
ENSEMBLE OF KERNEL REGRESSION MODELS FOR ASSESSING THE HEALTH 

STATE OF CHOKE VALVES IN OFFSHORE OIL PLATFORMS 

Piero Baraldia, *, Enrico Ziob,a, Francesca Mangilia  
aDipartimento di Energia, Politecnico di Milano, Italy 

bEcole Centrale Paris-Supelec,France 

 

Giulio Golac,d, Bent H. Nystadc, 
cInstitutt for energiteknikk, Halden, Norway 

dIO Center for Integrated Operations, Trondheim, Norway 

 

 

 

Abstract 

This paper considers the problem of erosion in choke valves used on offshore oil platforms. A parameter commonly 

used to assess the valve erosion state is the flow coefficient, which can be analytically calculated as a function of 

both measured and allocated parameters. Since the allocated parameter estimation is unreliable, the obtained 

evaluation of the valve erosion level becomes inaccurate and undermines the possibility of achieving good 

prognostic results. In this work, cluster analysis is used to verify the allocated parameter values and an ensemble of 

Kernel Regression models is used to correct the valve flow coefficient estimates. 
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1 Introduction 

Predicting the evolution of the equipment degradation 

allows efficient planning of maintenance operations.1-3 

In general, a prognostic model can be developed based 

on information directly or indirectly related to 

equipment degradation.4 In practice, however, field data 

are affected by noise, sensor faults and extrapolation 

errors and need to be verified and possibly corrected 

before they are used for developing the prognostic 

model. Thus, the necessity of pre-treating degradation-

related data arises in real industrial applications. 

Reducing the uncertainty on the data used by prognostic 

models can lead to the reduction of the uncertainty on 

the prognostic model output, i.e. the remaining useful 

life, and, thus improve maintenance and operation 

scheduling. Providing a thorough analysis and general 

solutions for prognostic data pre-treatment is a very 

difficult task, since the solutions typically strongly 

depend on the specific application. In this work, some 

data pre-treatment methods have been developed and 

are presented with reference to a case study related to 

the erosion of choke valves located topside at wells on 

the Norwegian Continental Shelf.5,6 The difference 

between the actual valve flow coefficient and its 

theoretical value is retained as the indicator of the choke 

valve health state and is used to assess the degree of 

erosion affecting the choke. While the theoretical value 

of the valve flow coefficient depends only on the choke 

opening, the actual valve flow coefficient is analytically 

calculated on a daily basis as a function of the pressure 

drop through the choke which is directly measured and 

oil, gas and water flow rates which are allocated based 

on the measured total production from a number of 

wells and on physical parameters (pressures and 

temperatures) related to the single well. Such flow rates 

are actually measured only during a number of well 

tests carried out throughout the valve life. In practice, 

the resulting indicator of the choke valve state is very 

noisy and lacks the physical monotonicity of the erosion 

process; the allocated values of oil, gas and water flow 

rates are conjectured to be the cause of the large 

inaccuracies and uncertainties in the calculation of the 

actual valve flow coefficient. 

To verify this, data are processed by the Fuzzy C Means 

(FCM) clustering algorithm.7,8 FCM is applied to the 

projections of the five-dimensional dataset into the 

subspace of the two measured parameters (pressure drop 

and choke opening) and the subspace of the three 

allocated parameters (oil, water and gas flow rates). The 

two partitions are compared to investigate the coherence 

of the information conveyed by the parameters. A 

supervised clustering algorithm based on Mahalanobis 

metrics9 is used to obtain a partition of the entire five-

dimensional dataset as close as possible to that obtained 

based only on the two measured parameters. A measure 

of the importance of the parameters in the clustering is 

calculated and used to verify the coherence of the 

information conveyed by the less reliable allocated 

parameters with that conveyed by the two reliable ones. 

If found unreliable, the values of oil, gas and water flow 

rates are corrected based on the relations among all 

parameters. To this aim, an ensemble of Kernel 

Regression (KR) models is here devised. KR is a 

distance-based regression algorithm10,11; an ensemble of 

four KR models is used to avoid the need of selecting 

the optimal model and to increase the robustness and 

reduce the uncertainty of the estimate.12,13 Diversity is 

injected in the ensemble by differentiating the training 

procedure for each KR model. The aggregation of the 

KR model outcomes is obtained through an original 

procedure based on the weighted average of the single 

model outcomes with weights calculated using the 

Analytic Hierarchy Process (AHP).14 

Since a validation dataset is not available for the choke 

valve case study, the ensemble-based reconstruction 

approach is verified on an artificial dataset which does 

not attempt to reproduce the physical behaviors of the 

choke valve system and only shares some of the main 

characteristics of the choke valve dataset. The artificial 

dataset contains five-dimensional patterns randomly 

sampled from as many multivariate Gaussian 

distributions as the number of clusters found in the real 

dataset; a white Gaussian noise is added to three 

 

Fig. 1.  Typical choke valve of rotating disk type 

(http://www.vonkchokes.nl/). 

http://www.vonkchokes.nl/
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parameters in order to simulate the uncertainty in their 

values, in analogy to what is observed in the three 

allocated parameters of the choke valve case study. 

The main contributions of this work to the field of 

prognostic data pre-treatment are: (i) the proposal of a 

monotonicity-based index for the evaluation of the 

quality of a degradation indicator; (ii) the development 

of a clustering-based procedure for establishing whether 

allocated parameter estimates are reliable; (iii) the 

development of an approach based on an original 

method for the aggregation of multiple model outcomes 

for improving the estimates of unreliable parameters. 

The application of these methods to the problem of 

choke valve erosion assessment can potentially improve 

the accuracy in the estimation of the choke valve flow 

coefficient, which is extensively used in the oil & gas 

industry for wells condition monitoring. Furthermore, 

the methods can be applied in many other situations 

where some unreliable parameter estimates are used. 

The paper is framed as follows. The traditional 

procedure for the construction of a health indicator 

assessing the choke valve erosion state is presented in 

Section 2. Section 3 illustrates the clustering procedures 

introduced to verify the reliability of the allocated 

parameters; based on the results of the cluster analysis, 

an artificial dataset is built for validating the 

effectiveness of the proposed clustering method 

(Section 4); to improve the accuracy of the allocated 

flow rates, a KR ensemble is developed, verified on the 

artificial case study and then applied to the real case 

study; finally, the estimated flow rates are used to 

calculate the health indicator (Section 5). Conclusions 

and potential perspectives for future work are drawn in 

the last Section. 

2 Choke Valve Erosion Assessment 

In oil and gas industries, choke valves are normally 

located on top of each well and are used to balance the 

pressure on several wells into a common manifold to 

control flow rates and protect the equipment from 

unusual pressure fluctuations.  

In Fig. 1, a choke valve is sketched. The throttle 

mechanism consists of two circular disks, each with a 

pair of circular openings to create variable flow areas. 

One of the disks is fixed in the valve body, whereas the 

other is rotated either by manual operation or by 

actuator, to vary or close the opening. For large pressure 

drops, the well streams which contains gas, liquid and 

sand particles can reach 400-500 m/s and produce heavy 

metal loss mainly due to solids, liquid droplets, 

cavitation and combined mechanisms of erosion-

corrosion, resulting in choke lifetimes of less than a 

year. Erosion management is vital to avoid failures that 

may result in loss of containment, production being held 

back, and increased maintenance costs. Moreover, 

several chokes are located subsea, where the 

replacement cost is high. Then, the need has increased 

for reliable models to estimate erosion and lifetime of 

choke valves, in order to allow implementing effective 

maintenance strategies.15-17 

 

2.1 Choke valve health state indicator  

A common indicator of the valve flow capacity is the 

flow coefficient CV, which is related to the effective 

flow cross-section of the valve. Given a differential 

pressure ΔP, the flow rate q across the valve is 

proportional to the flow coefficient CV 18: 
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where ρ/ρw is the relative density of the substance across 

the valve, i.e. the ratio of the substance density to the 

water density. Tests are performed by manufacturers on 

new valves to evaluate the theoretical valve flow 

coefficient )(th
VC  for different values of the valve 

opening θ. In practice,  )(th
VC , where α is close to 

1 and depends on the type of choke considered.  

Erosion is a slow process. For a specific valve opening, 

erosion produces a gradual increase of the valve area 

available for the flow transit. Given θ and ΔP, erosion 

determines an increase in q modeled by a corresponding 

increase in CV (eq. 1). For this reason, the difference 

VC  between the actual (CV) and the nominal ( th
VC ) 

values of the valve flow coefficient is retained as the 

health indicator for the choke6: 

 )()()(  th
VVV CCC   (2) 

During operation, CV is not directly measured but 

computed for a two-phase flow as18: 
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where gwo mmmm    is the total mass flow rate of 

the oil-water-gas mixture, mmf gwogwo  /,,,,   is the 

fraction of the oil, water and gas mass flow rates, 

respectively, ρo,w,g are the corresponding densities, J is 

the gas expansion factor, Fp(θ) is the piping geometry 

factor accounting for the geometry of the valve/pipe 

reducer assembly and ΔP is the pressure drop through 

the choke. Eq. (3) and the values of ρo,w,g, J, Fp(θ) and 

N6 are derived from fluid dynamics; parameters ΔP, θ, 

om , wm  and gm  are measured or allocated during 

operation. 

2.2 Choke valve dataset 

For a correct assessment of the choke erosion state and 

the prediction of its remaining useful life, it is 

fundamental to obtain frequent and reliable 

measurements or estimates of the parameters ΔP, θ, om

, wm  and gm  used to compute the health indicator 

δCV. Nevertheless, only the pressure drop ΔP and the 

valve opening θ are measured during standard daily 

inspections (SI), whereas measures of water, oil and gas 

flows rates are taken downstream of the choke only 

during well tests (WT) with a multiphase flow 

separator. On a daily basis, the values of om , wm  and 

gm  are allocated for a single well by a software based 

on the measured total production from a number of 

wells and on physical parameters (pressures and 

temperatures) related to the specific well. The available 

information consists in 259 ΔP and θ measurements 

performed every operational day, in 7 om , wm  and gm  

measurements performed at times t=0.4, 18.4, 61.5, 

135.8, 180.3, 250.6, 276,7 during well tests and in the 

259 daily allocated values of these latter three 

parameters (Table 1). Fig. 2 shows the parameters 

trends during standard inspections (continuous line) and 

well tests (stars). Fig. 3 shows the values of the health 

indicator δCV computed using daily standard 

inspections data (continuous line) and well test 

measurements (stars). 

Table 1.  Available information 

 
Number of 

patterns 
ΔP and θ 

om , wm  

and gm  

Standard 

Inspections 

(SI) 

NSI=259 Measured Allocated 

Well Test 

Inspections 

(WT) 

NWT=7 Measured Measured 
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In general, δCV is expected to be monotonic since 

erosion cannot decrease in time unless maintenance 

actions are performed. A quantitative index of 

monotonicity is the Spearman’s rank correlation used in 

statistics to assess how well the relationship between 

two variables can be described using a monotonic 

function.19 The curve of δCV computed using the SI 

data, is highly noisy and presents remarkable 

oscillations. The Spearman’s rank correlation 

coefficient rS between δCV and time tk at which the 

measurements are taken is computed as: 
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where xk is the five-dimensional vector containing the 

parameter values collected at time tk, and )( kCV
R x  and 

k are the ranks (i.e., the relative positions) of pattern xk 

when all patterns are ordered with respect to the values 

of δCV and tk, respectively. Values of rS close to 1 are 

expected for a monotonic quantity.  

Results show that δCV behaves monotonically 

(rS=0.9643) only when WT measurements are used to 

compute it. On the contrary, the lower monotonicity 

(rS=0.7401) obtained when δCV is calculated using SI 

data suggests that some of the allocated mass flow rate 

values may be unreliable. A cluster analysis is 

 

Fig. 2.  Parameters trends (continuous line represents SI, stars indicate WT). 

 

Fig. 3.  Health indicator δCV using SI (continuous line) and 

WT (stars). 
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performed in the next Section in order to verify this 

hypothesis. 

3 Clustering 

Let X be a generic set of N patterns ][ u
k

r
kk xxx  , 

k=1,…,N, of P parameters which can be divided in a 

vector r
kx  of pr reliable parameters )( k

r
p tx , p=1,…, pr 

and another vector u
kx  of pu unreliable parameters 

)( k
u
p tx , p=pr+1,…,P.  

In general, the distinction between reliable and 

unreliable parameters can be achieved considering 

expert judgment, data analysis or by resorting to data 

validations techniques which allow detecting anomalous 

behaviors in datasets. In the choke valve case study, the 

measured parameters ΔP and θ are classified as reliable 

according to expert judgment, whereas the allocated 

ones, om , wm  and gm  are judged unreliable.  

The aim is here to propose a procedure for verifying 

whether the information provided by the unreliable 

parameters in u
kx  is coherent with that of the reliable 

parameters in r
kx . This is done by considering the 

relative positions of the patterns in the pr-dimensional 

subspace S
r
 of the reliable parameters, and in the pu-

dimensional subspace S
u
 of the unreliable parameters. 

An effective technique to find a structure in a collection 

of unlabeled objects is unsupervised clustering, 

consisting in the organization (partition) of the patterns 

into non-overlapping, non-empty groups (clusters) so 

that patterns of the same cluster are similar between 

them and dissimilar to the patterns belonging to other 

clusters.20 The clustering problem has been addressed in 

many contexts and by researchers in many disciplines. 

Thus, several algorithms, such as the hard c-mean32 and 

the evolving clustering methods31, have been proposed 

to identify clusters of objects. A limitation of these 

approaches is that they constrain each pattern to belong 

to one cluster only, when, in practice, the clusters may 

not be completely disjoint and patterns could be 

classified as belonging to one cluster almost as well as 

to another. Alternatively, fuzzy clustering algorithms 

which assign to each object a set of membership values, 

one for each cluster, have been proposed. The 

implication of this is that the class boundaries are not 

‘hard’ but rather ‘fuzzy’. The clustering technique 

employed in this work is the Fuzzy C-Means (FCM) 21 

which is based on the minimization of a weighed sum Y 

of the distances d(xk, vc) between the patterns xk and the 

cluster centers vc.  

 

 ),()]([ 2

1 1

ckk

C

c

N

k

c dY vxx 
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  (5) 

 

where the weight μc(xk) denote the membership of xk to 

cluster c, and ω is a parameter which controls the degree 

of fuzziness of the clusters (often a value between 1 and 

2 is found suitable in application9). In the traditional 

algorithm,7 the distance is Euclidean. The membership 

values μc(xk) and the cluster centers vc are computed via 

an iterative procedure reported, for completeness, in 

Appendix A.  

In this work, for the validation of the unreliable 

parameters, two different partitions (Γ
r 

and Γ
u
) of the 

dataset X into C clusters are considered: Γ
r
 is obtained 

using the unsupervised Fuzzy C-Means (FCM) 

clustering technique in the parameters space S
r
, whereas 

Γ
u
 obtained by applying the same technique in the 

parameters space S
u
.  

In Section 3.1, the main steps of the procedure of cluster 

analysis proposed are presented; in Section 3.2, the 

results of its application to the choke valve erosion case 

study are discussed. 

3.1 Cluster analysis 

The information used to build the partition Γ
r
 is 

incomplete, since only pr out of P parameters are used; 

on the other hand, the cluster structure thereby 

identified is assumed as reference in the comparison 

with the partition Γ
u
, since it is built using only the pr 

reliable parameters in r
kx . 

Notice that, due to the incompleteness of the Γ
r
 

information base, one could observe disagreement 

between Γ
r
 and Γ

u
 not only when the values of the 

unreliable parameters in u
kx  used to build Γ

u
 are 

incorrect, but also when they give information which, 

despite being correct, is uncorrelated with that given by 

the reliable parameters in r
kx . For example, two 

different clusters can coincide when projected on S
r
 and 

be well separated on S
u
 instead; in such a situation, one 

can obtain significantly different partitions Γ
r
 and Γ

u
, 

despite the correctness of the unreliable parameters. 

Since in the choke valve case study the unreliable 

parameters ][ gwo
u
k mmm x  are somehow 

correlated to the reliable parameters ][ Pr
k x  (see 

eq. (3)), situations where uncorrelated signals have to be 

handled are not considered in this work. 

Operatively, the cluster analysis is performed as 

follows: 
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(i) Identify the optimal number of clusters C to be used 

for the partitions Γr and Γu. This is obtained by 

considering the minimum of the compactness and 

separation validity function s(C): 

 
),(min
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1 1
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which represents the ratio between the cluster 

compactness, measured by the average distance of 

the patterns from their cluster centers and the 

separation between the clusters, measured by the 

minimum distance between two cluster centers. 

Notice that the numerator tends to decrease when 

the compactness increases and the denominator 

tends to increase when the separation increases. 

Thus, in order to obtain a partition characterized by 

highly compact and well separated clusters, one has 

to find the optimal number of clusters which 

minimizes the validity function s(C). 

(ii) The fuzzy partitions Γ
r
 and Γ

u
 of the N data into C 

clusters are obtained using the FCM clustering 

algorithm (see Appendix A). 

(iii) The clusters of Γ
r
 and Γu are bi-univocally 

associated cr↔cu by minimizing the partition 

distance D(Γ
r
, Γu) between the partitions Γ

r
 and Γu. 

In this respect, the distance D(Γ
r
, Γu) defined in 

Ref. 22 has been used: 

 
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where 0≤ )(,
k

ur
c x ≤1 is the membership of the k-th 

pattern to the c-th cluster of the partition Γ
r
 and Γ

u
. 

(iv) Crisp partitions Ω
r
 and Ω

u
  are obtained from the 

fuzzy partitions Γ
r
 and Γ

u
, respectively, by 

assigning a pattern xk to a given cluster c if its 

degree of membership to the cluster, μc(xk), exceeds 

a predefined threshold )1,0( , which represents 

the required degree of confidence for the 

assignment. If the condition  )( kc x  is not 

fulfilled for any cluster or if it is verified for more 

than one cluster, the pattern is not associated to any 

cluster. The crisp partitions Ω
r
 and Ω

u
 are compared 

by considering the difference between the sets of 

patterns
rcX  and 

ucX  assigned to the associated 

clusters cr and cu. A large difference in the 

assignment of the patterns to the clusters is taken as 

a symptom that the information conveyed by the 

unreliable parameters may be misleading. 

3.1.1 Results 

According to this procedure, the dataset XSI of the NSI 

=259 SI available patterns kx , k=1,…, NSI is projected 

into the subspaces S
r
=ΔP×θ and S

u
= om × wm × gm  of 

the measured (reliable) and allocated (unreliable) 

parameters of the choke valve case study, respectively. 

Two partitions Γ
r
 and Γ

u
 of the dataset XSI into C=5 

clusters are obtained using the FCM algorithm with 

degree of fuzziness ω=2. 

The clusters of Γ
r
 and Γ

u
 are then coupled by 

minimizing the partition distance D(Γ
r
, Γ

u
) in eq. (7) and 

the same cluster index c=1,…,5 is assigned to each 

member of the pair of associated clusters. The minimal 

value found for the partition distance is 0.47 which is 

high considering that, by definition, the maximum 

partition distance is 1. With a degree of confidence 

γ=0.4, 255 patterns out of the total 259 patterns of XSI 

are assigned without ambiguity to the clusters of Γ
r
 and 

219 to the clusters of Γ
u
. The remaining patterns are 

ambiguous. Ambiguous patterns in Γ
r
, which differ from 

those in Γ
u
, are located at the boundaries between 

clusters 1 and 3 and clusters 2 and 3, and for this reason 

they are assigned to both clusters. 

Fig. 4 shows the partitions Γ
r
 and Γ

u
 of the 259 SI 

patterns in the space S
r
. It can be seen that in Γ

r
, the 

clusters are clearly separated, contrarily to what happens 

in Γ
u
. Moreover, one can observe large differences in 

clusters’ composition, e.g. many patterns that belong to 

cluster 1 in Γ
r
 are assigned to cluster 5 in Γ

u
; patterns of 

clusters 2, 3 and 4, which are well separated in Γ
r
, are, 

instead, mixed in Γ
u
.  
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Table 2 compares the number of patterns assigned to the 

same cluster in Γ
r
 and Γ

u
 (4th column) to the total 

number of patterns assigned separately to each cluster of 

Γ
r
 and Γ

u
 (2nd and 3rd column, respectively). Notice that, 

globally, less than half of the patterns (47%) assigned to 

a cluster of Γ
r
 are assigned to the associated cluster of Γ

u
 

(last row in the Table). 

Table 2.  Number of patterns assigned to each cluster in Γr 

(2nd column), in Γu (3rd column), in both Γr and Γu (4th 

column) and percentage of patterns assigned to the same 

cluster in both partitions with respect to the number of patterns 

assigned to that cluster in Γr 

Cluster c Γr Γu Γr & Γu (Γr & Γu)/( Γr) 

1 45 15 14 31.11% 

2 56 49 15 26.79% 

3 77 48 32 41.56% 

4 25 47 15 60.00% 

5 52 60 43 82.69% 

𝚺 255 219 119 46.67% 

 

3.2 Supervised evolutionary clustering 

To confirm the conclusions drawn in the previous 

Section, a further analysis based on a supervised 

clustering technique is here performed. Firstly, a 

partition Γ
s
, as similar as possible to Γ

r
, is obtained 

using a supervised evolutionary clustering technique 

based on Mahalanobis metrics in the space of all 

parameters. 

A set Xlab of Nlab labeled training data is built by 

choosing, among the N patterns of X, those belonging to 

one of the C clusters in Γ
r
 with a membership 

9.0)( kcr
x  and labeling them with the index c of the 

cluster they are assigned to. The evolutionary algorithm 

searches for the optimal metrics to be used by the FCM 

in order to achieve clusters as close as possible to the 

clusters of the labeled patterns.  

In this view, each cluster c is defined by an individual 

distance through a dedicated Mahalanobis metric, 

defined by a definite positive matrix Mc: 

 )()(),( T2
ckcckckc

d vxMvxvx
M

  (8) 

The classification task amounts to an optimization 

problem in which the metrics, i.e., the geometric 

distance functions, become additional parameters to be 

determined besides the fuzzy partition. The supervised 

target of the optimization is that of minimizing the 

partition distance D(Γ,Γ*) between the a priori known 

partition Γ and the obtained partition Γ* as defined in eq. 

(7). 

For the optimization, we integrate an evolutionary 

algorithm for determining the C optimal geometric 

distance functions21 with the FCM algorithm for 

determining the optimal fuzzy partition based on such 

distance. For more details on the algorithm one can refer 

to Ref. 9. 

A measure of importance )( pxI cM  of a parameter xp, 

p=1,…,P for the assignment of a pattern to a cluster c is: 

 



5

1

2
,

)(
j

cp pjc
gxIM  (9) 

where pjcg , , j,p=1,…,P are the coefficients of the 

lower triangular matrix ][ , pjcc gG  for cluster c 

obtained from the decomposition of the Mahalanobis 

matrix Mc into its Cholesky factors Gc, i.e., 

ccc GGM
T

 .9 

3.2.1 Results  

The importance values )( omI c
M , )( wmI c

M  and 

)( gmI c
M  associated to the allocated parameters are 

 

Fig. 4.  Visualization on the space Sr=ΔP×θ of the patterns 

assigned to the five clusters in Γr (top) and Γu (bottom). In the 

top graph, the WT patterns are also shown (black dots, 

numbered in chronological order). 
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compared to those associated to the measured ones (

)( PI c M , )(cIM ): if the importance of allocated and 

measured parameters is similar, one can conclude that 

they both convey useful information for defining the 

partition Γ
s
; vice versa, if the importance of the 

allocated parameters is lower than that of the measured 

parameters, one should doubt about their reliability, 

since the information they convey appears to be 

incoherent with that of the measured parameters. 

Table 3.  Measures of importance cIM  of the different 

parameters 

 

Measured 

parameters 
Allocated parameters 

Cluster c ΔP θ om  wm  gm  

1 2.221 1.770 0.095 0.048 0.105 

2 2.410 5.933 0.000 0.001 0.002 

3 2.175 4.443 0.050 0.009 0.011 

4 0.362 7.847 0.013 0.696 0.008 

5 0.288 3.802 0.044 0.097 0.199 

 

Table 3 reports the measures of importance cIM  

obtained for the five parameters for each cluster. The 

allocated parameters have low importance compared to 

the measured ones, meaning that they do not 

significantly contribute to the assignment of the patterns 

to any of the clusters. 

The analysis performed in this Section has shown that 

the information conveyed by the allocated parameters,  

om , wm  and gm , i.e., the oil, water and gas mass flow 

rates, respectively, are unreliable and thus contribute to 

lower the quality of the choke valve health indicator 

δCV. For this reason, a method for providing more 

accurate estimates of the mass flow rates has been 

developed. To test the performance of this method, an 

artificial dataset reproducing some of the main features 

of the choke valve dataset is built. 

4 Artificial dataset 

An artificial dataset XA of NA=250 five-dimensional 

patterns has been generated by sampling the values of 

the first three parameters, Ax1 , Ax2  and Ax3 , from C=5 

multivariate Gaussian distributions representing the five 

clusters of the choke valve dataset (Fig. 4). Table 4 

reports the mean and standard deviation values 

employed for sampling the patterns. The values of the 

remaining two parameters, Ax4  and Ax5 , are obtained by 

using the following deterministic functions of Ax1 , Ax2  

and Ax3 . 

 
 

3
1

5.2

1
24

A

A
AA

x

x
xx  ; AAAA xxxx 3

4
215   (10)  

In analogy with the choke valve case study, the 

parameters are divided into a vector ],[ 21
AAr xxx  of 

two reliable parameters and another vector 

],,[ 543
AAAu xxxx  of three unreliable parameters. In 

order to realistically reproduce the uncertainties 

affecting the mass flow rates in the choke valve case 

study, a second dataset XA,noise has been built by adding 

to the unreliable parameters Ax3 , Ax4  and Ax5  of the 

patterns of XA a white Gaussian noise with probability 

0.5. To this purpose, the intensity of the noise affecting 

the allocated parameters of the choke valve case study 

has been roughly guessed by considering the root of the 

mean square difference (RMSD) between the seven WT 

mass flow rate measurements and the corresponding SI 

values. Table 4 shows that the values obtained for the 

noise are in a range between 0.8 and 1.25 times the 

standard deviations of the parameters computed using 

the SI data. The dataset XA,noise has been built by 

considering Gaussian noises with standard deviations 

equal to the parameter standard deviations.  

Table 4.  Mean and standard deviation of Ax1 , Ax2  and Ax3  

 

Mean Standard deviation 

Cluster 

c 
Ax1  Ax2  Ax3  Ax1  Ax2  Ax3  

1 10.5 38 10 0.5 1.5 0.2 

2 11.5 -7 -3 0.3 0.3 0.5 

3 9 51 7 0.5 1.1 0.5 

4 10 10 -5 0.2 1 0.4 

5 10.3 22 0 0.07 2.5 0.2 

 

Nevertheless, since the intensity of the noise applied to 
Ax3 , Ax4  and Ax5  is large, when it is added to all 

patterns, the FCM algorithm is not able to find well 

separated clusters; on the contrary, in the choke valve 

case study the FCM algorithm is able to find separated 

clusters, despite the presence of noise on the mass flow 

rates om , wm , and gm . For this reason, a smaller 

global amount of noise is inserted in the artificial case 

study by sampling the points to disturb with probability 

0.5. 
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Table 5.  Estimate of the standard deviations of the mass flow 

rate noises 

 om  wm  gm  

RMSD 1.495 21.677 2582.769 

σ (based on SI data) 1.793 19.064 2104.903 

RMSD/σ 0.834 1.137 1.227 

 

The cluster analysis procedure described in Section 3.1 

has been applied to parameters Ax1  and Ax2  of the 

artificial case study, which are not affected by noise. In 

the obtained partition Γ
r
, all the 250 patterns have been 

assigned to a cluster with a degree of membership 

higher than 0.4. Repeating the same cluster analysis on 

parameters Ax3 , Ax4  and Ax5  in case of both undisturbed 

and noisy data, we have obtained a partition Γ
u
 for the 

undisturbed dataset XA characterized by 9 ambiguous 

patterns, i.e. patterns not assigned to any cluster with a 

degree of membership higher than 0.4, and a partition 

Γ
u,noise

 for the disturbed dataset XA,noise with 44 

ambiguous patterns, thus demonstrating that, in case of 

noise, the identification of clearly separated clusters is 

more difficult. 

Table 5 reports the number of patterns assigned to the 

same cluster in the partition Γ
r
 obtained by considering 

Ax1  and Ax2  and in the partitions Γ
u
 and Γ

u,noise
 based on 

Ax3 , Ax4  and Ax5 , in both cases of undisturbed and noisy 

parameters, respectively. Notice that, in absence of 

noise, the two partitions almost coincide, whereas they 

are quite dissimilar in case of noise. These results 

confirm that, in absence of noise one should expect 

similarity of the partitions Γ
r
 and Γ

u
. On the contrary, in 

case of noise on the allocated parameters, fewer patterns 

can be assigned to one cluster without ambiguity and 

many are assigned to different clusters.  

Table 6.  Number of patterns assigned to the same cluster in Γr 

and Γu in case of undisturbed and noisy data. Undisturbed 

data: number of patterns assigned to each cluster in Γr (column 

a), Γu (column b) and in both Γr and Γu (column c). Noisy 

data: number of patterns assigned to each clusters in Γu 

(column b) and in both Γr and Γu (column c) 

Cluster c Γr (a) Γu (b) Γr & Γu (c) (c)/(a) 

Undisturbed data XA 

1 48 50 48 1 

2 52 50 50 0.96 

3 50 50 50 1 

4 43 50 43 1 

5 48 50 48 1 

Σ 241 250 239 0.99 

Noisy data XA,noise 

1 48 36 25 0.54 

2 52 42 40 0.63 

3 50 49 49 0.86 

4 43 43 25 0.72 

5 48 36 26 0.63 

Σ 241 206 163 0.68 

 

Finally, seven patterns of the artificial dataset XA are 

randomly sampled and left without noise in order to 

reproduce the situation of the seven WT patterns of the 

choke valve case study which have small uncertainties. 

 

5 Improving the Quality of the Allocated 

Parameters 

After verifying that the values of om , wm , and gm  of 

the choke valve case study are noisy and unreliable, a 

procedure for improving the accuracy of the estimates 

of those parameters values is here proposed. This is 

done by means of empirical models which learn from a 

training set the relationships between the parameters, 

and provides as output an estimate kx̂  of the input 

parameters xk. Different regression techniques such as 

those based on the use of principal component 

analysis,23 artificial neural networks,24,25 support vector 

machines,26 evolving clustering methods27 have been 

applied to this purpose. In this work, Kernel Regression 

models10,11 have been chosen. 

Nonparametric Kernel Regression (KR) is used to build 

a model for improving the quality of the allocated 

values of oil, water and gas mass flow rates. Compared 

with parametric methods, which are defined by sets of 

parameters and predefined functional relationships, 

nonparametric methods have the advantage that they do 

not require any assumption about the mathematical 

structure of the regression model.10 

KR models provide estimates by developing local 

models in the neighborhoods of the test patterns they are 

fed with. Estimates are obtained as weighted averages 

of the training patterns, with weights decreasing as the 

distance between the test and the training pattern 

increases. In this view, training patterns closer to the 

test pattern are conjectured to be more similar to it, thus 

giving the most relevant contribution to its estimate. 

Distances between test and training patterns are 

evaluated based on a subset of the available parameters 
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belonging to the predictor group (PG). More details 

about the KR method are given in Appendix B. 

In the choke valve case study, the choice of training 

dataset and predictor parameters is critical. In this 

respect, four different models can be devised by 

differentiating the training set as listed in Table 6.  

Table 7.  Model training procedures 

Model Training set Predictor parameters 

1 
Well test data 

XWT 
Measured ],[ Pr

k
x  

2 

Standard 

inspections 

data XSI 

Measured ],[ Pr
k

x  

3 
Well test data 

XWT 

Measured & allocated 

],,,,[ gwok mmmP x  

4 

Standard 

inspections 
data XSI 

Measured & allocated 

],,,,[ gwok mmmP x  

 

The KR models return in output the unreliable 

parameters that need to be estimated RG
k

x u
k

x  

],,[ gwo mmm  .  

Since the performance of the models depends on the 

characteristics of the parameter to be estimated and the 

intensity of the noise, as shown below in Section 5.1, it 

is difficult to identify a single best model.  

Using an ensemble of models allows overcoming this 

dilemma. Indeed, the general idea underlying ensembles 

is to create many models and combine their outputs in 

order to achieve a performance better than that provided 

by each individual model in the ensemble.12 Models’ 

prediction diversity plays a fundamental role when 

ensemble approaches are devised. In fact, individual 

models committing diverse errors can be opportunely 

combined in such a way that the error of the aggregated 

prediction is smaller than the error of any of the 

individual models. 

In Ref. 31, it is shown that in the case of very noisy 

parameters, the reconstruction error can be reduced by 

iterating the reconstruction procedure: the 

reconstruction of the noisy parameters obtained at the 

previous iteration is repeatedly given in input to the 

reconstruction model. In this application, in order to 

obtain the estimate at one iteration, the values of the 

allocated parameters in u
kx  estimated by the ensemble 

at the previous iteration are given in input to the 

ensemble together with the measured values of the 

measured parameters in r
kx . 

 

5.1 Outcome aggregation with Analytic 

Hierarchy Process 

Different techniques for the aggregation of the 

outcomes of individual models have been proposed in 

literature, the most common being statistics methods 

like the simple mean, the median and the trimmed 

mean.29,30 Other aggregation techniques which allow 

improving the ensemble performance consider weighted 

averages of the model outcomes with weights 

proportional to the performance of the individual 

models. In this respect, both global approaches (in 

which the performance is computed on all the available 

patterns) and local approaches (which measure the 

performance only on the patterns closed to the test 

pattern) have been proposed.31 Note that these 

techniques, which require the availability of a complete 

input-output set of patterns in order to compute the 

individual model performances, cannot be used in the 

choke valve case study considered in this work, being 

the available output values (allocated values of 

gwo mmm  ,, ), not reliable. For this reason, a new 

strategy for outcome aggregation in ensemble systems is 

here proposed. The strategy is based on the use of the 

Analytic Hierarchy Process (AHP).14 

AHP is a multi-criteria decision method that uses 

hierarchic structures to represent a decision problem and 

provides ranking of different choices.14 It has been 

extensively studied since its proposal by Saaty in the 

1970s. Here, beyond its traditional purpose, this 

technique is used in an original way to assign 

performance weights to the models of the ensemble. 

The proposed procedure allows ranking different 

models outcomes using relative performance 

measurements, without resorting to an absolute 

measurement of the model performance. AHP consists 

of two main steps: 1) structuring a hierarchy; 2) 

assigning priorities to the elements of each hierarchy 

level by comparative judgments of the elements based 

on a pre-defined scale. 

In this application, the hierarchy structure sketched in 

Fig. 6 is used. The four models on level 3 are compared 

with respect to the two criteria Z1 and Z2 of the level 2 

towards the goal (level 1) of obtaining high model 

accuracy. 
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The basic tool for assigning priorities to the elements of 

a level of the hierarchy are matrices of pairwise 

comparisons based on the criteria defined at the 

previous level. For the hierarchy of Fig. 5, two matrices 

of comparisons 1ZA  and 
2ZA  have to be defined, each 

one containing elements aij representing the relative 

importance of model i when compared to model j based, 

respectively, on criteria Z1 and Z2. 

Once a matrix of comparisons 
lZA  is defined, the 

vector of priorities 
lZπ  of the models in level 3 of the 

hierarchy with respect to criterion Zl is given by the 

eigenvector associated to the maximum eigenvalue of 

matrix 
lZA . The priority vectors obtained for each 

criterion are weighted with the priority assigned to the 

corresponding criterion and averaged to obtain the 

overall priority vector π=[π1, π2, π3, π4] assigning the 

priority πm to model m. 

In the proposed aggregation method, the priorities 

assigned to each model are used as weights to aggregate 

the models’ outcomes through a weighted average: 
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where mu
tst

,x̂  is the estimate provided by model m of the 

unreliable parameters in u
tstx . 

In this application, the first criterion Z1 chosen to 

evaluate the relative importance )( tstija x of model i 

with respect to model j in the reconstruction of a test 

pattern tstx  is the relative similarity of the two models 

outcomes 
iu

tst
,x̂  and 

ju
tst

,
x̂  to the remaining models 

outcome
mu

tst
,x̂ , m≠i, j. Assuming that the model 

outcomes of the models left out of the pair-wise 

comparison are distributed around the correct value, this 

criterion assigns larger weights to the model (i or j) 

whose outcome is more similar to that of the models left 

out. 

The similarity of two patterns iu
tst

,x̂  and mu
tst

,x̂  has been 

estimated by the inverse of their Euclidean distance 

)ˆ,ˆ( ,, mu
tst

iu
tstd xx ; the relative importance )( tst

m
ija x of a 

model i with respect to model j when model m is taken 

as reference is defined by: 

 )ˆ,ˆ(/)ˆ,ˆ()( ,,,, mu
tst

iu
tst

mu
tst

ju
tsttst

m
ij dda xxxxx   (14) 

and the entry aij of the comparison matrix A is given by 

the product of the relative importance values )( tst
m
ija x  

m=1,…,4, m≠i, j: 

 



i,jm

tst
m
ijij aa )(x  (15) 

According to the AHP method, the quality of a matrix 

of comparison can be evaluated considering its 

consistency. Matrix 1ZA  is consistent if the following 

equation is satisfied for any i, j and k 14: 

 ik
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i
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In our case, substituting eqs. (14) and (15) in eq. (16) 

gives: 
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where )ˆ,ˆ( ,, ju
tst

iu
tst

ij dd xx  and, by definition, jiij dd  . 

This shows that, in the proposed approach, matrix 1ZA  

is consistent. 

A second criterion Z2 for evaluating the performance of 

a model takes into account the RMSE in reconstructing 

the reliable parameters in r
tstx , i.e. the root mean square 

difference between the reconstructed and measured 

values. This second criterion takes into account the fact 

that robust and reliable models should be able to 

correctly reconstruct the reliable parameters of r
tstx  

despite the noise on the unreliable parameters of u
tstx . 

Since all model performances are evaluated with respect 

to the same reference, i.e. the reliable measurements in 
r
tstx , the pair-wise comparison is not needed, and the 

vector of priorities 2Zπ  is computed by taking for each 

 

 

Fig. 5.  Model weighting hierarchy structure. 
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model h=1,…,4, the inverse of its RMSE, i.e. 
mm

Z
RMSEπ 1

2
 . 

Finally, the two criterions Z1 and Z2 of level 2 of the 

hierarchy are given the same importance and thus the 

priority vector π is given by:  

 









2

1
]5.05.0[

Z

Z

π

π
π  (17) 

5.2 Results 

Given the impossibility of verifying the correctness of 

the oil, water and gas mass flow rates estimates 

provided by the AHP aggregated ensemble of KR 

models in the choke valve case study, the performance 

is firstly verified with respect to the artificial case study 

introduced in Section 4. 

5.2.1 Application to the artificial case study 

In this Section the KR models and the ensemble 

approach are applied to estimate parameters Ax3 , Ax4  

and Ax5  in the artificial case study of Section 4 for 

different values of the standard deviation n  of the 

noises applied to the unreliable parameters Ax
3 , Ax

4
 and 

Ax5
. For each model, the bandwidth parameter h (eq. 

(12)) has been set through a trial and error procedure in 

order to minimize the root mean square error (RMSE) 

of the model in estimating the noisy parameters. Fig. 6 

reports the reconstruction errors of the four KR models 

for different values of the noise standard eviation n . 

Notice that the performance of model 1 does not depend 

on the noise intensity, since the information used to 

develop the model (the training set of undisturbed 

patterns simulating the WT measurements) and the 

information fed to the model to estimate the unreliable 

parameters (predictor parameters ],[
21
AAr

k
xxx ) is not 

affected by noise. As expected, the other model 

performances tend to decrease as the noise intensity 

increases. In particular, model 4, which is built using 

training patterns affected by the noise and receives in 

input noisy parameters, is the most affected by the 

noise. Model 2 tends to outperform the other models for 

small noise intensities. This is due to the fact that model 

2 is built using the largest training dataset and receives 

in input only the undisturbed parameters Ax
1

 and Ax
2

; 

on the other side, large noise intensities tend to reduce 

the performance of this model since they affect the 

value of the response parameters Ax
3 , Ax

4
 and Ax5  of 

the training patterns. 

Then, the ensemble of models have been tested using 

the same values of standard deviation noises on the 

unreliable parameters 
Ax3 , 

Ax 4  and 
Ax5 . Fig. 7 

compares the performances of the ensemble aggregated 

using the AHP strategy with those of the ensemble 

aggregated using the simple mean (SM) of the model 

outcomes and those of the best performing model. 

Results show that the AHP ensemble outperforms all the 

four KR models in 77% of the cases, whereas the best 

model slightly outperforms the AHP ensemble only in 

the reconstruction of parameter Ax5  when low values of 

σn are considered. However, these noise values are out 

of the range [0.8, 1.25]. This confirms the higher 

robustness standards achievable with the AHP ensemble 

approach which also generally outperforms the SM 

aggregation. 

 

Fig. 6.  Comparison of the reconstruction performance 

obtained by the four KR models for different noise intensities. 
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Table 7 compares the RMSE (averaged over different 

values of σn) obtained in estimating the noisy 

parameters Ax3 , Ax4  and Ax5  by the four individual 

models and by the SM and AHP ensembles. Results 

confirm that, in average, the AHP ensemble 

reconstruction outperforms the others. 

The artificial case study represents a general situation 

characterized by the presence of reliable and unreliable 

parameters, considering different correlations between 

the parameters and different noise levels. Since the AHP 

ensemble has provided satisfactory performance in the 

artificial case study, we expect that it also will provide 

accurate reconstructions of the mass flow rates in the 

choke valve case study.. 

Table 8.  RMSE of the KR models and ensembles in 

estimating parameters Ax
3 , Ax

4  and A
5x  

Model 

1 
Model 

2 

Model 

3 

Model 

4 

SM 

ensemble 

AHP 

ensemble 

0.0810 0.0550 0.0822 0.0817 0.0582 0.0472 

5.2.2 Application to the choke valve case study 

The ensemble approach is finally applied to the choke 

valve case study to improve the quality of the mass flow 

rates om , wm  and gm  allocations. The test set is 

constituted by the 259 patterns of XSI. A leave-one-out 

cross validation procedure has been adopted29: 

according to this procedure, at each cross-validation a 

single pattern from the original dataset XSI is used as 

test and the remaining NSI-1 patterns as training. This is 

repeated NSI times so that each pattern of the dataset is 

used once as test. The estimates are then used to 

calculate the choke valve health indicator δCV (eqs. (2) 

and(3)). The procedure is iterated 10 times. Table 8 

compares the value of the Spearman’s rank correlation 

coefficient rS of the health indicator obtained using the 

SI dataset, the estimates of the four individual models 

and those of the SM and the AHP ensembles. 

Results in Table 8 shows that estimating om , wm  and 

gm  allows increasing the monotonicity of the health 

indicator δCV with respect to that obtained by directly 

using the value computed during standard inspections. 

Furthermore, notice that in this case model 3 generates a 

health indicator slightly more monotone than that 

obtained by using the AHP ensemble. Nevertheless, 

since the performance of this model in the more data-

 

Fig. 7.  Comparisons of the performance of the SM and AHP 

ensembles and of the best individual model for different noise 

intensities. 

 

Fig. 8.  Comparison of the health indicator obtained using the 

allocated values of the mass flow rates and those estimated by 

the AHP ensemble. 
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rich and robust artificial case study are much worse than 

those obtained by the AHP ensemble (Table 7), the 

estimates obtained by the latter are used to calculate the 

choke valve health indicator. 

Table 9.  Monotonicity rs of the health indicator calculated 

using the SI dataset, the individual models estimates and those 

of the SM and AHP ensembles 

Method for mass flow rate 

estimation 
rs 

SI data 0.740 
Model 1 0.847 
Model 2 0.903 
Model 3 0.920 
Model 4 0.843 

SM ensemble 0.918 
AHP ensemble 0.919 

 

Fig. 8 shows the 
V

C  obtained using the SI allocated 

values of om , wm  and gm  and those estimated by the 

AHP ensemble. Notice that the values of 
V

C  obtained 

using the estimated values are more monotonic and 

more similar to those obtained in correspondence of the 

WT inspections (dots). Nevertheless, neither the AHP 

ensemble nor any of the single models considered can 

produce a totally monotonic indicator and some 

anomalous behaviors remains (e.g., some peaks such as 

the one occurring between 150 and 200 operational days 

which corresponds to a decrease in the pressure drop not 

followed by a decrease of the allocated values of the 

mass flow rates).  

6 Conclusions 

In this paper, we have tackled the problem of providing 

a reliable health indicator of a choke valve used in 

offshore oil platforms which undergoes erosion. The 

health indicator is derived from the valve flow 

coefficient which is a valve parameter that regulates the 

analytical relationship between the pressure drop across 

the choke and the flow of oil, water and gas through the 

choke. The difference between the theoretical and actual 

value of the valve coefficient highlight the contribution 

of the erosion. The theoretical value is given by the 

valve producers, while the actual value can be 

analytically calculated. A major problem is due to the 

inaccuracy of oil, water and gas mass flow rates which 

are used to calculate the actual valve flow coefficient. In 

fact, such values are not directly measured, but allocated 

for a single well by a software based on the measured 

total production from a number of wells and on physical 

parameters (pressures and temperatures) related to the 

single well. They are therefore affected by large 

uncertainties which lead to highly inaccurate 

calculations of the erosion state of the choke valve. 

The scope of this paper has been to devise a procedure 

to improve the quality of those allocated parameters 

based on the other available measurements (pressure 

drop and choke opening) which are conjectured to be 

reliable. Operatively, a number of well tests have been 

performed throughout the valve life and few reliable 

measurements are available also for the oil, water and 

gas flow rates. 

In the paper, Fuzzy C Means clustering has been applied 

to verify the consistency of the measured and allocated 

parameter. A comparison of the FCM partitions 

obtained in the space of the measured and allocated 

parameters has been made and the importance of each 

parameter has been evaluated in the data partitioning by 

a supervised evolutionary clustering. The results of the 

analyses performed on the choke valve data have 

indicated the low reliability of the allocated values of 

the mass flow rates. This has led to the development of 

a method for improving their quality.  

To this aim, Kernel Regression models have been 

devised. Different training procedures have been 

adopted to generate diverse models within an ensemble 

approach. To aggregate the outcomes of the individual 

models, an original technique based on the Analytic 

Hierarchy Process (AHP) method has been used. The 

results obtained in an artificial case study, reproducing 

the choke valve case study, have confirmed the 

improved performances of the ensemble with respect to 

any of the single KR models. The application of the 

proposed method to the choke valve case study has 

allowed significant improvement of the oil, water and 

gas mass flow rates calculation and, as a consequence, it 

has improved the quality of the health indicator. 

Since a general application of the proposed approach is 

envisioned in situations in which unreliable parameters’ 

measurements need to be improved by resorting to a set 

of reliable parameters, future works will be devoted to 

demonstrate its applicability in different industrial 

contexts. 
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Appendix A: The Unsupervised Fuzzy C Means 

Technique 

The Fuzzy C Means (FCM) technique is an 

unsupervised clustering technique, since it makes no use 

of a priori known information on the true classes of the 

data. The clustering is based on the minimization of a 

weighed sum Y of the distances d(xk,vc) between the 

patterns xk and the cluster centers vc, 
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where the weight )( kc x  denotes the membership of xk 

to clusters c and ω is a parameter which controls the 

degree of fuzziness of the clusters (often a value of 2 

has been found suitable as in Ref. 9). In the traditional 

algorithm7 the distance is Euclidean: 
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where I is the identity matrix.  

The membership values )( kc x  which minimize Y (eq. 

(A1)) for a given a set of centers vc, c=1,…,C, are 

computed as in eq. (A3) and used in eq. (A4) to 

compute a new optimal set of clusters centers, which are 

in return used in eq. (A3) to update the membership 

values. The iterative procedure provides the optimal 

fuzzy partition of the dataset. 
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Based on the set of optimal centers vc, c=1,…,C, a 

generic pattern xk is assigned to cluster c provided that 

its membership )( kc x  exceeds a threshold )1,0(  

representing the degree of confidence that xk belongs to 

c. If the condition  )( kc x  is never fulfilled or if it 

is verified for more than one value of c, the pattern is 

not associated to any cluster. 

Appendix B: The Kernel Regression method 

Let Xtrn={xk}, k=1,…, Ntrn be the training set used for 

the estimate of the test pattern xtst. To develop the KR 

model, parameters are divided into a predictor group 

(PG) and a response group (RG) (with the two groups 

possibly overlapping). For the estimate of xtst, the KR 

algorithm assigns to each training pattern xk a weight 

wk=K[dPG(xtst,xk)], where K is the kernel function which 

produces the weight for a given distance dPG(xtst,xk), 

between the training and the test patterns, computed 

considering only the parameters of the predictor group. 

The estimate RG
tstx̂  of the RG parameters of the test 

patterns is obtained as a weighted average of the RG 

parameters of the training patterns: 
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The kernel function K must be such that training 

patterns with small distances from the test pattern are 

assigned large weights and vice versa. Among the 

several functions which satisfy this criterion, the 

Gaussian kernel is commonly used28: 
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where the parameter h defines the kernel bandwidth and 

is used to control how close training patterns must be to 

the test pattern to be assigned a large weight. In order to 

compute dPG, the PG parameters are normalized to mean 

equal to 0 and standard deviation equal to 1. 
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