.83] 

𝒙3 

0.01 99.04 [97.26, 100.83] 100.47 [96.38, 104.56] 
0.025 87.11 [84.92, 89.29] 100.96 [97.95, 103.96] 
0.05 57.73 [56.28, 59.17] 94.97 [91.46, 98.47] 

0.075 32.61 [31.86, 33.35] 86.10 [81.96, 90.24] 
0.1 16.70 [16.35, 17.04] 72.75 [69.68, 75.82] 

b) 
Sinusoid term 
superimposition 

𝒙1 

0.025 21.99 [21.47, 22.52] 86.72 [83.36, 89.07] 
0.05 1.41 [1.41, 1.42] 49.74 [48.32, 51.16] 

0.075 1.00 [1.00, 1.00] 17.72 [17.16, 18.29] 
0.1 1.00 [1.00, 1.00] 4.19 [4.01, 4.37] 

0.125 1.00 [1.00, 1.00] 1.20 [1.17, 1.24] 

𝒙2 

0.025 31.90 [31.26, 32.55] 94.12 [90.95, 97.29] 
0.05 2.25 [2.23, 2.27] 63.94 [61.66, 66.23] 

0.075 1.01 [1.01, 1.01] 30.49 [29.69, 31.30] 
0.1 1.00 [1.00, 1.00] 10.06 [9.66, 10.45] 

0.125 1.00 [1.00, 1.00] 2.52 [2.38, 2.67] 

𝒙3 

0.025 95.06 [92.56, 97.56] 99.89 [96.23, 103.55] 
0.05 76.74 [74.92, 78.57] 100.12 [96.96, 103.29] 

0.075 51.17 [50.26, 52.08] 95.94 [93.95, 97.92] 
0.1 28.29 [27.81, 28.77] 91.62 [88.76, 94.48] 

0.125 13.51 [13.27, 13.74] 84.10 [81.93, 86.27] 

c)  
Error term 
variance increase 

𝜒1,∙,𝑗 

1.1 16.90 [16.55, 17.26] 88.24 [85.56, 90.92] 
1.5 1.02 [1.02, 1.02] 32.73 [31.52, 33.93] 
2 1.00 [1.00, 1.00] 4.28 [3.98, 4.57] 

2.5 1.00 [1.00, 1.00] 1.08 [1.06, 1.10] 
3 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 

𝜒2,∙,𝑗 

1.1 23.91 [23.56, 24.26] 92.14 [88.40, 95.89] 
1.5 1.10 [1.10, 1.10] 41.93 [39.95, 43.91] 
2 1.00 [1.00, 1.00] 8.12 [7.62, 8.62] 

2.5 1.00 [1.00, 1.00] 1.49 [1.43, 1.55] 
3 1.00 [1.00, 1.00] 1.01 [1.01, 1.01] 

𝜒3,∙,𝑗 

1.1 37.16 [36.41, 37.92] 96.26 [93.43, 99.09] 
1.5 1.55 [1.54, 1.56] 56.59 [54.32, 58.85] 
2 1.00 [1.00, 1.00] 18.37 [17.64, 19.11] 

2.5 1.00 [1.00, 1.00] 4.16 [3.85, 4.48] 
3 1.00 [1.00, 1.00] 1.29 [1.24, 1.34] 

𝜒4,∙,𝑗 

1.1 22.84 [22.50, 23.17] 91.76 [88.01, 95.50] 
1.5 1.09 [1.09, 1.09] 41.15 [39.62, 42.68] 
2 1.00 [1.00, 1.00] 7.48 [7.04, 7.93] 

2.5 1.00 [1.00, 1.00] 1.40 [1.34, 1.45] 
3 1.00 [1.00, 1.00] 1.01 [1.00, 1.01] 

 

 

 



Table 2 – ARLs and 99% Confidence Intervals for VPCA and MPCA – out-of-control 

scenarios d) and e) 

Scenario 
Affected  

parameter 
Delta 

VPCA MPCA 
ARL CI 99% ARL CI 99% 

d) 
Mean shift of 
model parameters 

𝑏1,𝑗 

1 52.40 [51.11, 53.70] 68.72 [65.90, 71.54] 
2 12.64 [12.43, 12.85] 25.74 [23.60, 27.89] 
3 3.55 [3.51, 3.59] 8.63 [8.21, 9.04] 
4 1.60 [1.59, 1.61] 3.30 [3.20, 3.40] 
5 1.12 [1.11, 1.12] 1.68 [1.64, 1.73] 

𝑏2,𝑗 

1 94.78 [92.61, 96.95] 100.33 [96.01, 104.65] 
2 75.86 [74.01, 77.70] 99.97 [95.77, 104.17] 
3 51.42 [50.47, 52.38] 90.17 [86.71, 93.62] 
4 30.55 [29.90, 31.19] 84.07 [80.30, 87.84] 
5 16.74 [16.47, 17.00] 74.62 [70.91, 78.34] 

𝑏3,𝑗 

1 51.88 [50.88, 52.87] 36.76 [35.49, 38.02] 
2 11.91 [11.71, 12.12] 8.26 [8.00, 8.52] 
3 3.34 [3.32, 3.37] 2.63 [2.56, 2.71] 
4 1.54 [1.53, 1.54] 1.39 [1.37, 1.41] 
5 1.10 [1.10, 1.10] 1.07 [1.07, 1.08] 

𝑏5,𝑗 

1 51.61 [50.48, 52.75] 27.76 [26.80, 28.73] 
2 11.88 [11.66, 12.09] 5.55 [5.46, 5.65] 
3 3.29 [3.26, 3.33] 2.00 [1.97, 2.03] 
4 1.53 [1.52, 1.53] 1.21 [1.20, 1.21] 
5 1.10 [1.10, 1.10] 1.03 [1.03, 1.03] 

𝑏6,𝑗 

1 55.48 [54.16, 56.79] 94.04 [90.41, 97.67] 
2 14.23 [14.01, 14.45] 79.17 [76.86, 81.49] 
3 3.94 [3.90, 3.98] 56.51 [53.91, 59.11] 
4 1.71 [1.70, 1.72] 37.69 [35.90, 39.47] 
5 1.15 [1.15, 1.15] 21.64 [20.54, 22.74] 

𝑏7,𝑗 

1 52.15 [50.95, 53.35] 42.39 [40.94, 43.85] 
2 11.90 [11.70, 12.11] 9.21 [8.90, 9.53] 
3 3.32 [3.29, 3.36] 2.80 [2.72, 2.89] 
4 1.54 [1.53, 1.54] 1.41 [1.39, 1.44] 
5 1.10 [1.10, 1.10] 1.07 [1.06, 1.07] 

e) 
Variance increase 
of model 
parameters 

𝑏1,𝑗 

1.5 33.17 [32.62, 33.71] 54.14 [51.24, 57.04] 
2 11.76 [11.64, 11.87] 22.58 [21.65, 23.51] 

2.5 6.24 [6.20, 6.30] 11.11 [10.76, 11.45] 
3 4.22 [4.19, 4.24] 6.77 [6.60, 6.93] 
4 2.70 [2.69, 2.71] 3.80 [3.73, 3.87] 

𝑏2,𝑗 

1.5 94.10 [91.84, 96.36] 100.75 [96.08, 105.41] 
2 75.90 [74.37, 77.42] 99.97 [96.70, 103.25] 

2.5 55.79 [54.36, 57.21] 95.94 [92.68, 99.20] 
3 37.84 [37.29, 38.39] 92.39 [89.74, 95.04] 
4 16.60 [16.40, 16.80] 83.08 [79.11, 87.05] 

𝑏3,𝑗 

1.5 31.68 [31.14, 32.23] 23.49 [23.01, 23.96] 
2 11.13 [10.97, 11.29] 8.92 [8.80, 9.05] 

2.5 6.00 [5.97, 6.04] 5.11 [5.04, 5.18] 
3 4.09 [4.07, 4.12] 3.61 [3.59, 3.64] 
4 2.63 [2.62, 2.64] 2.42 [2.41, 2.44] 

𝑏5,𝑗 

1.5 31.64 [31.02, 32.26] 17.46 [17.22, 17.69] 
2 11.12 [11.00, 11.25] 6.88 [6.82, 6.94] 

2.5 5.96 [5.91, 6.00] 4.16 [4.13, 4.19] 
3 4.05 [4.03, 4.07] 3.07 [3.05, 3.09] 
4 2.63 [2.61, 2.64] 2.18 [2.17, 2.19] 

𝑏6,𝑗 

1.5 36.30 [35.78, 36.83] 94.08 [91.16, 96.99] 
2 12.80 [12.60, 12.99] 81.10 [78.68, 83.53] 

2.5 6.72 [6.67, 6.78] 62.43 [60.07, 64.80] 
3 4.46 [4.44, 4.49] 41.65 [40.31, 42.99] 
4 2.79 [2.78, 2.81] 17.12 [16.79, 17.46] 

𝑏7,𝑗 

1.5 32.21 [31.61, 32.81] 26.42 [25.75, 27.10] 
2 11.32 [11.20, 11.44] 9.54 [9.28, 9.79] 

2.5 6.04 [5.99, 6.09] 5.33 [5.26, 5.40] 
3 4.09 [4.06, 4.11] 3.71 [3.67, 3.74]  
4 2.63 [2.62, 2.65] 2.47 [2.45, 2.48] 



Table 3 – Fault detection percentages in different fault scenarios 

Fault Fault Severity 

Fault Detection (%) 

VPCA MPCA 

𝑇2 𝑇2 + 𝑆𝑆𝐸 𝑇2 𝑇2 + 𝑆𝑆𝐸 

A 

Severe crack 100 100 100 100 

Medium crack 100 100 100 100 

Small crack 100 100 100 100 

B 
Severe crack 100 100 100 100 

Small crack 100 100 100 100 

C 

Severe wear 100 100 100 100 

Medium wear 100 100 96.15 96.15 

Low wear 100 100 79.17 91.67 

D 

Broken 1 100 100 100 100 

Broken 2 100 100 100 100 

Broken 3 100 100 100 100 

Tot 100 100 97.95 98.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 1 – Unfolding of a 3-way array into a matrix 
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Fig. 2 - ‘Blocks’, ‘heavysine’, and ‘bumps’ profiles 
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Fig. 3 – Explained variance and cumulative variance - VPCA and MPCA methods 
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Fig. 4 – ARLs and 99% Confidence intervals in simulated scenarios a) and b) – VPCA 

and MPCA approaches 

 

 

 

 

 

 

 

 

 

 

 

 

0.01 0.025 0.05 0.075 0.1
0

50

100

A
R

L

Scenario a)
Shift on x1

0.01 0.025 0.05 0.075 0.1
0

50

100

A
R

L

Shift on x2

0.01 0.025 0.05 0.075 0.1
0

50

100

Disturbance severity

A
R

L

Shift on x3

0.01 0.025 0.05 0.075 0.1
0

50

100

A
R

L

Scenario b)
Shift on x1

0.01 0.025 0.05 0.075 0.1
0

50

100

A
R

L

Shift on x2

0.01 0.025 0.05 0.075 0.1
0

50

100

Disturbance severity

A
R

L

Shift on x3

VPCA
MPCA



 

 

Fig. 5 – ARLs and 99% Confidence intervals in simulated scenario c) – VPCA and 

MPCA approaches 
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Fig. 6 - ARLs and 99% Confidence intervals in simulated scenario d) – VPCA and 

MPCA approaches 
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Fig. 7 - ARLs and 99% Confidence intervals in simulated scenario e) – VPCA and 

MPCA approaches 
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Fig. 8 – Superimposition of pressure and plunger displacement signals under normal 

working conditions 
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Fig. 9 – Sensor location and multi-channel signal analysis procedure in the WJ/AWJ 

real test case  

 

 

 

 

 

 

 



 

 

  

Fig. 10 – Cumulative explained variance for the VPCA and the MPCA methods  
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Fig. 11 – Average Phase I profiles (first row) and loadings - VPCA approach  
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Fig. 12 – Average Phase I profiles and 1-Mode/2-Mode loadings - MPCA approach 
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Fig. 13 – Effects of different faults on multi-channel signals (average profiles); faulty 

data refer to the highest severity level in each fault scenario  
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