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Abstract

We investigate the full three-dimensional instability mechanism arising in the wake of an hemispherical roughness element
immersed in a laminar Blasius boundary layer. The inherent three-dimensional flow pattern beyond the critical Reynolds number is
characterized by coherent vortical structures called hairpin vortices. Direct numerical simulation is used to analyze the formation
and the shedding of hairpin packets inside the shear layer. The first bifurcation characteristics are investigated by global stability
tools. We show the spatial structure of the linear direct and adjoint global eigenmodes of the linearized Navier-Stokes operator and
use structural sensitivity analysis to locate the region where the instability mechanism acts. Results show that the ”wavemaker”
driving the self-sustained instability is located in the region immediately past the roughness element, in the shear layer separating
the outer flow from the wake region.
c© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of ABCM (Brazilian Society of Mechanical Sciences and Engineering).
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1. Introduction

The effect of surface roughness on the transition of boundary layers from laminar to turbulent flow is an important
topic in fluid mechanics which has received and still receives remarkable attention. In particular, transition on surfaces
with large roughness protrusion height appears to be characterized by physical mechanisms that are different from
those acting for lower roughness protrusion height and have yet not been clarified. The presence of small roughness
elements at the wall produces small flow disturbances which linearly amplify while being transported downstream,
eventually attaining the amplitude necessary to cause transition at a relatively large distance from the roughness ele-
ments that gave rise to them. Such disturbances are of two general types: Tollmien-Schlichting waves, well visible in
experiments characterized by a two-dimensional roughness distribution2, or longitudinal vortices inducing a transient
growth of streamwise streaks of alternating high- and low-momentum fluid, which may grow enough to cause transi-
tion before having the possibility to decay3. Recent experiments1 have also highlighted the possibility that properly
shaped roughness may delay transition.
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Fig. 1. Flow configuration, frame of reference and computational domain P (not in scale) are depicted using: (a) side view and (b) top view. The
computational domain P, delimited in the figures by a dotted line, extends from x = −Lin

x to x = Lout
x in the streamwise direction, from z = 0 to

z = Lz in the wall-normal direction and from (−Ly ≤ y ≤ Ly) in the spanwise direction.
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Fig. 2. Perspective view of the unsteady supercritical flow at Rek = 450 and k/δ∗k = 2.62. Upstream velocity streamlines show the structure of the
base flow near the hemispherical roughness element. The structure of hairpin vortices is depicted using iso-contour of pressure field. See Tab. 1
for further details of simulation parameters.

The transition scenario described above, however, only applies if the roughness amplitude is sufficiently small. On
the other hand, when the protrusion height is large enough, transition suddenly appears downstream of an individual
roughness element. The mechanism involved in this process is not yet understood. In an effort to shed light on the
transition mechanism associated with large-amplitude surface roughness, several experiments have been carried out
in the past (see e.g. Downs et al. 6 or Ergin et al. 4). The results obtained have shown that if the Reynolds number
based on the roughness height exceeds a critical value, then transition occurs immediately past the roughness element;
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conversely, if the critical value is not exceeded, the scenario based on the transient grow mechanism mentioned above
is dominant and transition takes place farther downstream. These experimental data as far back as in the ’50s produced
empirical correlations based on the roughness-based Reynolds number. These criterions are still used in practice to
predict transition in the wake of isolated three-dimensional roughness elements. Although transition correlations are
useful from a practical viewpoint, they are not able to reveal the detailed mechanism of transition, nor do they assist
in designing transition control strategies besides simply placing design limits on acceptable roughness levels.

The aim of the present work is to provide an evidence that the transition process past a roughness element can be
linked to a global (self-sustained) instability mechanism.

2. Problem formulation

We investigate the stability features of an incompressible Blasius boundary layer flow past an hemispherical ob-
stacle. To ease comparisons with experimental investigations made by Klebanoff et al. 8, we have chosen to adopt a
similar geometrical configuration.

In particular, we compare the critical Reynolds number with the one obtained by experiments in8,10 and by direct
numerical simulations in9,7. The problem is formulated in a standard cartesian coordinate system (x, y, z), whose
origin is taken at the centre of the hemisphere as shown in Figure 1.

The fluid motion obeys the unsteady Navier-Stokes equations that read

M {U} = 0, (1a)
∂U
∂t
+ C (U) {U} = −G P +

1
Re

D {U} (1b)

where P ∈ R is the reduced pressure scalar field and U ∈ R
3 is the velocity vector with components U = (U,V,W).

The gradient and divergence operators acting on the velocity field are given by G = ∇ ∈ R3×1 and by M = ∇· ∈ R1×3

respectively. Convective and diffusive operators, instead, are defined as C (U) {U} = (U · ∇)U ∈ R
3×3 and D {U} =

∇2U ∈ R3×3.
Equations (1) are made dimensionless using the total heigth k of the roughness element as the characteristic length

scale and the velocity Uk of the incoming uniform stream that would exist in the boundary layer at the height k without
roughness8. The Reynolds number is thus defined as Rek = Ukk/ν, with ν the fluid kinematic viscosity.

Experimental data5 and numerical simulations7 have shown that the topology of the flow around an isolated three-
dimensional roughness element in a boundary layer consists of a steady horseshoe vortex that wraps around its up-
stream side and trails two steady counter-rotating leg vortices downstream. At sufficiently high values of the Reynolds
number, unsteady hairpin vortices originate periodically from the separated region just behind the roughness element
(see figure 1). The observation of vortex shedding in the wake of moderate-to-large-height elements supports the
idea that transition beyond the critical Reynolds number is related to a global instability of the wake flow past the
roughness element.

3. Numerical method

We use the spectral element method (SEM) implemented in Nek5000 to solve the governing equations (1). Thus,
the unknowns (U, P) are spatially discretized onto PN−PN−2 spectral elements using Lagrange orthogonal polynomials
on Gauss-Lobatto-Legendre (GLL) nodes. The temporal discretization of the momentum equations has been achieved
using a semi-implicit splitting scheme. For further details, we refer to Tufo & Fischer11.

The system of differential equations (1) is closed using no-slip boundary conditions at the roughness surface and at
the flat plate (Ωwall), standard outflow conditions at the outlet (Ωoutlet) and a fully developed Blasius profile, character-
ized by a variable boundary layer thickness δ∗in, at the inlet (Ωinlet). Finally, we adopt symmetry boundary conditions9

at the upper side of the computational domain (Ω∞) and at the lateral boundaries (Ωsym).
A steady base-flow field cannot be reached simply using DNS when the Reynolds number exceeds its critical

value. In order to obtain a steady base flow on which perform a stability analysis we implemented in Nek5000 a novel
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stabilizing procedure called ”boostconv”. Such procedure is similar to a GMRES but with a continuous update of the
Krylov subspace. The stabilized solution at a given time step is obtained by correcting the Nek5000 solution with a
linear combination of the residuals at the previous time steps. The procedure has been implemented inside Nek5000
in a way to maintain the scalability of the code on heavily parallel machines. This new stabilization procedure works
well to track both steady and unsteady bifurcations. An example of its use can be found in Carini et al.12.

The eigenvalues and eigenmodes of the linearized (direct and adjoint) Navier-Stokes operator characterize the
long-time dynamics of the perturbation field. In this context we look for solution of the linearized equations in the
form {u, p}(x, y, z, t) = {û, p̂}(x, y, z) exp (γt), where the real part of the complex eigenvalue γ = σ ± iω represents
the temporal growth rate of the disturbance, while its imaginary part is the eigenfrequency of the direct {û, p̂} global
mode. A similar decomposition is used to calculate the adjoint {û†, p̂†} global mode. All the eigenproblems involved
in this work are solved by the Implicitly Restarted Arnoldi Method implemented in ParPACK13 using the linearized
(direct and adjoint) time-stepper available in Nek5000 code (see Bagheri14 for further details).

The physical domain is decomposed in multi-block spectral sub-elements and the several grids are build symmetric
with respect to the y-axis. In order to ensure that the spatial resolution is sufficient, several numerical convergence
tests has been carried out. The convergence and the validation of the present numerical approach is reported in table
1.

We compare the results obtained using two computational domains: the first one is characterized by Lin
x = 7R, Lout

x =

30R, Ly = 10R, Lz = 8R (this domain will be referred to as M1), while the second (larger) domain is given by
Lin

x = 9R, Lout
x = 40R, Ly = 12R, Lz = 10R (named M2). Here R represents the radius of the hemisphere. The mesh

M1 is discretized in space on a total of 8971 spectral elements having a polynomial expansion of 10 × 10 × 10; M2,
instead, has 16987 elements with the same polynomial order. The choice of this polynomial basis involves 1000 points
per element for a 3D case that leads to 8′971′000 total points for M1 and 16′987′000 total points for M2. In both cases
we cluster the elements both in the wall-normal direction near the wall and along the plate near the roughness element.
From table 1, it is clear that the domain M1 is sufficient for accurately evaluating the most unstable eigenvalue growth
rates, eigenfrequencies and the Strouhal number extracted from DNS.

Table 1. Convergence results. We show the effect of the size of the computational domain on the complex eigenvalue γ and on the Strouhal number
extracted from DNS at the supercritical Reynolds number Rek = 450 with k/δ∗k = 2.62 and compare our results with those obtained by Tufo et al. 9.
The Strouhal number (for DNS) reported here is obtained directly from a probe located in (x, y, z) = (5R,R,R), i.e. in the region past the roughness
element. (S. Direct=Global Stability analysis for direct eigenproblem, S. Adjoint=Global Stability analysis for adjoint eigenproblem)

M1 M2 err(%)
Type σ S t = ωk

2πUk
σ S t = ωk

2πUk

|γM1 |−|γM2 |
|γM2 |

S. Direct +8.7148 × 10−2 0.1659 +8.3329 × 10−2 0.1653 1.23%
S. Adjoint +8.7148 × 10−2 0.1659 +8.3329 × 10−2 0.1653 1.23%
DNS (unstable) 0.1685 (unstable) 0.1684 −

Tufo et al. 9 (unstable) ≈ 0.168 (unstable) ≈ 0.168 −

4. Results

In this work, we have performed a set of 3D direct numerical simulations to compute the flow characteristics for
the case k/δ∗k = 2.62 at different Reynolds numbers. We chose this value of k/δ∗k and the (hemispherical) shape of the
roughness element to have a direct and easy comparison with the experimental results provided by Klebanoff et al. 8.
The unsteady equations have been advanced in time until either a steady flow or a periodic flow was obtained. As
the Reynolds number is increased, we observe the occurrence of a limit cycle characterized by the periodic shedding
of hairpin packets inside the boundary layer. The flow becomes unsteady for values of the Reynolds number around
Rek ≈ 450. At this value the flow is already periodic and figure 1 shows a snapshot of the computed supercritical field.
The simulation was advanced in time until a perfectly periodic flow was obtained. We use iso-contours of the pressure
field to visualize hairpin vortices and velocity streamlines to show the distribution of the velocity near the hemisphere
and in the wake region. In table 1 we show the main frequencies corresponding to the shedding of these hairpin
packets obtained from the power spectrum analysis of the instantaneous data sampled at (x, y, z) = (5R,R,R). This
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Fig. 3. Contour plot of the real part of the most unstable direct eigenmode for Rek = 450, k/δ∗k = 2.62.

laminar periodic symmetric vortex shedding has been observed also in experiments by Acarlar & Smith10, Klebanoff
et al. 8 and in numerical simulations by Tufo et al. 9. Such flow behavior suggests a possible link with the existence
of a global instability that drives the flow to a limit cycle. To corroborate this hypothesis, we perform a TriGlobal
stability analysis on top of the stabilized steady base flow at Rek = 450. This was calculated using the previously
mentioned stabilizing procedure ”boostconv”. The eigenvalue problems were solved by using the ParPACK which
was coupled with the solvers of the linearized direct and adjoint Navier-Stokes equations present in Nek5000. The
computed leading direct global mode is depicted in figure 3.



178   V. Citro et al.  /  Procedia IUTAM   14  ( 2015 )  173 – 181 

Fig. 4. Comparison of Strouhal behavior from experimental data by Klebanoff et al. 8. The red circle indicates the critical frequency value obtained
in the present numerical simulation.

The maximum of both streamwise, wall-normal and spanwise components is found downstream of the roughness
element, almost at the end of the computational domain. To precisely locate where the perturbation reaches its
maximum amplitude additional simulations have to be performed on longer domains. In fact, as for the cylinder case,
the global mode increases exponentially in the streamwise direction, reaches its maximum and then slowly decays.
However, even if a short domain was used for the present study, the computed eigenvalues are accurate since, as we
will discuss, the instability mechanism is strongly localized behind the roughness element (see Giannetti & Luchini15

for further details). Convergence tests performed on this configuration corroborate our statement. The frequency of
the leading eigenmode is found to agree very well with DNS data (see table 1).

Moreover the critical Reynolds number determined by the stability analysis compares well with the transition
threshold determined in the experiments. As an example, figure 4 shows the experimental data by Klebanoff et al. 8

and the critical data obtained in the present study.
In addition to the direct calculations, we also computed the adjoint eigenmode (see Schmid & Henningson3 and

Luchini & Bottaro16 for further details) of the linearized Navier-Stokes operator. As we can observe in figure 5, the
adjoint mode is spatially separated from the direct one, a feature which is due to the strong non-normality of the
linearized Navier-Stokes operator. The different components of the adjoint mode reach their maximum magnitude
close to the roughness element. The adjoint field gives interesting information on the receptivity of the mode to both
initial conditions and to momentum forcing. Results show that the most receptive regions are those surrounding the
hemisphere. In order to locate the instability mechanism we finally performed a structural sensitivity analysis as
explained in15. In particular, in figure 6a, we show iso-surfaces of the spectral norm of the sensitivity tensor

S(x, y, z) =
û†(x, y, z) û(x, y, z)∫

P
û†(x, y, z) · û(x, y, z)dV

(2)

(where û and û† are respectively the velocity components of both the direct and the adjoint mode). As can be noted, the
structural sensitivity is highly localized in a region just behind the roughness element, across the surface separating the
outer flow from the wake region. This can be more easily observed in figure 6b where a contour plot on the symmetry
plane is shown. The fact that the instability mechanism (”the wavemaker”) is localized in a region of strong shear
suggests that the instability could be related to a feedback mechanism involving Kelvin-Helmoltz waves. Parametric
computations for different values of k/δ∗k and a WKBJ analysis of this configuration are in progress and results will
be reported in future publications.
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Fig. 5. Contour plot of the real part of the most unstable adjoint eigenmode for Rek = 450, k/δ∗k = 2.62.
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(b) Contour plot of the Structural sensitivity field on the plane y = 0.

Fig. 6. The structural sensitivity field has been calculated for Rek = 450, k/δ∗k = 2.62.
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5. Conclusions

The analysis presented in this work confirms the existence of a self-sustained mode in the wake of a hemispherical
roughness element of large protrusion height invested by a Blasius boundary layer. Direct numerical simulations,
stability and sensitivity analyses were performed to better understand the characteristics of the resulting flow. Results
are in agreement with previous experimental data and show that when the Reynolds number is increased beyond a
critical value the flow undergoes an Hopf bifurcation. The self-sustained mode giving rise to the periodic shedding of
hairpin vortices has been found by computing a global stability analysis. The spatial characteristics of both direct and
adjoint mode have been analyzed and the instability mechanism localized by using a structural sensitivity analysis.
Results show that the instability mechanism is highly localized in the shear layer separating the outer flow region from
the wake region.
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