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Abstract 

Purpose – This paper presents a method for the tolerance analysis of mechanical assemblies that is suitable to 

nonlinear problems where explicit functional equations are difficult or even impossible to write down. Such 

cases are usually modelled by linearised tolerance chains, whose coefficients (or sensitivities) are calculated 

from assembly data. 

Design/methodology/approach – The method is based on the free-body diagrams of force analysis, which are 

shown to be related to the sensitivities of linearised functional equations. Such an analogy allows the conversion 

of a tolerance chain into a corresponding static problem, which can be solved by common algebraic or graphical 

procedures. 

Findings – The static analogy leads to a correct treatment of tolerance chains, as the analysis of several 

examples has confirmed by comparison to alternative methods. 

Research limitations/implications – Currently, the method has only been tested on two-dimensional chains of 

linear dimensions for assemblies with nonredundant kinematic constraints among parts. 

Practical implications – The proposed method lends itself to ready application by using simple operations with 

minimal software assistance. This could make it complementary to current methods for calculating sensitivities, 

which are mathematically complex and require software implementation for deployment in industrial practice. 

Originality/value – Analogy with force analysis, which has not been previously highlighted in the literature, is 

a potentially interesting concept that could be extended to a wider range of tolerancing problems. 
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1 Introduction 

Tolerance analysis is an important task in the design of mechanical assemblies and has received 

considerable attention in the literature (Shen et al., 2005; Shah et al., 2007; Polini, 2009). Tolerance 

analysis generally consists of studying one or more tolerance chains, each of which associates a 

functional requirement on the assembly with a set of tolerances specified on individual parts; the 

mathematical model of a tolerance chain helps to detect situations where manufacturing errors 

allowed by part tolerances are likely to violate the required assembly tolerance. From this basic 

objective, however, the problem has been defined differently according to the needs of specific 

applications. Differences can involve properties of parts and assemblies (the geometry of the features 
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and relations), types of tolerance specifications (dimensional or geometric) and assumptions on 

tolerance stackup (worst-case or statistical). As a consequence, several methods have been proposed 

for solving tolerance analysis problems under different sets of assumptions. 

At the lowest level of complexity, the analysis includes only tolerances on part dimensions without 

considering deviations in geometric characteristics. At the expense of losing consistency with the 

principles of GD&T (Geometric Dimensioning and Tolerancing), tolerance chains are easier to model 

with explicit functional equations. One-dimensional tolerance chains, which apply to most cases 

encountered in design practice, involve linear relationships among dimensions and requirements and 

are easily solved by well-known charting procedures (Fischer, 2004). For two- or three-dimensional 

problems, however, tolerance chains are often nonlinear, and functional equations cannot be written 

explicitly for assemblies of moderate complexity. In these cases, a common approach consists of 

linearising the functional equations and calculating the sensitivities (i.e., derivatives of requirements 

with respect to dimensions) through algorithms based on geometric reasoning, which include the 

vector loop method (Chase et al., 1994; Chase et al., 1997; Gao et al., 1998) and methods based on 

small displacement torsors (Bourdet et al., 1995; Bourdet and Ballot, 1995; Ballot and Bourdet, 1997; 

Legoff et al., 1999). As it is impractical for a designer to perform the required calculations by hand, 

analytical procedures for evaluating sensitivities are usually implemented using software tools, which 

automate the calculations through direct CAD integration or from interactively built abstract 

geometric models (Prisco and Giorleo, 2002; Shen, 2003; Chiesi and Governi, 2003). 

When the analysis includes geometric tolerances, the above approach must be adapted to the diversity 

of the geometric characteristics of interest for mechanical assemblies. For a subset of tolerance types 

defined in the GD&T standards, such an extension is feasible for charting procedures and procedural 

linearisation methods, as proven in several papers (Chase et al., 1994; Giordano and Duret, 1993; 

Teissandier et al., 1999). Further approaches have been proposed for a comprehensive treatment of 

geometric deviations, including the transform chain method (Mantripragada and Whitney, 1998; 

Mantripragada and Whitney, 1999), the Jacobian-torsor method (Desrochers and Rivière, 1997; 

Desrochers et al., 2003), the method based on the representation model of Technologically and 

Topologically Related Surfaces (TTRS; Salomons et al., 1996), the method of virtual joints (Lafond 

and Laperrière, 1999), the variational method (Gupta and Turner, 1993; Sodhi and Turner, 1994) and 

the T-maps model (Shen et al., 2005; Shah et al., 2007). Relying upon software tools is again 

necessary and results in even more difficulties related to availability and learning. 

This work aims to discover shortcuts to solving nonlinear tolerance chains using simple calculations 

with minimal software assistance, which would be straightforward for most mechanical designers. 

The attempt may be beneficial for two-dimensional tolerance chains, which often cannot be solved 

through charting or explicit functional equations. The results presented in the paper show that such 

shortcuts exist due to a property of sensitivities that allows their calculation by a procedure similar to 

graphical force analysis. 
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The attempt to find analogies with other mechanical analysis problems is not new. In previous work 

from the team that developed the vector loop method (Huo, 1995; Faerber, 1999), an analogy with 

kinematic analysis was shown to allow the calculation of sensitivities from the relative velocities of 

the links in a mechanism. Although these studies investigate a more specific and complex variation of 

the tolerance analysis problem (sensitivities are time dependent due to the degrees of freedom of the 

mechanism), they also aim to exploit known graphical and numerical procedures as an alternative to 

computer-aided tolerancing tools. 

As will be discussed below, the proposed approach can only be applied in special cases involving 

three basic assumptions: a) dimensional tolerances, b) linear dimensions and functional requirements, 

and c) no kinematic redundancy in assembly relations. This paper will describe the analysis procedure 

and demonstrate its validity on several examples to show that such limitations may be acceptable for 

practical applications. 

2 Assumptions and definitions 

A two-dimensional tolerance chain is defined on an assembly whose properties can be described to be 

in an x-y plane for the purpose of analysis. This situation occurs in many cases where a representative 

section of the assembly drawing carries all the necessary information concerning the shape and 

dimensions of the parts as well as the contact relations between the parts. Although there are few 

limits to the diversity of the geometric configurations of an assembly, a basic restriction will be 

assumed for the functional dimensions and functional requirements: they will only be expressed as 

linear distances; the angular dimensions are excluded. The need to satisfy such a condition could 

require a preliminary revision of the part drawings to replace angular dimensions with linear 

dimensions at selected points (e.g., the extreme points of a straight line edge); a similar point-based 

simplification could also be made for the functional requirements defined by angular assembly 

dimensions. Additionally, contact relations will be assumed to be of any possible type that can occur 

among common planar primitives (mainly straight line segments and arcs of circles) including their 

tangency and intersection points. 

A tolerance chain is a representation of how a functional requirement x depends on a known set of 

functional dimensions di (i = 1, … n). Due to manufacturing errors in parts, each dimension has a 

deviation from its nominal value: 

( )niddd iii K,1   =−=∆  

As a consequence, a deviation will occur on the functional requirement: 

xxx −=∆  

In the general case defined by the above assumptions, evaluating ∆x is difficult because the functional 

equation 
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( )nddfx K,1=  

is nonlinear and possibly unknown. However, the equation can be linearised by a first-order Taylor 

approximation because the deviations on the dimensions are small compared to the nominal values: 
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Linearisation is feasible if one can evaluate the sensitivities of x with respect to the dimensions di: 
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In a tolerance analysis problem, the sensitivities allow for the evaluation of the resulting tolerance T 

on the requirement from the tolerances Ti assigned to the dimensions. Depending on the applications, 

this evaluation is often performed using either the worst-case (linear) or statistical (root-sum-square, 

RSS) stackup: 
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The problem investigated in this paper is how the sensitivities can be evaluated without explicit 

knowledge of the functional equation, using only reasoning on the geometric information that can be 

extracted from a planar geometric description of the assembly. 

3 Proposed procedure 

A clue to the evaluation of the sensitivities can be sought from well-known properties of equilibrium 

conditions on rigid bodies. Figure 1 shows a planar body whose degrees of freedom are constrained 

by three frictionless point contacts with adjacent bodies. Under an external force F applied to the 

boundary of the body, the three constraints react with the forces F1, F2, and F3. Due to the assumption 

of a rigid body and thus neglecting any force-induced deformations, the small displacements δ1, δ2, 

and δ3 of the contact points along the directions of the reaction forces cause a displacement δ of the 

point of force application, which is assumed to be positive if it is opposite to F. In accordance with the 

principle of virtual work for rigid bodies (e.g., Timoshenko and Young, 1983), the total work of the 

four forces equals zero because the body does not change its potential or kinetic energy, yielding the 

following relationship among the four displacements: 
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Therefore, displacements along directions of constraints contribute to a displacement along the 

direction of an external force in proportion to the corresponding reaction forces. This suggests a 

possible analogy with tolerance analysis. If the displacements δi are now considered to be 

manufacturing errors along the directions associated with the functional dimensions of a part, the 

resulting displacement δ can be viewed as the stackup of these errors given the contact relations with 

other parts. The sensitivities of δ with respect to the δi can thus be evaluated as the reaction forces of 

adjacent parts under a unit external force applied to the part at the same point and along the same 

direction as that defined for the error. If the directions associated with the contact points are not 

parallel to the functional dimensions, one can still suppose that the sensitivities can be evaluated as 

components of the reaction forces along the directions of the dimensions. 

Considering all the parts of an assembly, the propagation of small displacements through the contact 

points can be viewed in analogy to the transmission of reaction forces among parts in static 

equilibrium. The sensitivities of an error with respect to all functional dimensions defined for the 

assembly can thus be evaluated by analysing the equilibrium conditions on free-body diagrams 

created for individual parts. Each functional requirement will be generally associated with two unit 

external forces with the same line of action and opposite orientations, which are acting at reference 

points on the two parts that are directly involved in the requirement. 

The above considerations lead to the following procedure for the evaluation of sensitivities in a 

linearised two-dimensional tolerance chain, as outlined in Figure 2 (for the sake of simplicity, a trivial 

one-dimensional case is used): 

a) The requirement to be analysed is defined as a linear dimension along a certain direction, 

measured between reference points of two different parts (end parts). 

b) Two opposite unit forces are applied to the end parts at the same points and along the same 

direction of the requirement. Each force is oriented consistently with the corresponding arrow of 

the dimension that represents the requirement on the assembly drawing, although a different 

convention would have no influence on the subsequent calculations. 

c) The equilibrium conditions under the imposed forces are analysed by constructing free-body 

diagrams for all parts of the assembly. Each diagram includes the lines of action of the reaction 

forces associated with the contact relations, which are assumed to be frictionless and bilateral 

(i.e., with no loss of contact allowed between parts). 

d) Once reaction forces are evaluated for each part, they are decomposed along the directions of the 

functional dimensions. This operation yields the sensitivities of the requirement with respect to 

the same dimensions. The sign of each sensitivity depends on the orientations of the 
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corresponding force components, which act along the functional dimensions as axial loads act on 

one-dimensional structural members (positive tension and negative compression). 

The procedure is likely to sound familiar to mechanical designers, who are accustomed to using free-

body diagrams in the force analysis of planar structures and mechanisms. If the parts are 

underconstrained or exactly constrained, the reaction forces are easily calculated by writing 

translational and rotational equilibrium equations. In most cases, however, the free-body diagrams can 

be analysed by the graphical decomposition of forces, possibly with the aid of a 2D drafting tool so 

that the force intensities could be queried with better precision. This task is relatively simple even 

when the assembly is too complicated for an analytical calculation of the sensitivities. The limitation 

of nonredundant contact relations is common to all tolerance analysis methods that hold the rigid-

body assumption and do not account for part compliance. 

4 Validation 

A few conceptual examples are given below to demonstrate the proposed procedure and to verify its 

correctness through comparison with alternative methods. 

4.1 A basic example with explicit functional equation 

Figure 3a illustrates a simple two-dimensional tolerance chain, which has already been used as a test 

case in several papers on tolerance analysis (Marziale and Polini, 2009; Marziale and Polini, 2010). 

Two circular parts are in contact with each other and rest against the edges of a rectangular box. The 

requirement of interest is the distance x between the upper circle and the top edge of the rectangle. 

The selected dimensions are the radii r1 and r2 of circles (the more appropriate choice of diameters 

will be discussed later) and the lengths h and b of the rectangle edges. 

As shown in Figure 3b, the procedure begins by drawing an assembly diagram where two opposite 

unit forces F act on the end parts related to requirement x; the dimension line of x on the assembly 

drawing dictates the points, lines of action and orientations of the two forces. The free-body diagrams 

are then drawn for all parts to analyse their equilibrium conditions. As usual in force analysis, the 

inspection of all diagrams in proper order yields the reaction forces acting among the parts. Although 

such an operation is likely to be performed graphically in most cases, this assembly is simple enough 

for an analytical calculation of the force magnitudes as a function of α (an angle depending on the 

dimension values). 

The final task of the procedure consists of decomposing the forces acting on individual parts along the 

directions of the functional dimensions, which, as previously mentioned, is performed in the same 

way as tensile and compressive internal forces are evaluated from free-body diagrams on beams, 

trusses and frames. Specifically, the rectangular box can be regarded as a frame that is subject to four 

equilibrating forces. Any of the two vertical members with length h is pulled with a tensile force equal 
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to F; according to the static analogy, such an internal force corresponds to the sensitivity of the 

functional requirements with respect to dimension h: 

1==
∂
∂

F
h

x
 

Similarly, any of the two horizontal members with length b bears a tensile force equal to F tan α, 

which allows calculation of the sensitivity of x with respect to b: 
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The circular part with radius r1 is subject to three radial, inward-directed forces. If each of the forces 

were equilibrated by a reaction at the centre of the circle, a compression of equal value would act 

along its direction; according to the static analogy, such an internal force should correspond to the 

sensitivity of x with respect to the radius on that direction. As dimension r1 is defined for all three 

directions, the sum of the three compressive forces yields the sensitivity of x with respect to r1: 
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The forces acting on the circular part with radius r2 are equivalent to those of the previous part in both 

intensity and direction. The sensitivity of x with respect to r2 is thus equal to that calculated above: 

( ) 2
2112 2

1
brrb

b

r

x

r

x

−+
−−=

∂
∂=

∂
∂

 

As a proof of correctness, the same values for the sensitivities are found by differentiation of the 

explicit functional equation, which is easily written for such a simple assembly: 

( ) ( ) 2
2121 2 brrbrrhx −+−+−=  

4.2 A more complex example with graphical verification 

The tolerance chain depicted in Figure 4a is similar to the previous example, but slightly more 

complicated, to the extent that an explicit functional equation would be much harder to write. 

Requirement x is related to dimensions h, b, r1, r2, r3, and r4, whose nominal values are indicated on 

the assembly drawing. Again, unit forces F are applied to the end parts to define an assembly force 

diagram (not shown). As shown on the free-body diagrams in Figure 4b, the equilibrium conditions of 

the five parts (four circles and a rectangle) are analysed graphically with the help of drafting software 

to obtain a precise decomposition of forces. This operation yields the reaction forces F1, F2, … F8, 

which, as before, are then projected along the directions of the functional dimensions. The following 

values for the sensitivities are found: 
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Lacking a functional equation, the correctness of these results is verified by graphical construction 

with the precision allowed by the drafting tool. The assembly is redrawn with some deviations with 

respect to the nominal values, as shown in Figure 4c, thus yielding the following deviation on the 

requirement: 

60.088.628.6 −=−=−=∆ xxx  

Such a value is in good accordance with the deviation resulting from the calculated sensitivities: 
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A couple remarks on the calculation of the reaction forces can be added with reference to Figure 5a, 

which shows the free-body diagram for one of the parts in the above example. As detailed in Figure 

5b, the drafting tool (DraftSight in this case) allows the force polygon for the decomposition of the 

external force F along the directions associated to constraints 1 and 2 to be drawn interactively; after 

the graphical construction has been completed, the measuring capability of the tool provides the 

length of each vector and thus, in an appropriate scale, the intensity of each reaction force. As in all 

force analysis problems, the graphical construction could be replaced by an analytical method based 

on the direct solution of the equilibrium equations. A method derived from screw theory (Hunt, 1978) 

associates each constraint with a unit vector vi along the inward-directed normal to the surface at the 

point of contact. In a planar case, the location and intensity of each unit vector is described by a three-

element vector (wrench) of the type 

[ ]Tiyixii mvv=w  

where vxi and vyi are the components of vi along the coordinate axes x and y, and mi is the moment of vi 

about the origin of the coordinate frame. If the wrenches are joined in a matrix 

[ ]iwW =  

the equilibrium condition can be written as 
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FwfW −=⋅  

where wF is the wrench associated with the external force F, and the elements of vector f are the 

unknown intensities of the reaction forces. In the example (Figure 5c), the above equation becomes 
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and yields the solution already found, (F1 = 0.658, F2 = 1.197). The fact that screw theory has been 

widely used for the kinematic analysis of mechanisms (e.g., Ohwoworiole and Roth, 1981) suggests 

that the proposed approach is somehow related to existing methods for tolerance analysis, most of 

which exploit the mathematical formulations derived from that context. 

4.3 An example with a known solution 

For a comparison with the full-featured approaches to tolerance analysis, Figure 6a shows the 

‘geometric block’ already used in the literature as an illustrative example for the vector loop method 

(Chase et al., 1994). Three parts with different shapes (a circle, a rectangle and a piecewise linear 

profile made by horizontal and vertical segments) have some clearly defined contact relations at their 

tangency or intersection points. The vertical distance x between the centre of the circle and the lowest 

horizontal line segment is the functional requirement of interest, which is related to the functional 

dimensions a, b, c, d, e and f, whose nominal values are indicated beside the assembly drawing. 

As shown in Figure 6b, the requirement corresponds to an upward unit force F acting at the centre of 

the circle and to its downward equilibrating force acting on the lowest horizontal line. As in the 

previous case, the free-body diagrams of the three parts are graphically inspected to evaluate the 

reaction forces F1, F2, F3 and F4. These are eventually decomposed along the directions of the 

functional dimensions, thus yielding the following values for the sensitivities: 
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Considering the precision of graphical constructions, these results are in good accordance with those 

reported in (Chase et al., 1994), where the same sensitivities are calculated by the vector loop method: 
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5 Applications 

As stated before, the use of a static analogy for tolerance analysis is subject to several limitations at 

the current state of development. Variables in tolerance chains are restricted to linear dimensions, 

whose directions suggest the correct calculation of the sensitivities as tensile/compressive forces. 

Deviations on angular dimensions and geometric characteristics are less easily related to contact 

forces and are thus excluded from the analysis. Overconstraining of parts is also excluded, thus 

reducing tolerance analysis to a purely geometrical problem. 

Although the obvious need for completeness and compliance to modern GD&T standards would 

require extension to remove such limitations, it is supposed that the procedure can find successful 

applications in mechanical design. Such a belief must be verified by proving that certain realistic 

configurations of assemblies can actually be treated within the application scope of the procedure. 

Further examples are given below to demonstrate this effort. 

In the design of planar linkages, overconstraining is usually avoided and part connections (hinges, 

sliders, etc.) are easily related to reaction forces along the given directions. These conditions seem to 

match the assumptions of the procedure, as can be demonstrated for a typical tolerance analysis 

problem, the evaluation of clearances in hinged joints. Figure 7a shows two links connected to a pin, 

with a clearance fit between hole diameters D1 and D2 and pin diameter d. As clearly shown in Figure 

7b, the maximum relative displacement of hole centres is related to the part dimensions by the 

following equation: 

22
21 D

d
D

x +−=  

This equation is consistent with the calculation of sensitivities through the free-body diagrams for the 

three parts (Figure 7c). Opposite unit forces F acting along the direction of x induce reactions of equal 

intensities at contact points, which yield the following requirement sensitivities with respect to the 

three dimensions: 
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Figure 8 illustrates the analysis of a planar linkage of realistic complexity. Here, the vertical distance 

x from the top platform to the bottom frame is to be controlled with respect to eighteen functional 

dimensions selected on seven parts (platform, rod, actuator and four pins). Once opposite unit forces 

F are suitably defined on end parts, free-body diagrams are created and inspected to find the reaction 

forces F1 and F2. These are then projected along the directions of functional dimensions to find the 

internal forces, which provide the values of sensitivities shown in Table 1. For different 

configurations of the linkage as a function of actuator length, new free-body diagrams can be readily 

created to calculate the effects on the sensitivities. 

Although they do not include any geometric tolerance that might be specified on parts, the above 

results are sufficient for an RSS stackup analysis of a given set of tolerances on the functional 

dimensions. The procedure provides an easy way to evaluate the contributions of different types of 

dimensions (lengths of links, positions of joints, thicknesses, pin and hole diameters) to the overall 

variation of the functional requirement. 

6 Conclusions 

The use of computer-aided tools based on three-dimensional CAD modelling is increasingly 

recognised as essential for tolerance analysis on complex assemblies. Graphical calculation 

procedures such as the one proposed in this work can be interesting alternatives in response to the 

needs of engineering contexts with little software support. They could also be helpful when software 

tools are in use, but the result of a numerical simulation must be quickly verified or there is no time 

for building the required geometric models. 

Apart from this practical value, the proposed method does not imply the proposal of a novel 

theoretical concept for tolerance analysis. The properties of error buildup that are exploited by the 

static analogy are likely to correspond to the mathematical properties of existing methods and may 

thus be hidden in currently available software tools. 

Even without a rigorous proof, the analogy between linearised tolerance chains and free-body 

diagrams of force analysis has been demonstrated to be correct on conceptual and application cases at 

various difficulty levels. The procedure derived from the analogy appears to be very easy to apply and 

learn because it is close to other analysis tasks in which mechanical designers are routinely involved. 

Although there are certain problems to be solved in geometric reasoning, the procedure could also be 

integrated into software tools for the static analysis of mechanisms and structures, thus allowing for 
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the treatment of three-dimensional tolerance chains, which would be difficult to tackle by purely 

graphical means. 

In its current state, the procedure is no more than a quick and dirty solution to a limited class of 

tolerance chains. The practical application of the procedure in any form is obviously conditioned to 

the release of the assumptions made in this work. Specifically, possible analogies will have to be 

investigated for angular dimensions and geometric characteristics, which may be assigned tolerances 

according to the GD&T approach; additional analogies might be recognised in other types of entities 

that are usually considered in statics, such as torque and rotation. Conversely, it will be interesting to 

understand how the concepts deriving from the statics of deformable bodies could be applied to the 

analysis of tolerances on overconstrained assemblies. 
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Tables 

Tab. 1 Evaluation of sensitivities for the planar linkage example 

Sensitivities Expression Value 

s1, s2, s14 F 1 

s3 F / 2 0.5 

s4 F / 2 + F2 / 2 0.687 

s5 F1 cosα 0.816 

s6, s9, s10 F1 / 2 0.462 

s7 F1 sinα 0.434 

s8 F cosβ 0.766 

s11 F1 0.924 

s12 - F2 cosγ - 0.347 

s13 F1 / 2 + F2 / 2 0.649 

s15 - F - 1 

s16, s18 - F1 - 0.924 

s17 - F2 - 0.374 

 
 


