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Abstract  

Particle Filtering (PF) is a model-based, filtering technique, which has drawn the attention of the 

Prognostic and Health Management (PHM) community due to its applicability to nonlinear 

models with non-additive and non-Gaussian noise. When multiple physical models can describe 

the evolution of the degradation of a component, the PF approach can be based on Multiple 

Swarms (MS) of particles, each one evolving according to a different model, from which to select 

the most accurate a posteriori distribution. However, MS are highly computational demanding 

due to the large number of particles to simulate. In this work, to tackle the problem we have 

developed a PF approach based on the introduction of an augmented discrete state identifying the 

physical model describing the component evolution, which allows to detect the occurrence of 

abnormal conditions and identifying the degradation mechanism causing it. A crack growth 

degradation problem has been considered to prove the effectiveness of the proposed method in 

the detection of the crack initiation and the identification of the occurring degradation 

mechanism. The comparison of the obtained results with that of a literature MS method and of an 

empirical statistical test has shown that the proposed method provides both an early detection of 

the crack initiation, and an accurate and early identification of the degradation mechanism. A 

reduction of the computational cost is also achieved.  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55253665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Key words: Multi Model Systems, Particle Filtering, Fault Detection and Isolation. 

 

INTRODUCTION 

In recent years, the development of relatively affordable on-line monitoring technology has 

yielded a growing interest in dynamic maintenance paradigms such as Condition-Based 

Maintenance (CBM) [25]. This is based on tracking the health conditions of the monitored 

equipment and, on this basis, making maintenance decisions. For this, two fundamental issues 

are: i) detection, i.e., the recognition of a deviation from the normal operating conditions; ii) 

isolation or diagnostics, i.e., the characterization of the abnormal state of the system. 

In principle, reliable Fault Detection and Isolation (FDI) allows identifying problems at an early 

stage, thus performing only strictly necessary maintenance actions, to anticipate failures. This 

avoids the danger of interrupting operations and possibly introducing malfunctions due to errors 

of maintenance operators.  

The appealing potential of CBM for improving maintenance performance has boosted research 

and industry efforts in FDI techniques, as witnessed by the considerable amount of related 

literature (see [5], [12], [22], [23], [24], [45], [46] and [47] for surveys). These techniques may be 

divided into two main categories: data-driven methods, which resort to field data to build 

empirical degradation models (e.g., Artificial Neural Network (ANN, [6], [50]), Support Vector 

Machine (SVM, [20]), Local Gaussian Regression (LGR, [33], [42])), and model-based 

approaches, which utilize mathematical models to describe the degradation mechanism. In both 

cases, the detection of a change in the component state and the consequent diagnosis are based on 

the comparison between the output of the model and the data collected from the operating 

system.  
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With regards to the model-based approaches, a number of algorithms have been successfully 

applied to FDI such as reversible jump Markov Chain Monte Carlo (MCMC, [2], [18], [53]), parity 

space equations [16] and others techniques surveyed by some FDI literature review works [12], [22], [23]. 

In particular, a variety of filtering algorithms have been developed to tackle FDI problems, which 

use discretized differential equations to describe the degradation evolution and stochastic noises 

to take into account the associated aleatory uncertainty. For example, Kalman Filter (KF) has 

been adopted to detect incidents on freeways [49] and to set a CBM policy on turbine blades 

affected by creep [4]. 

However, KF suffers from a limited applicability due to the stringent hypotheses of model 

linearity and Gaussian noise, which are often not compatible with practical FDI issues. Thus, 

some generalizations of KF, such as Extended Kalman Filter (EKF, [35], [36]) and Unscented 

Kalman Filter (UFK, [27]), have been proposed. Nonetheless, there are still situations where 

these filtering approaches fail, due to high nonlinearity and for non-Gaussianity. 

In this context, Particle Filtering (PF) has proven to be a robust technique [3], [14], for tackling 

realistic FDI problems [51], [52]. In particular, PF has been adopted for FDI within the Multi-

Model (MM) systems framework, where the description of the possible component abnormal 

evolutions relies on a set of models [28]. In this setting, detection aims at identifying when the 

component starts to leave the nominal mode, whereas diagnostics consists in selecting the model 

that best fits its current behavior. 

Interesting applications of PF to FDI in MM systems have been proposed in [1] and [10], where 

multiple swarms of particles are contemporaneously simulated, following all alternative models. 

FDI is, then, based on Log-Likelihood Ratio (LLR) tests on the recorded measurements to 

estimate for every swarm of particles the probability of being from the right model. However, 
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these methods are computationally burdensome and memory demanding, as they require tracing a 

large number of particles.  

Alternatively, an approach based on the augmentation of the state vector with a variable 

indicating whether the component is in normal or abnormal conditions has been propounded in 

[29], [38], [44] and [48]. This approach can be considered as a generalization of the Interacting 

Multiple Model (IMM) [19], [31] algorithm by means of PF. The choice among the possible 

alternative conditions of the system is then taken based on the marginal distribution of the added 

variable. This allows the filter to automatically lead the particles to follow the right model, by the 

recorded measurements which force the state vector to modify the value of the added variable. In 

particular, such variable is chosen continuous in [29], which proposes an ensemble of Monte 

Carlo adaptive filters, and uses the LLR tests to make the FDI decision. On the contrary, Boolean 

variables indicating the component state are used in [38] and [44], where explicit models with 

associated probabilities of occurrence are assumed to be known, and used to compel the particles 

to evolve according to the different models. Then, the measurements acquired at the updating 

steps will favor the particles evolving according to the correct model. A further work discussing 

the augmentation of the state vector with a discrete variable representing the component state is 

[48]. However, notice that, this work, as well as that in [38] which investigates the potential of 

such algorithms, has addressed case studies with only two models, additive Gaussian noise, and 

abnormal conditions where a sharp and abrupt jump in the measured variables is observed. These 

conditions are rarely verified in practice, when the fault detection and diagnosis concerns a 

gradually degrading industrial component [11]. 

In the context of the Interacting Multiple Model  systems based on PF, the novelty of the present 

work consists in the application of the method to a diagnostic problem, whereas previous 

applications were focusing on the problem of detecting abnormal conditions [1], [10]. 
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Furthermore, the proposed approach allows treating non additive Gaussian noises and, differently 

to another work which considers only sharp degradations [48], it can be used also in case of 

gradually evolving degradation processes. An additional contribution of the paper is the 

comparison of different techniques such as augmented state PF, the LLR-based approach (e.g., 

[10]) and an intuitive approach based on statistical hypothesis tests [26]. Finally, the influence of 

the model parameters such as transition matrix entries and measurement error on the IMM PF 

diagnostic performance is investigated in order to provide hints on the parameters setting. 

For the comparison, a case study is considered regarding a non-linear crack growth in a structure. 

In particular, the following two settings have been investigated: 

1) There are only two models available, one for normal conditions and the other for 

degradation; hence, in this case the detection and diagnosis coincide. This setting allows 

us to compare the performance of our approach with that of other works of literature (e.g., 

[38], [44]). 

2) The component behavior is described by three models, the two of the previous setting and 

one additional model describing a different degradation mechanism leading to a different 

evolution of the crack growth. This allows evaluating the diagnostic capability of the 

proposed approach, i.e., its ability of selecting the right degradation mechanism. 

The remainder of the paper is organized as follows. In Section 2, a general description of the 

Multi Model setting is presented, with a focus on the case study considered in this work. In 

Section 3, basics of Particle Filtering are recalled for completeness. Section 4 summarizes the 

characteristics of the PF-based techniques proposed in the literature to address FDI in Multi 

Model systems, and describes the particular FDI technique based on the augmented state vector. 

In Section 5 the application on a simulated but realistic, case study of crack growth is presented. 

In Section 6 conclusions are drawn and further developments discussed. 
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2. MULTI MODEL SYSTEM 

A Multi Model system is defined as a system which cannot be described by the same model 

during its entire life; on the contrary, the description of its evolution requires a set of M models, 

each one capturing different behaviors of the system in different situations or phases. Thus, a set 

of M state equations are proposed to describe the different evolutions, which can be divided into 

two main classes: 

N models describing the component operation in normal conditions , …	, : 

: 	 = , 	  

… 

: 	 = , 	  

(1) 

D models describing the operation of the component which is degrading according to one of the 

possible D degradation mechanisms , …	 ,  which it can be subjected to  

: 	 = , 	  

… 

: 	 = , 	  

(1) 

where N+D=M,  represents the state vector at time , and  is the noise at the previous 

time step, , which defines the aleatory uncertainty in the evolution of the process. In this 

work, we assume that the process noise distribution is known, although in real applications it 

must be inferred from experimental data or retrieved from expert knowledge. The interested 

reader may refer to [21] for a particle filtering-based technique that allows the joint estimation of 

the state vector and the unknown parameters of the noise distributions. 

A further assumption is that the state  cannot be precisely measured, and the knowledge about 

its value is affected by uncertainty, represented by the noise . The measurement model:  
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=	 ,  (2) 

that links the state  to the acquired measurement  is supposed to be given.  

As example of MM system, in this work, we consider a fatigue crack growth degradation 

mechanism in a mechanical component (Fig. 1). Crack growth is typically modeled in three 

phases [7], [13], [17], [43]: 

i) Normal conditions: crack incubation; it is the short initial phase of the phenomenon, which is 

connected with plastic strains locally occurring in the most stressed parts of the mechanical 

component subject to cyclic loads. At this stage, coalescence of dislocations and vacancies, as 

well as ruptures due to local stresses lead to the formation of sub-microcracks in the slip bands at 

the boundaries of blocks, grains and twins. From the practical point of view, in this phase the 

crack length is modeled by a constant which is set to zero, being its exact value not measurable 

by traditional measurement instrumentation when the component is in this phase. 

ii) Degradation mechanism 1: crack initiation; it is characterized by the growth and coalescence 

of the sub-microcracks, which transform into micro-cracks; these start increasing under the cyclic 

loads, and form macro-cracks, which are typically detectable by measurement instrumentation. 

This process gives rise to the third phase. The model describing this second phase is linear in 

time [8]. This second phase can also be considered as the “threshold region” among the fatigue 

crack regions described by NASGRO equations [13], [43]. 

iii) Degradation mechanism 2: crack rapid-propagation; the crack grows under cyclic loads, up to 

a critical threshold. A number of models have been proposed to describe this latter phase, such as 

the Paris-Erdogan exponential law [40] here considered. According to the NASGRO model, this 

phase corresponds to the linear region (in logarithmic scale), also called Paris region [13], [43]. 

The measurements recorded to monitor the degradation process are affected by errors, especially 

during the second phase or when the crack cannot be directly measured due to its position. In this 
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setting, detection consists in the identification of the deviation from the first phase, while 

diagnostics consists in determining whether the degradation mechanism is linear (i.e., the second 

phase) or exponential (i.e., the third phase). 

 

Fig. 1 Schematic approximation of the crack propagation model. 

 

3. PARTICLE FILTERING 

Particle Filtering (PF) is a sequential Monte-Carlo method, which is made up of two subsequent 

steps: prediction and updating. At time , the prediction of the equipment state  at the next 

time instant , is performed by considering a set of  weighted particles, which evolve 

independently on each other, according to the given probabilistic degradation model (i.e., one out 

of those in Eqs. (1)). The underlying idea is that such group of weighted random samples 

provides an empirical discrete approximation of the true Probability Density Function (pdf) 

|  of the system state  conditional on the available measurements until time , 

where = , … , . When a new measurement  is acquired, it is used to update the 

proposed pdf in a Bayesian perspective, by adjusting the weights of the particles on the basis of 

their likelihood of being the correct value of the system state. For practical purposes, PF works as 

if the n-th particle, 1, 2, …  were the real system state; then, the smaller the probability of 

observing the last collected measurement, the larger the reduction in the particle weight. On the 
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contrary, when the acquired measurement matches well with the particle state, then its 

importance is increased. Such updating step of the particle weights is driven by the probability 

distribution |  (which is derived from Eq. (2)) of observing the measurement  given the 

true degradation state , and provides the distribution | . 

The PF scheme used in this work is the Sequential Importance Resampling (SIR, [3], [14]), 

which builds a new population of particles by sampling with replacement from the set of particles 

, … , ; the chance of a particle being sampled is proportional to its weight . The final 

weight assigned to the particles of such new set is . The SIR algorithm allows avoiding the 

degeneracy phenomenon (i.e., after few iterations, all but few particles would have negligible 

weights), which is typical of the standard version of PF (i.e., Sequential Importance Sampling, 

SIS). Finally, the updated particle distribution is used to perform the successive prediction step 

up to the next measurement (for further theoretical details see [3], [14], [15] and [32]). 

4. PARTICLE FILTER FOR DETECTION OF ABNORMAL CONDITIONS AND 

DIAGNOSIS IN MULTI MODEL SYSTEMS. 

PF has been already applied for FDI in MM systems. For example, in [28], PF is used to 

simultaneously run swarms of particles evolving according to every model available (Fig. 2). 

Then, a residuals analysis or a Log-Likelihood Ratio (LLR) test is performed to identify the 

swarm that best matches with the observed measurements and, thus, the corresponding model. 

For example, Fig. 2 shows the case in which three different swarms are traced by PF, according 

to three available models ,  and . Model  is the best model to represent the system 

evolution in its first phase, being very good the matching of the corresponding particle swarm 

and the measurements acquired at time instants , , ; on the contrary, at time  the model 

which best fits the measurements becomes . 
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Enhancements of this approach have been proposed in [1] and [10]. In the former work, a new 

way to estimate the likelihood function is introduced to extend the applicability of the method to 

more complex particle distributions. In the latter, a swarm of particles for every possible evolving 

model is created at every time step, and traced to detect the occurrence of abnormal conditions at 

any subsequent time instant. For example, Fig. 3 shows that two new swarms are created at every 

measurement step, which evolve according to models  and , alternative to the nominal 

conditions model . The presence of diverse swarms increases the promptness in detecting the 

change in the behavior of the system, which is again established by LLR tests. On the other side, 

this advantage is counterbalanced by the onerous computational time due to the large number of 

particles to be simultaneously traced. To partially overcome this problem, the authors in [10] 

have proposed to consider an observation window, at the end of which the swarms are no longer 

traced. Obviously, the width of such time window needs to be set large enough to allow the LLR 

to robustly detect model changes. Then, this approach is not effective when the models need a 

long transition time to significantly diverge, as this would require fixing wide observation 

windows. Furthermore, the number of particles to be drawn increases with the number of system 

models. 
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Fig. 2 Parallel swarms of particles evolving 

according to the available models. At every , 

particle weights are updated driven by | . 

Fig. 3 At every time step, new swarms of particles 

start according to the alternative models. 

 

A different way to tackle the MM problems is that of augmenting the state vector with a new 

discrete variable, which represents the evolution model of the system. That is, the state vector 

becomes ̀ = 	 , and the degradation models in Eq. (1) are embedded in the model: 

̀ = 	 ̀ , , , , ,  
(3) 

where ′ encodes also the probabilistic model governing the transitions among the different 

possible models, which is a first-order Markov chain [48]. 

This setting requires modifications to the PF algorithm. In details, the PF prediction step has to 

give due account to the possible alternative models according to which the particles are 

simulated: 
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̀ |	 	 	 ̀ | ̀ ̀ |	 	 ̀  

	, | 	, 	 	, |	 	  

	| 	, 	 	|	 	 	, |	  

(4) 

 

In the last equation, it is assumed that the transition probabilities 	|	 	  do not depend on 

the current degradation state , whereas the prediction of the state  depends on the added 

variable , whose value is sampled at the current time instant . 

The successive updating step at time  concerns the evaluation of the weights  of the particles 

̀ , 1,… , , given the new measurement . The particles and their weights approximate 

the posterior distribution as a weighted sum of Dirac distributions ̀ − ̀ , centered on the 

particle positions: 

̀ |	 	 | ̀ ̀ || ≈ ∙ ̀ − ̀  
(5) 

The non-normalized weights are updated as follows: 

	 ∙ | ̀ 1 ∙ | , (6) 
 

where the right term is justified by the fact that the likelihood depends on the state , only, and 

the resampling step at  has led to = , = 1,… , . Then, a resampling step is used 

to sample a new population ̀  of Ns particles from the already available weighted swarm of 

particles: each new particle is sampled with a probability proportional to  and has an 

associated new weight, = : thus, the higher the weight  the larger will be the number of 

resampling particles equal to ̀ . 
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Nonetheless, favoring the particles positioned in the neighborhood of the measurement, , leads 

to the selection of the particles with the most likely value of . 

For the sake of clarity, the transition probabilities 	|	  in Eq. (4) can be arranged in the 

matrix: 

= …
… … 	… …… … 	 ∶ 	 0, ∀	 , 1,2, …  

(7) 

where the -th element of the	 -th column represents the probability that a particle which has been 

simulated according to model , will be simulated at the next step according to model . 

For example, in the case in which there are M=2 alternative models, model 1 refers to the normal 

state (N=1), whereas model 2 to the degradation state (D=1). Then,  is the probability that a 

particle which at the previous step has been simulated according to model 1, will be simulated 

again according to the same model 1, whereas  is the opposite case, i.e., the same particle will 

change its stochastic behavior. Fig. 4 gives a pictorial view of this dynamics.  

 

Fig. 4 Possible transitions among the operational models of the system. 

Notice that the transition from model  to model , , is physically meaningless when it is not 

possible that a system spontaneously recovers by itself. However, in the considered setting a 
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positive value is always given to the corresponding probabilities. In fact, if these were set to zero, 

the system would be biased to follow the degradation models, especially in case of outlier 

measurement values, as the trajectories of those particles that are erroneously following a 

degradation model could no longer be corrected. 

For the sake of clarity, an example of the dynamic evolution of the particles when the 

measurements are collected from the normal operating system is given in Fig. 5. At time , some 

particles change their reference model according to . In particular, some particles 

experience a change of the variable  from  to . These particles are strongly unfavored at 

the updating step, being the acquired measurement far from their states. Thus, among the 

particles with state parameter , only few particles (one in Fig. 5) are resampled and still follow 

the wrong model at the next time step, whereas the others are reset to the starting point. The 

behavior of the augmented MM PF in the opposite case, i.e., when measurements are acquired 

from a degrading component, is shown in Fig. 6. There, during the updating and resampling 

steps, the number of particles having  as augmented state increases. Hence, the acquired 

measurements promote the particles associated to the correct model, i.e., those labeled with the 

correct value  of the added variable, which are closer to the measured degradation value. This 

allows the particles to auto-adapt their trajectories to the real evolution of the component and, 

thus, selecting the correct model. 
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Fig. 5 Evolution of a system as long as measurements 

support the normal model.  

 

Fig. 6 Evolution of the system and correlated swap in 

the model parameter, due to measurements 

supporting the degradation model. 

 

In this framework, the probability associated to each operational model can be estimated at every 

time step by marginalizing the updated particle distribution: 

= = |	 = 	 	, |	 	 	  
(8) 

From the practical point of view, this is equivalent to summing the updated probability masses of 

the particles evolved according to model . On this basis, the probability of the system being in 

normal conditions is given by: 

= ∈ |	 = = |  
(9) 

where =	 , …	 ,  is the set of all the models describing normal conditions. The 

detection of abnormal conditions can be based on the comparison of  with a proper 

threshold value  (e.g., =0.05). That is, if , then it is reasonable to conclude that 

the system is in a degradation state. 
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With regards to the diagnostic task, the Maximum A Posteriori (MAP) criterion can be used [48]. 

In details, the model, say H, corresponding to the maximum value of  is selected among all the 

possible  models describing the component behavior: 

= max,…,  (10) 

If model H is different from that currently used to describe the system evolution, and  is 

considerably larger than the values  associated to all the other models, then a change in the 

system state is diagnosed. In this respect, to make more robust decisions and reduce the number 

of false alarms, i.e. wrong identifications of the occurrence of a degradation phase, one can 

require confirmation by requiring that the criterion be fulfilled for a number of consecutive time 

steps. 

Finally notice that for the sake of generality, in the model considered in Eq. (3) the stochastic 

noise ,  depends not only on time, but also on the value of , i.e., on the operating model; 

this allows giving due account to the different variability of the alternative models. For example, 

if the amount of information about the normal operating conditions is larger than for the 

degradation mechanisms, then the corresponding noise , 

∈ 	 , …	,  is expected to have higher variability than , ∈
	 , …	, . 

For clarity, the pseudo code of the algorithm is reported in Table 1. 
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Time = − 1 

1. Prediction step: it estimates ̀ |	 	  using (4). 

For 1,…	,  

Sample  from 	 	|	 	 , 

Sample  from 	| 	, 	  

End 

2. Updating step: when the new measurement  becomes available, it is used to update 	| 	, 	  by applying (5) and (6). 

For = 1,…	,  

Evaluate the non-normalized weights	 = ∙ | , 

End 

3. Resampling step: A new approximation of ̀ |	 	  based on a swarm of particles 

having equal weights  is found. 

For 1, …	,  

Sample ̀  from a ∑ , … , ∑  distribution whose 

categories are the previous particles ̀ , … , ̀ , 

End 

4. Diagnostic step: it identifies the most likely model, , by marginalizing ̀ |	 	  on 

the augmented state . This is done by computing:  

	 |	 	 #
, 1,… ,  

and identifying the most likely model: 

= max ,…, , 

Table 1 Sketch of the algorithm for PF in the IMM system for fault detection and diagnostics. 

5. CASE STUDY – DETECTION & ISOLATION  

We consider the crack growth in a component subject to fatigue. Given the lack of an 

experimental setup, crack growths are simulated using literature models [9], [37], [41]. The FDI 
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performance of the proposed method (which is here labeled as IMM, according to the 

terminology used in [19] and [48]) is evaluated in two different settings: 

1) There are two models available, one for normal conditions and the other for degradation; 

hence, the detection and diagnosis tasks coincide. This is the same setting of other works 

of literature (e.g., [38], [44]). In this case, the performance of the IMM method is 

compared with that of the MS LLR-based method proposed in [10] and that of an 

intuitive, statistical test (here referred to as ST). 

2) There are three models available, one for normal conditions and two for two different 

degradation mechanisms of the component. This case is considered in order to evaluate 

the diagnostic capability of the proposed approach in identifying which degradation 

mechanism is occurring. 

5.1 TWO-MODEL SETTING 

5.1.1 Model description 

The crack growth evolution is here described as a two phase process: 

1) Normal conditions: during the crack incubation phase, we assume that the crack is not 

propagating. In practice, since in this phase the crack length is very small and, from a 

practical point of view we are not interested in estimating its exact value, we do not model 

the microscopic phenomena occurring in the component. Thus, the mathematical model 

used to describe the time evolution of the crack lengths, , is: 

		: = 	 < 	~ 0, ℎ  
(11a) 

(11a) 

where the parameter  is a very small constant value, which represents the maximum size 

of possible microcrack states. In our case  is set to 0.05 ∙ , with mc indicating the 

resolution of the measurement instrument. Notice that although equation (11a), which 
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models the crack lengths at time  as a function of the crack lengths at time , does 

not strictly constitute a first order Markov process since it provides a deterministic model 

of the crack evolution, it will be used in a particle filtering framework in presence of 

noisy measurements. Eq. (11b) is used to set  equal to a random value between 0, , 

when, after a model transition, the crack returns to the normal condition. 

2) Degradation: in this phase, the crack propagation is modeled by the Paris-Erdogan model 

[40]: 

		: 	 = + ∙ 	 ∙ 	 > 	ℎ  (12) 

With respect to the setting of the model parameters, their values are derived from [9], 

[37], [41] where a detailed description of their physical meaning is provided together with 

an explanation of their adimensionality. In particular, 	 = 0.005 and = 1.3 are 

parameters related to the component material, and are determined by experimental tests; 

= 1 is a constant related to the characteristics of the load and the position of the crack. 

According to [9], [37] and [41], a non-additive process noise ~ 0,1  is used to 

describe the uncertainty in the growth speed. For a detailed discussion of the 

randomization of the Paris–Erdogan model and its justification on the basis of empirical 

data, the interested reader may refer to [30]. Here, we just point out that this 

representation of the process noise implies that on average 	 	 is greater than 1 and, 

thus, the degradation process is accelerated with respect to that which would be obtained 

by the same model without process noise. This fact has been properly considered when 

model parameters have been set [9], [37], [41]. Finally, the discretized time unit is here 

assumed to be expressed in arbitrary units of time. 
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The measurement model is: 

y = 	 															, ≤+ 	 				, >  
(13) 

where 	~	 0, 	 	  is an additive Gaussian measurement error with standard 

deviation 	 = 0.5. This representation of the measurement error is typically used in 

case of instrumentation well calibrated but subject to electric noise. Furthermore, the 

measurement instrument is assumed to have a resolution = 0.4, which means that it is 

not capable of observing cracks with length ≤ . 

Notice that when the crack length is less than the measurament resolution, it cannot be estimated 

using the PF approach since the measurament is independent from the crack lenght. Nevertheless, 

since it is not possible to know a priori if a measurement is pure white noise or it is driven by the 

crack length, during the updating step we always use the equation below in (13) to drive the PF. 

Fig. 7 shows a possible crack evolution and the associated measurements, whereas Fig. 8 shows 

100 simulated crack evolutions without the measurement error. These curves highlight the 

uncertainty associated to the crack growth process. 

Fig. 7 Crack growth simulation of a crack started at = h. 

Fig. 8 Simulation of 100 crack evolutions 
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5.1.2 Performance evaluations 

- Interacting Multiple Model (IMM) 

The transition probability matrix for the model parameter  has been arbitrarily chosen as: 

= 0.99 0.010.01 0.99  
(14) 

The probabilities that the particles change the reference model are set, at a first attempt, to very 

small values, i.e., = = 0.01, for the following reasons: 

a) with regards to  (transition probability from the incubation to the crack propagation phase), 

the larger its value, the larger the expected number of particles that start evolving according to the 

degradation model. For example, if the number of particles is set to = 100, then, on 

average, at every time step a particle of the swarm is forced to swap model. This entails that 

when a measurement is acquired from a system in normal conditions (crack incubation phase), 

the particles with augmented variable set to  are unlikely to be resampled, and the swarm 

continues evolving in the correct way. On the contrary, if the probability  were set to a larger 

value, e.g., 0.2, there would be 20 particles evolving according to the degradation model. This 

means that the probability of having a particle resampled from this set becomes large, especially 

in the presence of an outlier measurement. Hence, large values of  make the filter too much 

sensitive to the measurement noise, with consequent increase in the probability of having false 

alarms. 

b) With regards to  (transition probability from the crack propagation to the incubation 

phase), it should be borne in mind that the speed of growth of the modeled crack, and thus of the 

particles evolving according to such model, is small. Furthermore, when the particles that are 

correctly associated to the variable =  are forced to change the prediction model (i.e., 

= ), their crack lengths are reset to 0. Thus, they need a long time to re-catch the real crack 
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length. These considerations entail that if the transitions →  occur too frequently (high 

value of ), then the distribution of the particles turns out to be non-conservatively biased, with 

consequent delay in crack detection. Typically, the smaller the speed of growth, the smaller 

should be , as it will be confirmed by the analysis below.  

Fig. 9 shows the good filtering capability of the proposed IMM method, which can be seen from 

the closeness of the filtered and simulated crack growth evolutions. 

Recall that in the present case study there are only 2 models available: then, the detection of 

abnormal conditions coincides with diagnostics, and the marginalized distribution in Eq. (8) is 

split only between two discrete states. Hence, the alarm threshold can be set at a large value (e.g., 

= 0.985) to guarantee a low probability of false alarms while not compromising the prompt 

detection. Fig. 10 shows an example of how the probability of being in a degradation model has a 

steep increment and crosses the alarm threshold  (dashed horizontal line) few time steps after 

the time instant in which the real crack has reached the  threshold (dashed vertical line). In 

this respect, notice that, as mentioned above, when the crack length is smaller than , it cannot 

be detected (Eq. (13)). Then, the optimal time 	  to detect the crack is necessarily 

larger than the time instant at which the second phase of the crack growth process starts (bold 

continuous vertical line). 

Notice also that the spike highlighted in Fig. 10 is due to an outlier measurement, which could be 

confused with a measurement acquired from a system in normal conditions (with no crack). 

Nevertheless, the method shows its robustness, being the spike not capable to force a change in 

the model identification. 
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Fig. 9 Filtering crack length via IMM method. Fig. 10 Marginal posterior probability associated to 

the degradation model. 

 

- Multiple Swarms (MS). 

In this paragraph, the method proposed in [10] is applied to the two-model case study considered. 

The number of particles for each swarm is set to = 25; this guarantees that each swarm 

provides a robust statistics in support of the LLR test. The observation time window is set to 

= 100, which is large enough to take into account the slow initial speed of growth. The 

minimum number of successive swarms that must identify abnormal conditions in order to trigger 

an alarm, is set to = 5. This reduces the number of possible false alarms induced by outlier 

measurement values. 

Fig. 11 shows an example of crack evolution, with the filtered state estimated by the  out of  

swarms that give the detection alarm. There is a very good matching between the real crack 

evolution and the mean value of the new swarms within the window of ~560,~660  units of 

time. In particular, according to the MS approach, the extent of such matching between the 

measurements and the particle distribution is evaluated by a function  (details about this 
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function can be found in [10], [28]): roughly speaking the higher its value, the larger the 

likelihood that the measurements come from the abnormal model. 

Fig. 12 reports the evolution of function  corresponding to the evolution in Fig. 11. Notice that 

there is a sharp increment in  when the 5 swarms start evolving very close to the real 

crack. 

The detection alarm is triggered when  crosses the threshold value , which is here set to 

8. In this respect, to avoid false alarms  must be such that when the system evolves according to 

the normal model, possible consecutive measures larger than , which entail large values of 

, do not cause a change in the model; on the other side, setting  to very large values 

leads to a delay in detection. Thus, = 8 is a compromise value between these two conflicting 

needs. 

Fig. 11 Filtering crack length for the 5 swarms of 

particles triggering alarm. 

Fig. 12 Function  of the LLR used to set the alarm 

conditions. 

 

-  Sequential Statistic Test (ST) 

The detection methods discussed above are compared with an intuitive approach based on a 

statistical hypothesis test. In details, the test performed is a Z-test for mean with known standard 
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deviation [26], [39], since the standard deviation of ~ 0, 	  is assumed to be known. The 

null hypothesis, , is that the mean value of the measurements is =0, whereas the alternative 

hypothesis, , is that ≥ 0. This entails that  is refused in favor of , when there is the 

evidence of the crack presence. 

To increase the robustness of the method, the alarm is given when  is refused for an 

established number = 4 of consecutive observations. Thus, if the I type error of each 

independent test is set to = 0.1, the null hypothesis is refused according to a I type error 

= = 10 . In this respect, notice that if  is true, then the observations are 

independent and identically distributed random variables. 

5.1.3 Performance Indicators 

To assess the performance of the different approaches, 100 cracks have been simulated and used 

for evaluating the following three performance indicators: 

1) Detection Time Delay [54], i.e., 	 = − 	 , where 	 
is the time at which the marginalized probability  of being in state  (crack 

propagation phase) exceeds the threshold  and 	 = min 	 ∶ >
		  indicates the time instant at which the crack has reached the  threshold. DTD is 

an indicator of the promptness of the method in detecting the change in the model.  

2) Crack Length, i.e., = 	 which gives an information about the length of the 

crack at the detection compared to mc, i.e. the minimum length value at which the crack 

could be detected. Values of this indicator close to 1 indicate an accurate detection. 

3) Percentage of False Alarms, i.e., the number of alarms given when the crack is in the 

incubation phase (normal conditions), over the number of simulated crack growth 

processes. It is a widely used index for the robustness of the method.  
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Notice that false alarms are of primary importance in condition monitoring, since unnecessary 

stops of a plant for maintenance operation are typically very expensive. In our case study, the ‘set 

points’ of the parameters of the considered detection techniques have been set such that the 

number of false alarms is around an acceptability level of 5%; this is supposed to be the best 

initial setting to allow a comparison between the three methods. 

Table 2 reports the average of the distributions of the three performance indicators in the 100 

simulated crack growth trials. From this Table, it appears that the two filtering methods IMM and 

MS have better performances than ST, being the mean values of the corresponding indicators by 

far smaller than those of ST. To compare the results of the two filtering methods, we use the one-

tail non-parametric Kolmogorov-Smirnov (K-S) test, which allows to test if the cumulative 

density functions of DTD and of CL provided by IMM are larger than the corresponding ones 

provided by MS. That is, K-S test checks if the values of DTD and CL provided by IMM are 

smaller than those provided by MS. The p-values obtained from the K-S tests are 0.0091 and 

0.0362, respectively: this confirms the early detection of the IMM method. Also, it must be kept 

in mind that IMM has a lower computational cost than MS, since it needs to run = 100 

particles instead of 	 = ∙ = 25	 ∙ 100 = 2500 particles simultaneously 

simulated in the MS approach. Table 3 reports the computational time required for filtering the 

evolution of one simulated crack growth in seconds, on a HP Pavilion dv3 Notebook PC.  

Notice also that IMM commits less False Alarms than MS (Table 2). 

 ST IMM MS 

DTD 44.3 19.8 22.1 

CL 1.61 1.25 1.28 

False Alarms 6% 3% 6% 

Table 2 Average Detection Time Delay, Crack Length and Percentage of False Alarms evaluated on a sample 

of 100 simulated cracks, for the three methods. 
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 IMM MS 

Computational Time (s) 1.7 32 

Table 3 Computational time for filtering crack growth according to the two PF methods analyzed.  

 

The choice of setting the number of particles =100 has been driven by the authors’ 

experience. The results here obtained show that 100 particles provide a good compromise 

between the need of reducing the computational efforts and that of obtaining a satisfactory 

diagnostic performance. In applications requiring higher diagnostic performances, more particles 

should be employed at the expenses of additional computational time. A sensitivity analysis to 

investigate how and to which extent this parameter affects the performance is out of the scope of 

the present work. 

Finally, sensitivity analyses have been performed in order to evaluate the dependences of the 

performance from the transition probabilities and from the variability of the measurement noise.  

In details, the sensitivity of the proposed methods to the transition probability matrix has been 

investigated by varying both the extra-diagonal elements of the matrix  within the set of 

values 0.005, 0.01, 0.05, 0.1 , and correspondingly the values on its diagonal. Table 4 shows 

that the larger the probability of transitions, the poorer the performance in terms of DTD and CL 

indicators. These results are also confirmed by the one-tail Kolmogorov-Smirnov (K-S) tests 

[34], which checks whether the distributions of the DTD and CL performance indicators obtained 

with =0.01, are similar to the corresponding distributions obtained with =0.005 and 

=0.05, respectively. Table 5 shows that there is a strong evidence that the performance 

indicators related to =0.01 are significantly different from those related to 0.05, as witnessed 

by the small values of the -value. These results are explained by the fact that frequent transitions 

from a model to another lead to re-setting the crack length to 0 too often, thus preventing the 

particles from swapping to the correct model. This suggests that both the probability of 
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occurrence and the speed of the crack growth must be taken into account when setting the 

transition matrix values. On the other side, there is not a strong statistical evidence supporting the 

differences between the performance related to =0.01 and to =0.005. In this respect, notice 

that if the transition probability is very small (i.e., =0.005), the method of augmenting the 

state space becomes useless: on average, we have 1 out of 100 particles changing the reference 

model every two steps. Thus, the method turns out to be not enough reactive to changes in the 

model. 

Table 4 Average Detection Time Delay, Crack Length and Percentage of False Alarms evaluated on a sample 

of 100 simulated cracks, for different values of the transition probability . 

 

A12 0.005 0.05 

p-value(DTD0.01) 0.161 0.0006 

p-value(CL0.01) 0.134 0.0003 

Table 5 One tail K-S tests between the DTD and CL distributions obtained with A12=0.01 and the same 

distributions obtained with A12=0.005 and A12=0.05 respectively. 

 

With respect to the assessment of the sensitivity of the proposed approach to the measurement 

error, three performance indicators have been evaluated considering different values of the 

standard deviation of the measurement noise 	∈ 	 , , , 1, 2, 4, 8 ∙ 	 . This entails that 

 takes values of different magnitude with respect to the measurement resolution : when 

= 8 ∙ 	 = 4, then the precision in the measurement system is very low, whereas it is really 

high when = ∙ 	 = . From Table 6, it emerges that the DTD values of the three 

methods are similar for small values of , whereas the IMM method is by far the most accurate 

when  is comparable with or higher than the measurement resolution  0.5 ≤ < 4 . 

A12 0.005 0.01 0.05 0.1 

DTD 20.1 18.6 25.1 38.6 

CL 1.27 1.24 1.31 1.54 

False Alarms 0% 1% 0% 0% 
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Considering, for example, the difference between IMM and MS with = 1, the K-S test 

provides a p-value = 6 ∙ 10  confirming the outstanding performance of the IMM approach. On 

the contrary, when the measurement error is very small ( < 0.5), all the methods are capable of 

distinguishing the degradation conditions from the normal conditions in a limited time. This 

result is also confirmed by Table 7. In particular, the considerable worsening of the performance 

of the method proposed in [10] is due to the need of the MS method of relying on a large window 

to catch the difference between the two models in correspondence of large values of . 

However, even if  is markedly increased (i.e., =300), the value of the DTD indicator 

corresponding to the MS method is still worse than that of IMM (see Fig. 13), as confirmed by a 

K-S test, whose p-value = 1.4 ∙ 10 , and even with higher computational costs (e.g., according 

to Table 3, the computational time is three times longer, ~95 s / crack).  

Finally, Table 8 reports the percentage of false alarms for the same range of . This performance 

indicator is constant for ST, as the value of the standard deviation directly enters the statistical 

tests, which have the same I type error value . With respect to both the PF-based methods, the 

false alarm percentage is not null only if the standard deviation takes intermediate values, i.e., 

when  takes a value similar to . This is due the fact that a smaller  entails that the 

observed values of the crack length are similar to their actual values. Thus, the estimation 

provided by the PF is more accurate. On the other side, the percentage of false alarms in MS 

decreases in correspondence of larger values of , because in this setting MS needs larger 

windows to get the statistical evidence to state that the difference between the two alternative 

evolution models is significant. With regards to IMM, larger values of  lead to a reduction in 

the probability of giving importance to the particles that are beyond the  threshold. In details, 

assume for example that we acquire a measurement at 2  for  = 1 and 2 (Fig. 14): then, due to 
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the dynamics of the updating step which is driven by | , the particles above the  

threshold ( 0.5, in Fig. 14) gain a larger weight when = 1 than when = 2; thus, the 

algorithm is more sensitive to false alarms when = 1 than when = 2. 

Table 6 Average of the DTD performance indicator for ST, IMM and MS, and for increasing values of the 

standard deviation of the measurement noise.  

 

Table 7 Average of the CL performance indicator for ST, IMM and MS, and for increasing values of the 

standard deviation of the measurement noise. 

 

Table 8 Percentage of false alarms evaluated for different values of the standard deviation of the 

measurement noise. 

 0.0675 0.125 0.25 0.5 1 2 4 

ST  3,9 4,4 10,6 44,3 107,3 183,0 301,1 

IMM  1,7 3,2 7,9 19,8 50,7 110,5 198,6 

MS  1,0 2,2 6,4 22,1 90,3 242,7 514,0 

 0.0675 0.125 0.25 0.5 1 2 4 

ST  1,06 1,07 1,14 1,61 2,81 4,88 9,64 

IMM  1,04 1,05 1,11 1,25 1,72 2,86 5,28 

MS  1,03 1,04 1,09 1,28 2,45 6,80 24,12 

 0.0675 0.125 0.25 0.5 1 2 4 

ST False Alarms  6 6 6 6 6 6 6 

IMM  False Alarms 0 0 1 3 3 1 0 

MS  False Alarms 0 4 10 6 0 0 0 
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Fig. 13 DTD for the three methods analyzed with =4, where MS has been run with = . 

 

 

Fig. 14 Updating step when = . . 

 

5.2 THREE-MODEL SETTING 

The objective of this case study is to evaluate the diagnostic capability of the IMM PF, i.e., the 

quickness and accuracy in identifying the model that better describes the crack evolution at a 
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given stage. In this regard, the three-phases model for crack propagation introduced in Section 2 

has been considered. The models available are: 

1)  Normal conditions: during the crack incubation phase, we assume that the crack is not 

propagating; in this phase, the crack length is modeled as in section 5.1.1: 

		: = 	 < 	~ 0, ℎ  
(15) 

2)  Degradation mechanism 1: crack initiation phase, which is modeled by a linear process: 

		: 	 = + ∙  (16) 

where = 0.003 is the growth speed parameter and ~ −0.625, 1.5  models the 

uncertainty in the speed; 

3)  Degradation mechanism 2: crack rapid-propagation phase, which is described by the 

Paris-Erdogan model: 

		: 	 = + ∙ 	 ∙ 	 > 	ℎ  
(17) 

where the parameters values are the same of those of the two-model system in section 

5.1.1. 

The measurement system is that in Eq. (13), with the same parameter values. 

Notice that the distribution of the noise in the initiating phase is different from that in the rapid-

propagation phase. This gives due account to the fact that the crack during the initial degradation 

is highly influenced by exogenous factors, and it is hardly measurable due to its small length; 

hence, its uncertainty is expected to be larger. 

Fig. 15 reports the simulation of a possible crack growth evolution and an associated possible 

measurement signal. All the simulated crack growth evolutions start at = 400 units of 

time and follow the first degradation mechanism according to the model in Eq. (16) up to 
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= 800 units of time, when they switch to the second degradation mechanism according to 

the Paris-Erdogan model in Eq. (17). In this respect, notice that the performance indicators are 

related to the identification delay time; then, the choice of setting a fixed swap time does not 

affect the generality of the results. 

 

Fig. 15 Crack growth evolution (bold line) and measurements (dot line). 

 

Performances have been evaluated by simulating 	 = 500 crack growth processes, and 

computing the following performance indicators, which are slightly different from those defined 

in Section 5.1.3 for the two model setting:  

1) Detection Time Delay (DTD), i.e., = − 	 , where 

	 is the time at which the marginalized probability  of being in state  (first 

degradation mechanism) exceeds the threshold , and 	 = min 	 ∶
> 		  indicates the time instant at which the crack has reached the  threshold. 

DTD is an indicator of the promptness of the method in detecting the incipient 

degradation. 
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2) Transition Time Delay (TTD), i.e.,		 = − 	 , where 

	 is the time at which the marginalized probability  of being in state  

(second degradation mechanism) exceeds the threshold , and 	 =
min 	 ∶ = 		  indicates the time instant at which the crack starts the degradation 

phase of rapid propagation. TTD is an indicator of the promptness of the method in 

detecting the second degradation mechanism.   

3) Percentage of False Alarms, which can concern both the two transitions. According to the 

former (first degradation mechanism): the number of alarms given when the crack is in 

the incubation phase (normal conditions), over the number of simulated crack growth 

processes. According to the latter (second degradation mechanism): the number of second 

degradation mechanism detected when the crack is in the incubation or in the former 

degradation phase, over the number of simulated crack growth processes.  It is a wide 

spread index for the robustness of the method. 

On the basis of considerations similar to those of the previous cases study, the degradation phase 

transition probability matrix is set to: 

=	 0.98 0.015 0.0050.01 0.98 0.010.005 0.005 0.99  
(18) 

where we maintain constant the cumulative probability of having a transition from the crack 

propagation phase to the incubation phase (  and ), in order to avoid a too frequent reset of 

particle crack lengths to 0. On the contrary, we allow particles to jump directly from the 

incubation to the second degradation mechanism, in order to increase the reactiveness of the 

filter. 
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As in the two-model case study, the number of particles is set to = 100, whereas the detection 

threshold is set to = 0.8, with a number = 5 of consecutive detections required 

to give the detection alarm.  

Fig. 16 shows that the IMM is able to detect the changes in the operational models on the basis of 

the marginal posterior probability in Eqs. (8) and (10), with good filtering performances as 

confirmed by Fig. 17. Indeed, in the first phase (i.e., < = 400) the marginal probability 

 associated to the incubation model takes by far the highest value; in the second phase (i.e., 

< < = 800) the probability  of the first degradation mechanism takes by far 

the highest value; whereas, in the last time span the value  associated to the second 

degradation mechanism takes the highest value. Notice that the identification of the transition 

between incubation and first degradation model (i.e., → ) is more accurate than that 

between the first and second degradation models (i.e., → ), as it can be seen from the 

large overlapping in the time span ~800, ~900  in Fig. 17, which is indicative of large 

uncertainty in the variable H to be associated to , see Eq. (10). In this respect, Fig. 18 and Fig. 

19 show that the distribution of the DTD is centered on a smaller value and presents a sharper 

shape than that of the distribution of the TTD. This is due to the gradual transition between the 

degradation models in Eqs. (16) and (17), as confirmed by the percentage of false alarms reported 

in Table 9, which is smaller in the first transition.  
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Fig. 16 Marginal posterior probability for every 

operating models. 

 

Fig. 17 IMM filtering of the real length of the crack. 

 

 

Fig. 18 Histogram of the DTD from the incubation 

model to the first degradation mechanism. 

 

Fig. 19 Histogram of the TTD from the first 

degradation mechanism to the second degradation 

mechanism. 

  

Transition →  →  

False Alarms 2.2% 5% 

Table 9 Percentage of False Alarms evaluated on 500 simulated cracks. 
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Different choices of  and  entail different performances. Intuitively, small values 

of  and  make the method sensitive to possible outliers related to measurement 

noise, as it is confirmed by the high percentage of false alarms, see Fig. 20. On the other side, 

large values of  and  make the method more conservative, as it is confirmed by the 

increased delay in DTD and TTD. 

Finally, Table 10 and Table 11 report the average of the DDT and TTD for increasing values of 

 and , respectively. As expected, the mean values take value in ascending order 

according to both increasing value of  and . 

 

  

Fig. 20 Percentage of False Alarms: left column sensitivity to ; right column sensitivity to .  

 

Table 10 Average of DTD and TTD for ascending values of consecutive detection. 

 

Table 11 Average of DTD and TTD for ascending values of the detection threshold. 
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6. CONCLUSIONS 

This work has investigated the potential of a PF approach based on an augmented state vector, for 

fault detection and isolation of nonlinear multi-model gradual degradation processes. By way of a 

case study concerning crack growth degradation, it has been shown that the proposed approach is 

capable of performing accurate and prompt detection of the crack occurrence, and of providing 

robust estimation of the crack length. The computational cost required by the Interacting Multiple 

Model PF method has resulted one order of magnitude smaller than that of the literature Multiple 

Swarms PF technique. The diagnostic capability of the method has been confirmed also when the 

degradation process is modeled as evolving across multiple (three) phases, with smooth 

transitions from one phase to another. 

The performance of the method has been compared to those of an already available PF technique 

of literature and a statistical sequential test method. It has been shown that the detection 

performance of the proposed technique is better than those of the other two methods. 

Furthermore, the introduction of the augmented state which explicitly indicates the process phase 

allows providing the probability of being in a specific phase, which can be easily used for 

decision-making. In this respect, future work will focus on the introduction in the model of a risk 

function, which takes into account the costs associated to false alarms and identification delays. 

This could give the opportunity of developing a risk-based FDI. 

Finally, it is worth noticing that the performance of the proposed method and, more generally, of 

the PF approach depends on the frequency of measurements. In real applications, it is 

fundamental to assess whether the frequency of measurements provided by the sensor 

undermines its applicability. To this aim, future research works will be devoted to perform 

sensitivity analyses in order to quantify the influence of the measurement frequency on the 

diagnostic performance. In our work, we have considered the transition probability matrix as 
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constant and fixed, but it could be useful to introduce the dependencies between the length of the 

crack and the transition probabilities in order to improve the performance of the method by 

exploiting new information collected during the evolution of the model. A further aspect to be 

investigated is how to set the process noise standard deviation, which in the present work has 

been assumed to be known. 
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