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Abstract: In offshore oil platforms, choke valve erosion is a major issue. An indicator of 

the choke valve health state is the valve flow coefficient, which is a function of measured 

and allocated parameters. The allocated parameters are typically provided by a physics-

based model which has been proved to be inaccurate for some operating conditions. As a 

consequence, inaccuracies are introduced in the evaluation of the health indicator, 

undermining the possibility of using it for prognostics. In this paper, we overcome this 

hurdle by resorting to hybrid modelling which integrates the physics-based model into an 

ensemble of data-driven models built using Kernel Regression (KR) methods. A local 

procedure which uses the historical performance of the physical and data-driven models is 

adopted to aggregate the different model outcomes. The proposed hybrid ensemble-based 

approach is verified on real measurements performed on offshore choke valves located 

topside at different wells. 
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1. Introduction 

Health assessment of choke valve in offshore oil platforms is a major issue to grant high 

production and low maintenance costs. Physics-based and data-driven models can be used 

for health assessment [1]. In physics-based models, the relationship between the measured 

parameters and the health state of the system is derived from a combination of first 

principles and empirical laws. On the other side, data-driven models do not have any 

physical basis, but are purely mathematical representations of relationships between 

parameters built considering a set of representative data. Physics-based models rely on a 

deep understanding of the system behaviours and detailed knowledge of geometry, 

material properties and other characteristics of the system. Also, their development 

requires substantial engineering time and in many cases is not capable of accurately 

reproducing system non-linearities [2]. On the other hand, data-driven approaches are 

only accurate when applied to the same, or similar, operating conditions for which data 

have been collected. 

     In practice, it is usually difficult to decide whether one particular model is more 

effective than another in the entire operational range of interest. According to [3], it is 

agreed that no single method is best in every situation: real-world problems are often 

complex in nature and any single model may not be able to capture different patterns 

equally well. By combining different methods, the problem of model selection can be 

bypassed. In particular, the combinations of physics-based and data-driven models are 

usually termed hybrid models. Interesting overviews of these methods can be found in 



 

 
 

 

 

[4,5]. Hybrid modelling has gained considerable interest in the field of chemical 

engineering due to the lack of accurate physics-based models of complex chemical 

reactions. In the field of prognostics and health management (PHM), given the variety of 

information and data sources and types, this approach is becoming more and more 

attractive [6]. The result of combining the estimates of physics-based and process sensor 

data-driven PHM methods is to balance out their different errors and to augment the 

robustness and interpretability of physics-based models with the sensitivity of process 

sensor data-driven models [7]. The modelling framework underpinning hybrid methods is 

certainly more complicated, but offers clear advantages on the reliability and accuracy of 

the predictions. 

     In this paper, we extend the work presented in [8] by developing and applying an 

hybrid model for assessing the erosion level of choke valves located topside at wells on 

the Norwegian Continental Shelf [9,10]. The difference between the actual valve flow 

coefficient and its theoretical value is traditionally retained as the indicator of the choke 

valve erosion state. This health indicator is analytically calculated on a daily basis as a 

function of two measured parameters (the opening and the pressure drop through the 

choke) and three allocated parameters (oil, gas and water flow rates), whose values are 

obtained from a physics-based model, as a function of the measured total production from 

a number of wells and of physical parameters (e.g., pressures and temperatures) related to 

the specific well. In practice, the allocated values of oil, gas and water flow rates 

indicators are affected by large inaccuracies and uncertainties, so that the resulting choke 

valve health state indicator is very noisy and lacks the physical monotonicity expected in 

the erosion process [11]. In this work, we consider the opportunity of combining the 

physics-based model and an ensemble of Kernel Regression (KR) models. KR is a data-

driven regression algorithm estimating the parameters of a test pattern based on its 

distance from the training patterns [12]; an ensemble of multiple KR models is used to 

avoid the need of selecting the optimal model and to reduce the uncertainty of the estimate 

[11]. Diversity is injected in the ensemble by differentiating the predictor parameters for 

each KR model. The aggregation of the outcomes of the KR models and of the physics-

based model is performed taking into account the single model performance on historical 

patterns closed to the test pattern. This approach can be found in literature under the name 

of local fusion [13]. 

     The performance of the hybrid approach is evaluated on real data collected during the 

operation of 27 choke valves in 5 different wells, and compared to those of the physics-

based model and the KR ensemble. 

     The paper is framed as follows. The traditional procedure for the construction of a 

health indicator assessing the choke valve erosion state is presented in Section 2; in 

Section 3, an hybrid modelling strategy is proposed to improve the accuracy of the 

allocated flow rates; Section 4 shows the results of the application of the method to the 

choke valves dataset; finally, conclusion and potential perspectives for future work are 

drawn in Section 5. 

 

2 Choke Valve Erosion Assessment 

In oil and gas industries, choke valves are normally located on top of each well and are 

used to balance the pressure on several wells into a common manifold to control flow 

rates and protect the equipment from unusual pressure fluctuations.  
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     In Figure 1, left, a choke valve is sketched. The throttle mechanism consists of two 

circular disks, each with a pair of circular openings to create variable flow areas. One of 

the disks is fixed in the valve body, whereas the other is rotated either by manual 

operation or by an actuator, to vary or close the opening. For large pressure drops, the 

well streams which contain gas, liquid and sand particles can reach 400-500 m/s and 

produce heavy metal loss mainly due to solids, liquid droplets, cavitation and combined 

mechanisms of erosion-corrosion, resulting in choke lifetimes of less than a year. In 

Figure 1, right, the picture of an eroded choke valve is shown. The main parameters 

determining erosion potential in the chokes are the fluid velocity and the resulting angle of 

sand through the choke discs. Erosion management is vital to avoid failures that may 

result in loss of containment, production being held back, and increased maintenance 

costs. Moreover, several chokes are located subsea, where the replacement cost is high. 

Then, the need has increased for reliable models to estimate erosion and lifetime of choke 

valves, in order to allow implementing effective maintenance strategies [14]. 

 

Figure 1: Typical Choke Valve of Rotating Disk Type (http://www.vonkchokes.nl/) (left). Example 

of eroded choke disk (right). 

A common indicator of the valve flow capacity is the flow coefficient CV, which is 

related to the effective flow cross-section of the valve. For a specific valve opening θ, 

erosion produces a gradual increase of the valve area available for the flow transit, thus 

determining an increase of CV (eq. 1). For this reason, knowing the value of the flow 

coefficient is fundamental for assessing the health state of the choke. During operation, 

CV is not directly measured but computed, for a two-phase flow, as [14]: 
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where gwom ,,
  are the oil, water and gas flow rates, respectively, mmf gwogwo  /,,,,   the 

corresponding fluid fractions and ρo,w,g the corresponding densities, ρmix the mixture 

density, gwotot mmmm    the total mass flow rate of the oil-water-gas mixture, J 

the gas expansion factor, Fp(θ) the piping geometry factor accounting for the geometry of 

the valve/pipe reducer assembly and ΔP the pressure drop through the choke. Eq. (1) and 

the values of ρo,w,g, J and Fp(θ) are derived from fluid dynamics; parameters ΔP, θ, om , 

wm , and gm  are measured or allocated during operation, i.e., calculated by a physics-

based model of the piping process. 



 

 
 

 

 

     For a correct assessment of the choke erosion state, it is fundamental to obtain frequent 

and reliable measurements or estimates of the parameters ΔP, θ, om , wm , and gm  used 

to compute the flow coefficient CV. Nevertheless, only the pressure drop ΔP across the 

choke and the valve opening θ are measured during standard daily inspections (SI), 

whereas measures of water, oil and gas flows rates are taken downstream of the choke 

only during well tests (WT) with a multiphase flow separator. On a daily basis, the values 

of om , wm  and gm  are allocated for a single well by a physics-based model accounting 

for the measured total production from a number of wells and on physical parameters 

(pressures and temperatures) related to the specific well. Figure 2 schematizes the 

procedure for the estimation of the flow coefficient. 

 

 
Figure 2: Schematic of the Procedure for the Estimate of Cv. 

The value of the parameters in input to the physics-based model is not recorded. Only the 

values of the choke-related parameters ΔP, θ, om , wm , and gm  collected during WT 

and SI have been recorded during a protracted period for five different wells. Table 1 

outlines the available information: the daily allocated values ],,[mPB PB
g

PB
w

PB
o mmm    

of the flow rates, the daily measured value of ΔP and θ and the real values of om , wm , 

and gm   measured during well tests.  

Table 1: Available Information 

 
Standard Inspections 

(SI) 
Well Test Inspections (WT) 

ΔP and θ Measured Measured 

om , wm  and gm  Allocated Measured 

 

3 Improving the Quality of the Allocated Parameters: a Hybrid Modeling 

Approach 

Since the allocated values of om , wm , and gm  are noisy and unreliable [11], an on-line 

procedure aiming at improving the accuracy of their estimates is here proposed. The 
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procedure is based on a hybrid approach combining the physics-based model with an 

ensemble of data-driven models which learn from a training set the relationships between 

the parameters and provide estimates of om , wm , and gm  in output. 

     According to [15], there are two major approaches to hybrid modelling: the series and 

the parallel approaches. In the series approach (Figure 3, upper), data-driven models are 

used to model parameters of the physics-based model. In the parallel approach (Figure 3, 

bottom), data-driven models are trained to predict the residuals not explained by the 

physics-based model. 

 

 
Figure 2: Schematic of Series (upper) and Parallel (bottom) Hybrid Approaches. 

     In this work, the values 
PBm  provided by the physics-based model and the two 

measured parameter ΔP and θ are fed in input to a data-driven model, trained using the 

values of the five parameters ΔP, θ, om , wm , and gm  collected during WT. The output 

of this data-driven model is a new empirical estimate 
DDm  of the allocated parameters 

which is, then, aggregated to the output of the physics-based model, 
PBm , through a 

hybrid ensemble (HE) approach. In practice, a parallel hybrid approach combining the 

outcomes 
PBm  of the physics-based model with the outcomes 

DDm  of the data-driven 

model is used to obtain improved estimates of the allocated flow rates 
HEm ; these 

allocated values 
HEm  are, then, used by another physics-based model estimating the flow 

coefficient in a series hybrid configuration (Figure 3). 
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Figure 3: Schematic of the Proposed Hybrid Modelling Approach. 

3.1 Data-Driven Model 

Different data-drive techniques such as those based on the use of principal component 

analysis [16], artificial neural networks [17], support vector machines [18] have been used 

for estimating physical parameters. In this work, we resort to nonparametric Kernel 

Regression models [12] to build data-driven models for improving the quality of the 

estimate of the allocated values of oil, water and gas mass flow rates. Compared to 

parametric methods, which are defined by sets of parameters and predefined functional 

relationships, nonparametric methods have the advantage that they do not require any 

assumption about the mathematical structure of the regression model. 
     KR modeling develops local models in the neighborhoods of the test patterns they are 

fed with. Estimates are obtained as weighted averages of the training patterns, with 

weights decreasing as the distance between the test and the training patterns increases. In 

practice, training patterns closer to the test pattern are conjectured to be more similar to 

the test pattern, thus giving the most relevant contribution to its estimate. 
     Let Xtrn={xk}, k=1,…, Ntrn be the training set used for the estimate of the test pattern 

xtst. To develop the KR model, the input parameters used by the physical-based model for 

the estimate of the flow coefficient are divided into a predictor group (PG) and a response 

group (RG) (with the two groups possibly overlapping). For the estimate of xtst, the KR 

algorithm assigns to each training pattern xk a weight wk=K[dPG(xtst,xk)], where K is the 

kernel function which produces the weight for a given distance dPG(xtst,xk)], between the 

training and the test patterns, computed considering only the parameters of the predictor 

group. The estimate 
RG
tstx̂  of the RG parameters of the test patterns is obtained as a 

weighted average of the RG parameters of the training patterns: 
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     The kernel function K typically assigns large weights to the training patterns with 

small distances from the test pattern and vice versa. Among the several functions which 

satisfy this criterion, the Gaussian kernel is commonly used [11]: 
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where the parameter h defines the kernel bandwidth and is used to control how close 

training patterns must be to the test pattern to be assigned a large weight. In order to 

compute dPG, the PG parameters are rescaled in the range [0, 1]. 
     In the present case study, the choices of the training dataset and the predictor 

parameters are critical. In principle, both the WT and the SI patterns can form the training 

dataset; in this work, only the WT are used for training the KR models, due to their 

greater reliability. In particular, only the patterns concerning the same well of the current 

test pattern xtst are considered. This is done since the well behavior and the relationships 

among the observed parameters can vary from one well to another; as a consequence, 

patterns collected from other wells do not provide useful information on the behavior of 

the well under study. In practice, when estimating the test pattern xk for a specific well w, 

only the patterns xj, j=1,…, k-1 previously collected during the life of the w-th well are 

retained as training patterns. 
     Concerning the predictor parameters, many different models can be developed by 

differentiating the parameters used to compute the distances in the KR algorithm. In this 

work, the four models listed in Table 2 have been used for the construction of the 

ensemble. The choice of the four sets of predictor parameters is motivated by the quality 

of the information conveyed by the different parameters: the reliable parameters θ and ΔP 

are used in all four models. Furthermore, we have verified that a model using as input 

parameters only the pressure drop ΔP and the opening θ performs very poorly in the 

estimate of the mass flow rates, and, thus, it has not been considered. 

Table 2: Predictor Parameters used in the Four Different Models of the Ensemble. 

Model 
Predictor Parameters 

ΔP θ om  wm  gm  

1 X X X X X 

2 X X X   

3 X X  X  

4 X X   X 

     In order to verify the performance of the different models, we have considered a test 

set made by the NWT SI patterns collected during the same day of a well test for which an 

accurate measure of the process parameters under estimation is available. The total 

number of available well tests patterns used for training and the number of well tests used 

for testing is given in Table 3. Patterns collected during choke valve degradation from five 

different wells are considered. Since degraded valves are replaced, patterns collected for a 

single well refer to different chokes. 

 

 

 



 

 
 

 

 

Table 3: Number of Training and Validation WT Patterns for each Choke. 

Well NWT Ntst 

1 87 68 

2 96 59 

3 39 20 

4 96 54 

5 71 36 

     Finally, the response group is formed by the unreliable parameters that need to be 

estimated ],,[mx gwo
RG
k mmm   . 

     It has been verified that the performance of the single models depends on the 

characteristics of the parameter to be estimated and the intensity of the noise affecting the 

input pattern, so that it is difficult to identify a single best model (Baraldi et al., 2011), . 

Moreover, due to the great uncertainty affecting the input pattern, a robust approach is 

required to estimate the output. Using all models, within an ensemble approach, in a 

parallel configuration with the physics-based model (Figure 5), allows both overcoming 

the dilemma of selecting the optimal model, and increasing the robustness of the final 

estimate, since the diverse outcomes average out their errors. The result is a hybrid 

ensemble of five models, four KR and one PB. 

3.2 Aggregation 

Figure 5 shows that the estimates of the flow rates provided by the four KR models and 

the physics-based one have to be aggregated. Different techniques for the aggregation of 

the outcomes of the individual models into the ensemble outcome have been proposed in 

the literature, from statistics methods like the simple mean and the median [9,16] to 

weighed averages of the model outcomes based on the global or local performances of the 

individual models [8]. In the latter ones, the aggregation is guided by the local 

performance of each model, i.e., its reconstruction accuracy on patterns of training similar 

(and for this reason also called neighbors) to the test pattern. These methods rely on the 

idea that each model can perform well in some regions of the parameter space and poorly 

in others. In this work, local performance-based techniques are applied for estimating the 

mass flow rates. This allows exploiting the four data-driven models only when they 

actually outperform the physics-based model, thus avoiding affecting its accuracy when it 

actually outperforms the KR models. 
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Figure 4: Schematic of the Hybrid Ensemble of Models. 

 

For each parameter p to be estimated, the local performance aggregation approach here 

adopted assigns to the generic model b of the ensemble a weight bpw ,  proportional to the 

model performance evaluated on the Nn=3 training samples closest to the test pattern tstx . 

The estimation error made by model b in providing the estimate bp
ix

,ˆ  of the p-th 

parameter is, then, obtained by comparing bp
ix
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, ; the local weight bpw ,  assigned to model b is taken as the inverse of its mean 

square estimation error over the Nn patterns closest to tstx
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where the parameter h defines the kernel bandwidth and is used to control how close 
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tstx

,ˆ . 

 

∑

∑
4

1

,

5

1

,
,

ˆ

ˆ





m

bp

b

bp
tstbp

p
tst

w

xw

x                (5) 

Ensemble of

KR models

Mod.1
Mod.2
Mod.3
Mod.4

Physics-based

Model for mass 

flow rate estimates

PB estimate (                   )

Flow 

coefficient

estimate (Cv)

U

HE estimate (         )

Choke-related

measured parameters

(ΔP and θ)

Well-related

measured parameters

Total production 

HEm

Physics-based model for Cv estimate

mixp

tot
V

PF

m
C




27.3



5mmPH  

1m

2m

3m
4m

DD estimates (         )DDm



 

 
 

 

 

4 Results 

The hybrid approach is here applied to the choke valve case study to obtain estimates of 

the mass flow rates om , wm  and gm . Models performances are evaluated by 

considering the root mean square error (RMSE) between the estimates of the mass flow 

rates om , wm  and gm  and the corresponding well test measurements, normalized in the 

range [0,1]. The performance of the hybrid ensemble is compared with those of the 

physics-based model and the KR ensemble. 

Table 4 compares the RMSE of the physics-based model with respect to that obtained by 

the data-driven ensemble. 

Table 4: Comparison of the Performance of the Hybrid Ensemble with that of the Physics-based 

Model and of the Data-driven Ensemble 

 

 RMSE (10-2) 

 Well 1 Well 2 Well 3 Well 4 Well 5 average 

Physics-based 7.118 2.742 1.056 3.248 5.796 4.435 

KR ensemble 4.438 3.892 3.395 4.208 6.277 4.441 (+0.1%) 

Hybrid ensemble 3.877 2.984 1.194 3.665 5.480  3.623 (-18%) 

 
     Results show that the KR ensemble outperforms the physics-based model only in the 

case of the first well, producing a 38% reduction of the RMSE; in all the other four wells 

the physics-based models generates more accurate estimates than the ensemble. The 

hybrid ensemble mediates between the physics-based and data-driven models by 

conserving, and even enhancing, the good performance in case of well 1 and well 5 and at 

the same time keeping the error low also in the case of the other wells. 

     In Figure 6, the measured values of oil, water and gas flow rates for the test patterns 

are compared with the estimates obtained by the physics-based model and by the hybrid 

ensemble. The obtained results show that the hybrid ensemble and the physics-based 

model estimates are in general very similar except for the oil flow in well 1, where the 

ensemble significantly outperforms the physics-based model. This confirms that the 

hybrid ensemble is able to distinguish when the physics-based model works properly and 

when, instead, the greatest weight must be assigned to the data-driven models of the 

ensemble. 

5    Conclusions 

In this work, we have considered the problem of improving the quality of the estimates of 

some process parameters used in offshore oil platforms for assessing the health state of 

degrading choke valves. In order to improve the estimates provided by a physics-based 

model, we have proposed a hybrid method based on an ensemble of models. In practice, 

the physics-based model is combined with multiple data-driven models based on Kernel 

Regression. In order to inject diversity into the models of the ensemble, the data-driven 

models consider different input parameters. The aggregation of the outcomes of the 

different models is performed by a local performance-based technique. 
     The results obtained from the application of the approach on several degrading choke 

valves have confirmed that in those circumstances in which the physics-based model is 

inaccurate, an ensemble approach with data-driven models can increase the accuracy of 
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the estimates and that the hybrid ensemble correctly favors the most accurate between the 

data-driven and physics-based models in the ensemble. 
     The physics-based, KR and ensemble estimates derived in this paper need to be 

complemented with a measure of uncertainty. A traditional measure of this uncertainty is 

the average error of the models on a validation dataset. For the physics-based estimates 

this can be obtained by comparing the allocated parameters with the corresponding values 

obtained during well tests. This would provide an estimate of the average error over 

different input data and working conditions. Local models relating the uncertainty to the 

input data could provide a more accurate quantification of the uncertainty of the specific 

estimates. The uncertainty of KR estimates is typically estimated using bootstrapping and 

cross validation; more advanced approaches may resort to the Dempster Shafer theory and 

fuzzy numbers for the treatment of data and models uncertainty. Finally, the uncertainty 

of the ensemble estimates has to be obtained by aggregating the uncertainties of the 

different model. This is likely to be a challenging task, since the estimates of the different 

models are not independent. Future work will be devoted to the reliable quantification of 

the uncertainty of the hybrid ensemble estimates. 

 

Figure 5: Comparison of the Measured Values of Oil, Water and Gas Flow Rates with the 

Estimates obtained by the Physics-based Model and the Hybrid Ensemble. 
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