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Abstract 

 

The flexibility in terms of beam shapebility and amplitude in the range of process parameters offered by the emerging 

high power and quality active fiber lasers can be advantageously used in overcoming the well-known problems in remote 

laser welding of zinc coated steel components in the car mass production. The paper explores the potentiality offered by 

the combination of the scanner technology with high brilliance fiber lasers when laser dimpling and remote welding are 

executed in a successive order, the first one to realize gap spacers, the second one to weld together clamped sheets in zinc 

coated steels. In particular, the substitution of the traditional mechanical dimpling with the laser dimpling is investigated 

in order to highlight the potentiality of a solution that is flexible, unaffected by tool wear and highly productive. 
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1. INTRODUCTION 

 

Laser welding is gradually replacing traditional forms of welding across many applications in automotive production and 

even if laser brazing [1] and remote laser cutting [2] are receiving more attention, remote laser welding (RLW) can be 

considered the most established laser welding process. 

RLW is a contactless welding procedure. A long focal length is used to focus the laser beam at relatively high distances in 

a very fast beam movement in order to perform weld beads at high welding speed without the supply of shielding gas or 

welding filler material. Typical focal lengths are between 200 mm and 500 mm; however remote laser processes with 

longer focal length have been demonstrated [3]. Thanks to the rapid diffusion of high power active fiber laser sources, 

RLW capabilities are highly enhanced. Active fiber lasers can be focused to a small spot also with long focal lengths and, 

along with the high achievable laser powers, keyhole welding mode can be easily obtained [4-6].   

Different materials can be laser welded in different remote welding configurations. Among them, a common welding 

process in the automotive production is the laser welding of zinc-coated steel in lap-joint configuration [5-7]; however the 

complexity of laser welding of zinc-coated steels could induce a number of welding defects that prevent a wider 

implementation of the technology at an industrial level.  

It is well known indeed that to achieve a high-quality weld on galvanized steels in lap joint configuration is difficult by 

RLW because of the presence of highly pressurized zinc vapour. In fact, the boiling point of zinc is 906°C, much lower 

than the melting point of steels (over 1500°C), therefore during laser welding of galvanized steels in a gap-free lap joint 

configuration, highly pressurized zinc vapor is easily developed at the interface of the two metal sheets. This highly 

pressurized zinc vapor expels the liquid metal out of the molten pool and produces weld defects such as spatter and 

porosity during the laser welding process, finally degrading the mechanical properties of the weld joints [6].  

Different solutions were adopted in order to prevent defects occurring due to zinc vapor during RLW of zinc-coated steels. 

Among them, investigated solutions were based on: i) the introduction of aluminum foil between the zinc-coated surface 

to increase the temperature at which Al-Zn composites vaporize [8-9], ii) the use of active welding gases to increase the 

weld bead temperature to enlarge the keyhole [6], iii) the adoption of hybrid welding systems to warrant preheating of the 
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zinc coating and its evaporation prior to the welding process [10], iv) the adoption of bifocal focusing lenses [11], laser 

knurling [12], dual beam laser welding procedures to enlarge the keyhole in the welding direction and allow degassing of 

zinc vapors [12-15], v) the control of the molten shape based on pulsed wave laser welding regime with both Nd:YAG  

laser [16] and CO2 laser [17], and power modulation to control keyhole oscillation [18-20]. 

Even if the feasibility of all these solution was experimentally demonstrated, their adoption in industrial production is far 

to be accepted, mainly because of their complexity and costs. The only solution that is nowaday industrially adopted to 

prevent defects from zinc vapors is based on the use of a gap between the overlapped sheets to allow degassing of zinc 

vapors, where the value of the gap is generally selected according to the thicknesses of both the metal sheets and the zinc 

coating [21]. A standard solution for gap control is obtained by stamping on the lower plates circular bosses whose height 

define the gap. However it has been shown that the risk of generating holes and pores is high when the boss height is too 

small (<50 μm); on the contrary, the risk of unacceptable top bead depression increases if the boss height is too high (>200 

μm) [3].  

On the contrary, a novel and most promising solution is based on the laser dimpling procedure. The same laser equipment 

that provides RLW can generate a positive protrusion of molten material, hereafter dimple. The dimples act as zinc 

degassing points during RLW process imposing a constant gap to the clamped sheets.  

However little data is available on the scientific literature about this technique, that is able to produce dimples with height 

varying between 50 μm and 300 μm, depending on the used laser parameters [22]. The possibility to realize gap venting 

features making use of the same laser source and scanner head devoted to the RLW process is very intriguing because it 

adds flexibility and potentiality to the entire assembling phase. Contrary to the tools and dies used in the stamping, the 

laser beam does not suffer of progressive wear. Moreover shape, height, position and numbers of the dimples are not 

rigidly pre-determined but can be varied by varying the laser process parameters and commanding opportunely the 

scanner head. The use of a scanner head for laser dimpling indeed has evident advantages given by the flexibility in terms 

of process parameters and by the high productivity achievable thanks to high scanning speeds and, as already said, by the 

absence of wear and deformation of the laser tool.  
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2. AIM OF THE PAPER AND REPRESENTATIVE CASE STUDY 

 

In the paper an integrated solution that includes laser dimpling and then remote laser welding, is investigated. Principal 

aim is to investigate the feasibility of the dimples as gap-venting features when RLW is performed on zinc coated sheets 

clamped together and spaced by the dimples themselves.  

As schematically illustrated in Fig. 1, in the paper two distinct phases are investigated:  

a) Pre-processing phase, i.e. dimpling, where adequate dimples are accomplished by the same laser source and equipment 

that are planned to remote laser welding the zinc coated steels once dimpled; 

b) Processing-phase, i.e. welding phase, where the adequate quality attributes of the welded joints are sought in order to 

guarantee the respect of the automotive standards imposed by the car manufacturer. 

 

Insert Figure 1 here 

 

The industrial context of remote fiber laser welding is reproduced that means the industrial specifications and constraints 

typical of the automotive sector are considered during the experimentation.  

In the case of the dimpling phase the most critical attribute is the dimple height that ensures a constant distance between 

the two sheets. The same specification, used for the mechanical boss stamping, is adopted in terms of dimple height. Since 

the physical phenomenon regulating the dimple formation and consequently the dimple height is quite complex and 

unknown, an experimental approach is preferred and a regression model relating the dimple height to the main laser 

process parameters is investigated. 

In the case of the RLW, the specifications and quality attribute of the lap joints are better known. These attributes 

principally regulate the joint dimensions and soundness. As in the case of laser dimpling an experimental approach is used 

to determine the main relationship between the laser process parameters and the joint dimensions.  

A scheme of the dimpling and welding configuration is presented in Fig. 2, while the most common key process indicators 

used for the evaluation of the weld bead quality in remote laser welding of overlapped zinc coated steel are generally the 
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ones directly related to the mechanical properties of the joint [23-24]. As for the specifications of these key process 

indicators, their selection and real relationship with joint strength is still under exploration. In fact, unlike the more 

traditional resistance spot welding process where a great deal of work has been conducted, information on a remote laser 

beam weld is nowadays sparse. In industrial practice automotive manufacturers use their own specifications for the chosen 

key process indicators.  Accordingly, in the presented work, proprietary specifications of industrial partners have been 

selected as follows: 

 

1. Dimple height, H. For such a welding configuration zinc venting requires a certain gap between the overlapped sheets. 

The required dimple height (H) has to be properly tuned to match the gap value (G). Standard gap values ranges between 

50-200 μm depending on the upper and lower sheet thickness [22] and a nominal value of the gap of 100 μm is generally 

required when the upper sheet has a thickness lower than 1 mm. In the mechanical stamping variability in the boss height 

of about 20% gap thickness is allowed in order to take into consideration stamping process variability and die wear. 

Similar tolerance is assumed in the case of laser dimpling. 

 

2. Dimensions of the remote laser welded joint in the cross section. The mechanical resistance of the welded joints is 

fundamental. Typically the resistant cross section of the weld bead (S) measured on the interface between the two sheets 

has to be larger than the thickness of the upper sheet (T1), while the penetration depth of the weld bead (P) in the lower 

sheet has to be deeper than half the thickness of the lower sheet (T2).  

 

3. Other qualitative attributes of the remote laser welded joint. No drop out of the weld bead is allowed on the bottom side 

of the lower sheet for esthetical reasons, since the bottom side is the sheet face that is coated and painted. Moreover no 

defects such as pores, inclusions, and voids are allowed as well as surface irregularities have to be limited. 

 

According to the described constraints the problem of realizing good remote laser welded joint when the two zinc coated 

sheet are spaced by laser dimples is dominated by the following constrains:  
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0.8𝐺 ≤ 𝐻 ≤ 1.2𝐺            (1) 

 

𝑆 ≥ 𝑇1               (2) 

 

1

2
𝑇2 ≤ 𝑃 ≤ 𝑇2             (3) 

 

 

In this work due to the relatively novelty of the laser dimpling process the objective function is the maximization of the 

productivity that means in this simplified context the maximization of the scanning speed in both phases: laser dimpling 

and remote welding when a single overlapped joints has to be obtained. Aim of the experimentation is to demonstrate the 

flexibility of the laser dimpling and remote welding processes by pursuing the maximum welding speed while the overall 

quality of the joint and the required process specification of the chosen case study are preserved. The maximum speed is 

graphically determined taking into account the area that constrains in Eq. (1-3) delimitate on the space of the process 

parameters and the natural variability of both phases. The process variability indeed is included by considering in the 

regression models not the regression function for the mean but the confidence interval for the mean. 

 

Insert Figure 2 here 

 

3. MATERIAL SELECTION AND EXPERIMENTATION DESIGN 

 

The selected case study is based on the technical specifications commonly found in remote laser welding of overlapped 

zinc coated steels and formulated in Eq. (1-3) when two typical high strength steels are used as upper and lower sheets. 

The material of the upper plate is HCT780X+ZE (EN 10346:2009) with a thickness T1 of 0.75 mm, while the lower plate 

is DC04+ZE (EN 10152:2009) with a thickness T2 of 1.5 mm (see Table 1).  
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An IPG Photonics YLR 1000 active fiber laser source was used for both dimpling and remote laser processes. The laser 

source has a modular architecture, based on two laser power modules, each one by 500 W of power that results in a 

maximum output of 1000 W in continuous wave regime. 

As for the galvanometric scanner system, an El.En. ThetaFiber prototype was mounted on an ABB IRB2400 robot and 

was used for both dimpling and welding experimentations. Table 2 summarizes the technical characteristics of the active 

laser source and the scanning welding system. 

The employed laser source generates a multi-mode beam with an M2 of 5.14 at a central wavelength of 1070 nm. The 

resulting beam intensity distribution is close to TEM00. The laser beam is convoyed towards the laser scanning system 

with a delivery fiber with a diameter of 50 μm. The laser beam is then sent into a collimating unit with a focal length of 60 

mm, deflected with a couple of Beryllium scanning galvo mirrors and finally focused on the working surface thanks to a 

theta lens with a focal length of 400 mm. In this configuration the calculated laser beam diameter at focal plane was 333 

µm. A view of the equipment used for the remote laser process experiments is presented in Fig. 3. 

 

Insert Table 1 here 

 

Insert Table 2 here 

 

Insert Figure 3 here 

 

3.1. DIMPLING 

 

The physical phenomena behind the laser dimpling process can be explained by the keyhole dynamics generated by a 

laser pulse with sufficient intensity. If the laser pulse is stationary, the keyhole is closed up at the end of the laser pulse. In 

this case, the molten metal flows inward from all around the keyhole to form a symmetrical spot weld. Usually no hump 

can be created in such a way. However by careful observation of a bead on plate weld, it can be noticed that a dip always 
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exists at the end of the weld. This means that a small amount of material is moved to the adjacent track [22]. Therefore, 

when the laser pulse is moving, the molten metal flows around the keyhole from keyhole front to its rear. At the end of the 

laser pulse, a small amount of molten metal solidifies to form a hump due to its momentum. The height of the hump 

depends on the laser power density, the laser scanning speed (v), the beam profile and the length of the laser trajectory (L) 

used during the execution of the dimple.  

Preliminary tests, here not presented for sake of briefness, were conducted for the identification of a feasibility region for 

the dimpling process. As summarized in Table 3, a laser beam defocusing of 30 mm was used, leading to a laser beam spot 

diameter of 711 μm. Also the laser power and the trajectory length were kept at fixed values, respectively 1000 W and 

1.55 mm, while the only process parameter used at variable level was the scanning speed of the laser beam over the 

sample surface that was varied at 4 different levels from 0.5 m/min to 2.0 m/min.  

According to the process specifications presented in paragraph 2 and to the thickness of the upper plate T1 of 0.75 mm, a 

value for the dimple height H of 100 ± 20 μm was considered as process target for the selected dimpling case; as for the 

experimental phase, the lower plate DC04+ZE was used. 

For each scanning speed 5 replications were executed and the height H was measured for each dimple. The measurements 

were performed with a focus variation 3D microscope (Alicona Infinite Focus) that also allows representative 3D macro-

views of the dimple shapes to be taken.  

 

Insert Table 3 here 

 

3.2. REMOTE WELDING 

 

In the RLW experiments, all the laser process tests were executed on sample plates (25 x 40  mm2). A single stitch 30 mm 

long was reproduced at the center of the sample. Samples were clamped according to the scheme presented in Fig. 2, 

while the correct gap value is warranted by the presence of calibrated spacers with a height of 100 μm inserted laterally to 

the weld bead position between the overlapped sheets. 
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As already done for the laser dimpling process, the remote laser welding process experiments were conducted by varying 

only the laser welding speed. To ensure the maximum performances in terms of laser coupling inside the sample surfaces, 

the maximum laser power of 1000 W was used on a laser spot focused on the upper surface of the HCT780X+ZE, leading 

to a spot diameter of 333 μm. The gap between the sheets was controlled by placing calibrated spacers laterally to the 

weld bead, ensuring a constant gap value of 100 μm. The welding speed was tested at 4 different levels ranging from 1.5 

m/min to 6 m/min. A summary of the used process parameters is presented in Table 4.   

According to the process specifications presented in section 2 and to the thickness of the upper plate T1 of 0.75 mm and of 

the lower plate T2 = 1.5 mm, the target range for the weld bead penetration was set to 750 μm ≤ P ≤ 1500 μm, while the 

target range for the resistant cross section S of the weld bead was set to S ≥ 750 μm, For each welding speed 3 replications 

were performed.  

Specimens for microstructural examinations and bead dimension determinations were cut using a precision diamond saw 

and polished by conventional metallographic techniques, where Nital 2% was used as chemical reagent. The bead 

dimensions, P and S, were measured on the cross section of the welded joints making use of standard image analysis 

software. Optical observations were carried out on the prepared specimens to evaluate the other bead qualitative attributes. 

 

Insert Table 4 here 

 

3.3. CONFIRMATION RUNS WITH BOTH LASER DIMPLING AND REMOTE WELDING 

 

In order to validate the combined use of the processing conditions obtained singularly in the laser dimpling and remote 

welding experiments, a confirmation experiment was executed with the selected optimal process parameters that fulfill the 

constraints in Eq. (1-3) and allows working at the maximum scanning speed. According to the process scheme presented 

in Fig. 4, four dimples were prepared on the lower sheet of the DC04 sheet.  Then the upper sheet was clamped together 

and laser welded with a seam track placed in the area limited by the dimples. The same metallographic and measurement 

techniques mentioned before were used to evaluate the final welded bead dimensions and quality. 
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Insert Figure 4 here 

 

4. RESULT ANALYSIS 

4.1. REMOTE LASER DIMPLING 

 
Representative macro-views of the dimples together with a 2D dimple profile at different scanning speed are shown in 

Fig. 5. The obtained dimples have a negative-positive profile: a negative cavity is obtained with the molten material 

moved around the keyhole, a correspondent positive protrusion is left behind. 

Fig. 6 shows the individual plots of the measured dimple height H versus the scanning speed. As it can be observed, an 

increase in the scanning speed leads to a decrease of the dimple height. This behavior can be related to the decrease of the 

laser-material interaction time and to the consequent lower laser energy that is coupled in the molten material. This results 

in a lower momentum of the molten material around the keyhole and the process mechanism can be fundamentally 

compared with keyhole welding; whereby a highly focused power beam produces a vapor cavity in a substrate which is 

translated through the workpiece, according to the motion of the beam. Traversing the beam across the workpiece creates 

a trailing melt pool. The combination of surface tension variation along the weld pool and vapor pressure from the cavity 

causes a displacement of material opposite to the beam’s direction of travel. This is evident in keyhole laser welds by the 

presence of a crater at the end of the weld, and a corresponding bump at the weld initiation point. In particular, the 

equilibrium state between the keyhole wall and the surrounding molten material is supposed to be dependent on the 

interaction between the vapor jet from the keyhole formation and the melt, which are a strong function of the melt flow 

velocity and the keyhole temperature.  

Furthermore the explored scanning speed range ensures the dimple height between few µm up to 250 µm, as similarly 

reported in [22]. On the other hand, wide process variability is observed probably due to the effect of uncontrolled process 

variables. Such high variability needs further investigation but the uncontrolled thickness of the zinc coating and the 

roughness of the surface as well as chaotic explosions of the vaporized zinc layer can affect the dimple height.  
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An appropriate regression model that describes how the dimple height H decreases with the scanning speed is represented 

by the following equation: 

 

𝐻 [𝜇𝑚]  =  105.939/ 𝑣 [𝑚/𝑚𝑖𝑛]          (4) 

 

The performed regression analysis shows a good fitting of the data (R2
adj is over 97%) and no evidence of lack of fit. 

Standard checks on the normality and homogeneity of variance of the residuals are satisfied as well. The linear regression 

model of Eq 4 together with 95% of confidence interval about the regression line for the mean expected response of 

variable H, as well as the lower and upper specification limits are presented in Fig. 7. By considering the 95% confidence 

interval (CI) for the scanning speed, the range for the scanning speed that ensures the desired dimple height of 100 ± 20 

μm is between 1.0 m/min and 1.2 m/min. In fact a scanning speed of 1.0 m/min results in a fitted value of H equal to 

105.94 μm while the 95% CI is 95.30 -116.70 μm. On the contrary a scanning speed of 1.2 m/min results in a fitted value 

of H equal to 88.30 μm while the 95% CI is 80.00 - 97.00 μm. In the last case the lower limit is too close to the lower 

specification limit. Therefore the lower scanning speed, 1 m/min, was preferred in order to guarantee the dimple height 

constrain.  

 

Insert Figure 5 here 

 

Insert Figure 6 here 

 

Insert Figure 7 here 
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4.2. REMOTE LASER WELDING 

 

Representative cross sections belonging to different welding conditions are presented in Fig. 8.  No welding defects such 

as pores and voids are observed in the cross sections of all the weld beads. The upper surface of the samples presents a 

superficial chamfer whose dimension slightly increases with decreasing welding speed. This defect can be due to the high 

brightness of the used laser beam that vaporizes a part of the molten material in correspondence of the laser beam axis 

where the power density is at maximum. This defect can also be attributed to the drop of molten material inside the free 

space between the overlapped sheets. The increase of the dropped material while the welding speed decreases can be 

related to the increasing amount of molten metal involved in the fusion process.  

A relatively large dimension of the heat-affected zone is observed at the lowest welding speed of 1.5 m/min while lower 

values are observed at higher welding speed due to the fact that when the speed increases the energy transmitted per unit 

length decreases. However, no significant welding defects are observed in the heat-affected zone. 

As for the geometrical dimensions of the weld bead, such as the weld bead penetration (P) and the resistant cross section 

(S), their values decrease with the increasing welding speed with minimal values for both P and S at the highest speed of 

6.0 m/min (see their individual plots in Fig. 9a and 9b). As expected, an increase of the scanning speed corresponds to a 

reduction in the energy transmitted to the workpiece and consequently to a reduction in the quantity of the molten material 

involved in the fusion process. 

The measured penetration P was fitted with the following regression model: 

 

𝑃 [𝜇𝑚]  =  1883.1 −  297.89 𝑣 [𝑚/𝑚𝑖𝑛]         (5) 

 

where the bead penetration linearly decreases with the scanning speed. The performed regression analysis presents a good 

fitting of the data (R2
adj is over 94%) and no evidence of lack of fit. Standard checks on the normality and homogeneity of 

variance of the residuals are satisfied as well. 
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Since it is fundamental to have sufficient cross section (larger than 750 μm) and contemporaneously avoiding drop out, 

the range of speeds fulfill the limits is between 1.8 m/min and 3.5 m/min (see the window in Fig. 10).  

In fact, by considering a welding speed v = 1.8 m/min, a fitted value for P of 1346.90 μm is expected with a 95% CI 

between 1207.50 μm and 1487.30 μm. On the other hand, by considering a welding speed of 3.5 m/min, a fitted value for 

P of 840.50 μm is expected with a 95% CI between 753.00 μm and 928.00 μm. The optimum scanning speed therefore 

ranges between 1.8 m/min and 3.5 m/min and the final value depends on the analysis of the other dimension, the resistant 

cross section S. 

As for the resistant section S, the linear regression model: 

 

𝑆 [𝜇𝑚]  =  1099.38 −  108.207 𝑣 [𝑚/𝑚𝑖𝑛]         (6) 

 

depicts how S decreases while increasing the welding speed, while Fig. 11 shows the correspondent regression line and its 

95% confidence interval. The resistant section linearly decreases with the scanning speed and the regression analysis 

shows a good fitting of the data (R2
adj is over 77%) and no evidence of lack of fit. Standard checks on the normality and 

homogeneity of variance of the residuals are satisfied as well. 

Accordingly to the 95% CI in Fig. 11 a welding speed lower than 2.4 m/min allows the constraint of the minimum 

resistant section to be fulfilled. Indeed a fitted average value of 839.70 μm is expected while the 95% CI ranges between 

749.00 μm and 931.00 μm. 

When both dimensions P and S are taken into account, the regression analysis indicates that the specification on weld bead 

penetration  (T2/2 ≤ P ≤ T1) is fulfilled for a range of the welding speed between 1.8 m/min ≤ v ≤ 3.5 m/min while the 

regression analysis indicates that the specification on weld bead resistant section (S ≥ T1) is fulfilled for values of 

scanning speed lower than v ≤ 2.4 m/min (see more details in Table 8). Therefore a scanning speed of 2.4 m/min is the 

optimum value to be used in the RLW because the maximum productivity is guarantee as well as the respect of the given 

specifications. 
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Insert Figure 8 here 

 

Insert Figure 9 here 

 

Insert Figure 10 here 

 

Insert Figure 11 here 

 

4.3. CONFIRMATION RUNS WITH LASER DIMPLING AND WELDING  

 

In the end the two separated experimentations, laser dimpling and remote welding, were validated with the execution of 

several confirmation runs performed according to the optimized process parameters listed in Table 5. Four dimples were 

laser welded on the lower sheet with a set distance from the welding trajectory as shown in Fig. 4. After laser dimpling, 

the dimples were measured (see an example in Fig. 12) and the sheets clamped together. The measured dimples height 

was 105 ± 12 μm, that is within the given constrains (100 ±20 μm). 

The remote laser welding was executed and as previously defined the dimension P and S as well as the quality of the 

welded beads were measured and evaluated on cross section to the welded joints. Fig. 13 shows the confirmation runs 

obtained for two replications. Both runs are within the constrain area confirming the validity of the proposed solution. Fig. 

13 also shows the macro-views of two weld bead cross section where no welding defects such as pores and voids are 

observed.  

 

Insert Table 5 here 

 

Insert Figure 12 here 
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Insert Figure 13 here 

 

5. CONCLUSIONS 

 

In the present paper two key enabling processes for the automotive industry, laser dimpling and remote welding, are 

investigated together with the aim of realizing an assembling procedure that is accomplished with the same laser scanner 

head and allow overcoming the problem of the zinc venting. Based on an experimental approach the experimentation has 

led to the following main results:  

 Dimples at a controlled height, that respects the automotive specifications, can be obtained with an appropriate use of 

the scanner head. Laser dimpling has evident advantages: dimple position, shape and dimensions are not rigid but can 

be modulated managing the laser beam and scanner head process parameters. No progressive wear of the tool is 

present, and above all, the productivity is very high thanks to the capability of the scanner head to rapidly move the 

laser beam over the whole process area. 

 When the gap imposed by the automotive specifications is respected, remote laser welded joints with the opportune 

penetration and resistant section can be obtained at high speed preserving the required bead quality. 

 Thanks to the optimization of the laser dimpling and of the remote laser welding processes, the overall quality of the 

joint process can be considered similar to the one of the traditional resistant spot welding process. 
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Fig. 1 Sequence of the experimental phases for remote laser welding of zinc coated steels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

 
 

Fig. 2 Configuration of the laser dimpling and remote welding processes. 
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Fig. 3 Overview of the remote laser processing system. 
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Fig. 4 Configuration of the samples used for the confirmation runs with the relative position of the four dimples close to 

the welded bead (top view). 
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Fig. 5 Dimple shapes at different scanning speeds: macro-view (top); 3D profile (middle) ; 2D cross section profile 

(bottom) 
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Fig.6 Individual value plot of dimple height versus scanning speed (colored area indicates the admissible range of the 

dimple height). 
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Fig. 7 Regression model of dimple height versus scanning speed (colored area indicates the admissible range of the 

dimple height). 
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Fig. 8 Representative cross sections of the tested remote laser welding conditions. 
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a      b 

 

Fig. 9 Individual value plot of weld bead penetration (a) and resistant section (b) versus scanning speed (colored area 

indicates the admissible range of the penetration and resistant section respectively). 
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Fig. 10 Regression curve of weld penetration versus scanning speed (colored area indicates the admissible range of the 

penetration). 
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Fig. 11 Regression curve of weld bead resistant section versus scanning speed v (colored area indicates the admissible 

range of the resistant section). 
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Fig. 12 Confirmation run of the laser dimpling phase:  macro-view (lef); 3D profile (middle) ; 2D cross section profile 

(right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

 
 

Fig. 13 Confirmation run of the laser welding phase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

 

Table 1 Nominal composition of the materials used in the experiments (wt %). 

 

HCT780X+ZE (EN 10346:2009)  

%C %Si %Mn %P %S %Al %Cr+%Mo %Fe 

0.17 0.80 2.20 0.080 0.015 2.00 1.00 Bal. 

DC04+ZE (EN 10152:2009)  

%C %Mn %S %P %Fe 

0.08 0.40 0.030 0.030 Bal. 
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Table 2 Principal technical data of the laser source and scanning welding system. 

 

Fibre Laser Source IPG YLR 1000 

Maximum Laser Power 1000 W, CW 

Diameter of Delivery Fiber  50 μm 

Laser Wavelength 1070 nm 

M2 5.14 

Scanning Welding Head El.En. ThetaFiber 

Scanning Galvo Mirror System Galvoline G3060, Berilium 

Collimating Length 60 mm 

Focusing Length - Theta Lens 400 mm 

Beam diameter at focal plane 333 µm 

Maximum Linear Scanning Frequency  250 Hz 

Working Area 200 mm x 200 mm 
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Table 3 Process parameters used in the experimental phase on dimpling process. 

 

Process Parameter Type Value(s) 

Laser Power fixed 1000 W 

Focal Position fixed + 30 mm 

Laser trajectory length fixed 1.55mm 

Scanning speed variable 

(4 levels) 

0.5m/min; 

1.0m/min; 

1.5m/min;  

2.0m/min 
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Table 4 Process parameters used in the experimental phase on remote laser welding process. 

 

Process Parameter Type Value(s) 

Laser Power fixed 1000 W 

Focal Position fixed 0 mm 

Gap between the sheets fixed 0.1 mm 

 

Welding speed variable 

(4 levels) 

1.5 m/min; 

3 m/min;  

4.5 m/min;  

6 m/min; 
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Table 5 Parameters used in laser dimpling and welding processes during the confirmation runs. 

 

Laser dimpling 

Process Parameter Value 

Laser Power 1000 W 

Focal Position + 30 mm 

Laser trajectory length 1.55mm 

Scanning speed 1.0 m/min (optimal) 

 

Remote laser welding 

Laser Power 1000 W 

Focal Position 0 mm 

Weld Track Length 30 mm 

Gap between the sheets 0.1 mm 

Welding speed 2.4 m/min (optimal) 

 

 

 


