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Abstract 
 

Product quality is a main concern in today manufacturing. It is a fundamental requirement for 

companies to be competitive. To assure such quality, a dimensional inspection to verify 

geometric property of a product has to be carried out. High speed non contact scanners help this 

task, by both speeding up acquisition speed and increasing accuracy through a more complete 

description of the surface. The algorithms for the management of the measurement data play a 

critical role in ensuring both the measurement accuracy and speed. One of the most fundamental 

parts of the algorithm is procedure for fitting substitute geometry to the cloud of points. This 

article addresses this challenge. Three relevant geometries are selected as case studies: non-linear 

least-square fitting of circle, sphere and cylinder. These geometries are chosen with consideration 

of their common use in practice; for example the sphere is often adopted as reference artifact for 

performance verification of coordinate measuring machine (CMM) and cylinder is the most 

relevant geometry for pin-hole relation as an assembly feature to construct a complete 

functioning product.  

 

In this article, an improvement of the initial point guess for Levenberg-Marquardt (LM) 

algorithm by employing Chaos Optimization (CO) method is proposed. This causes a 

performance improvement in the optimization of a non-linear function fitting the three 

geometries. The results show that, with this combination, higher quality of fitting results in term 

of smaller norm of the residuals can be obtained while preserving the computational cost. Fitting 

a “incomplete-point-cloud”, which is a situation where the point cloud do not cover a complete 

feature e.g. from half of the total part surface, is also investigated. Finally, a case study about 

fitting a hemisphere is presented. 
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1. Introduction 
 

Quality of manufacturing product is the main concern in modern world to increase 

competitiveness [1]. Quality inspection is the procedure to verify this geometric attribute and can 
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be realized by dimensional metrology [2]. In dimensional metrology, least-square (LS) fitting of 

substitute geometries, after obtaining measurement points, is a fundamental step before any 

geometric feature may be evaluated [3],[4],[5],[6]. LS fitting algorithm from points cloud to 

basic geometric feature is deployed after obtaining a set of measured points. Hence, the 

dimensional measurement, such as the diameter of a circle or sphere, the angle between two 

lines, the distance between two axes, etc, can be evaluated (fig. 1). Subsequently, a routine for 

fitting task is a critical element in the chain of dimensional metrology for quality inspection. In 

this case, fitting the substitute geometry is called function reconstruction [7]. The lack of prior 

knowledge about the nominal geometry to be fitted can significantly increase the difficulties in 

the fitting itself. For example, a lack of prior knowledge about the direction of the axis of a 

cylinder significantly increases the difficulty of the identification of the real axis direction. This 

is the usual condition of reverse engineering. In addition to the difficulties of fitting process, a 

fast fitting process is a stringent requirement since recent measurement instruments are able to 

obtain rapidly thousands or even millions of points in few seconds. In this case, fitting time can 

significantly increase the overall measurement time, but high-speed inspection is required to 

reduce the inspection cost, and in general, to reduce the product cost [8]. Hence, an accurate and 

high-speed fitting procedure is a strict requirement. 

 

In the case of linear least squares fitting (like e.g. in the case of plane fitting) robust solutions are 

available. These solutions are based on finding the direction cosine of a line or plane from the 

Eigen vectors of the cloud of points. The eigenvectors correspond to its highest and smallest 

singular value, which can be calculate by means of the Singular Value Decomposition (SVD), 

for which fast and reliable algorithms are commonly available [6]. But, in the case of non-linear 

least squares fitting (like e.g. in the case of circle, sphere and cylinder fitting) such simple 

solutions are not available. This paper will propose an improvement of the current state of art in 

the field of non-linear least squares fitting of geometries. The improvement is based on a wise 

choice of the initial solution thanks to the application of Chaos Optimization (CO). The optimal 

initial solution will be coupled to a standard (e.g. Levenberg-Marquardt) nonlinear least squares 

optimization algorithm for finding the final fitting geometry. The effectiveness of the proposed 

approach will be compare to the standard use of Levenberg-Marquardt algorithm in the case of 

sphere, cylinder, and circle fitting. 

 

 

2. Non-linear Fitting 
 

Basic substitute geometries are divided in two groups: linear and non-linear geometry. This 

grouping criterion is based on their defined parameters. Line (2D and 3D) and plane fall into 

linear geometry, as their parameters can be estimated by means of linear least squares fitting. On 

the other hand, other basic geometry such as circle, sphere, cylinder, cone and torus have non-

linear parameters defining their shapes. Subsequently, they are categorized as non-linear 

geometries. LS fitting of circle, sphere and cylinder will be addressed in this article. Circle and 

sphere geometries have many applications, for example sphere is a common artifact geometry for 

calibration of dimensional metrology instruments [9],[10]. In addition, many mechanical 

products have rotational functionality which is constituted by circular from shafts and holes. 

Cylinder is a geometry representation of these shaft-hole systems [11]. 
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The basis of LS fitting is the minimization of an objective function constituted by a sum of 

square of errors. Error is defined as the difference between estimated and measured value. In 

dimensional metrology, error is usually assimilated to the local geometrical deviation, i.e. the 

distance between measured points and ideal substitute geometry (fig 2). LS fitting objective 

function is defined as: 
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Where:  F is the distance function of points x to the fitted geometry. ix  is a cloud of n points 

sampled on a surface and p is set of parameters on which a distance function  id p  depends on, 

so that  id p is the distance of the i-th point from the substitute geometry defined by p . For the 

circle, the distance function is (Fig. 2a left): 
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Similarly, for the sphere, the function can be formulated as: 
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Where  
T

0 0 0 0, ,yx zx   is the sphere center, r  is the sphere radius, and  
T

,,i i ii yx zx  is the i-

th point. 

 

The distance function of a point to a cylinder is more complex (see fig. 2a right): 
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where r is the radius of the cylinder and  3 2i dp Axis
d  is defined as distance between 3D point

ix to 

the axis of cylinder (a straight line). The axis is defined by a point 0x belonging to it and a 

direction vector n  (fig. 2b). 

 

One can observe that the objective function F which has to be minimized is a non-linear multi-

modal function which has many local minima and/or maxima. 

 

3. Levenberg-Marquardt Algorithm. 
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Levenberg-Marquardt (LM) algorithm is a well-known approximation method for solving non-

linear least square problems that has applications in many fields [12, 13]. The recipe of LM 

algorithm is the blending between steepest-decent (gradient search) step method and Gauss-

Newton step method. When the current solution is far from the optimal, the LM method acts like 

a steepest-decent method. Then, LM method will become a Gauss-Newton when the solution is 

near optimal. The basis of steepest-decent method is searching with regard to the direction of the 

gradient. Let F  be the function to optimize, and kx  the candidate solution at step k . Since in this 

case minimization is the problem to solve, the next step in the searching procedure is: 

 

1k k sx x F             (5) 

 

Where ( / , / , / )F F x F y F z         is the gradient of the objective function as well as the 

search direction, and s is the step size which determines how far the next candidate solution will 

be from the current one. Hence, if the s value is set very small, then it will take longer to reach 

convergence. Otherwise, if the value of s is very large, there is a high probability that the 

searching process will over-step the optimum value. In Gauss-Newton method, linearization by 

using Taylor expansion series is deployed. The series 
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expansions are not considered. Not only the algorithm is more efficient to reach the convergence, 

but also the form is tractable to solve p . By setting 0)(f  p , the next step of the Gauss-Newton 

can be calculated as: 
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Where  jd p  is the vector of the residual (distances) at step j , and d
J  is the Jacobian matrix of 

this vector of distance functions. Note that Taylor expansion series is accurate only for a small 

range of region, called trust region. This small region is a region where the non-linear estimation 

of a function by using Taylor expansion is still reasonably valid. It implies that Gauss-Newton 

method is valid for searching through a small area of the neighborhood. Subsequently, the 

method is effective when the initial guess is near the optimum solution. 

 

LM method combines the advantages of steepest-decent and Gauss-Newton methods. A vector 

of input parameters 0p , which includes the parameters that will be optimized, is supplied to the 

LM algorithm, along with matrix M which is A 3n  matrix of all the data points, defined as: 

 nnn zyxzyx ;...........;111 , 
so that an optimized vector of parameters p  is obtained. The 

LM method used here is based on the LM used by NIST [6] for their algorithm testing system. 

The LM algorithm is: 

 

 

Algorithm 1:Levenberg-Marquardt Algorithm 

Input: Vector 0p which is the initial guess for the parameter 

and matrix M which is the point cloud to be fitted. 

Output: Vector p which is the fitted parameter 
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1:  Set 0001.0  

2: DO { decrease   

3:      set
T

0 0U J J  

4:      set  0 0

Tv J d p  

5:      set    0

T

0 0F  d p d p  

6:      DO { increase   

7:           set   diag  H U I U  

8:           solve  Hx v  

9: 
          

set    0

T; new newnew set F  p p x d p d p  

10:           IF converged THEN return 0 newp p  

11:      UNTIL 0FFnew   or stop criterion is true 

12:      IF 0newF F THEN 0 newp p  

13:  UNTIL stop criterion is true 

 

 is LM variable, which is increased and decreased by 10 and 0.04, respectively, according to 

NIST suggestion [6]. 0J is a Jacobian matrix which elements on its i-th row are 0( )id p , which 

are the first order partial derivatives of id  respect to each parameter which has to be estimated 

for each i-th point. For circle, the parameters 0p are 0 0,x y of its center and radius r . For sphere, 

only one additional element 
0z  for its 3D position of the center is added to the parameters. 

Finally, the parameters for cylinder are 0 0 0, ,x y z which is a point on the axis, having vector of 

cosine direction (normal) n ),,( 321 nnn , and finally its radius r . The number of column of matrix 

0J corresponds to the number of parameters to be estimated, and the number of rows corresponds 

to number of points the substitute geometry will be fitted to. 

 

The central idea of this LM method lies on the equation -Hx v . If this equation is enlarged 

into     0 0 0 0 0 0diagT T T   J J I J J x J d p , one can observe that if   is zero or small, LM 

behavior become Gauss-Newton method. In the opposite, if   is large, then the off-diagonal 

elements of 
0 0

T
J J will have less effect such that LM behaves like steepest-decent method. The 

term 0 0( )TdiagI J J is used instead of
T

D D .This is a weighted distance matrix (depending on the 

geometry which will be estimated), based on Nash [13] suggestion, such that 

    0 0 0 0 0 0diagT T T    Hx J J I J J x J d p  becomes positive definite. 

 

4. Initial Point Problem 
 

LM iterative method mentioned in the previous section depends significantly on the initial guess 

of a set of solutions, 0p  [14]. This situation is similar to any other iterative algorithm. The 

function to be optimized is a multi-modal function with a complex contour and many local 

optimums. Subsequently, the risk exists that the search is trapped in a local optimum region. The 
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illustration of multi-model function is shown in fig. 3 (left) by using Schweifel function and 

square of the summation of a circle distance function, which is
2

1

N

ii
F d


 , where id  is declared 

in equation (2).  

 

As mentioned before, the LS nonlinear function which to be minimized to fit geometries is multi 

modal. Hence, it has many local minima, only one being the global optimum. If the optimization 

process gives a local minimum solution, then the solution is sub-optimal. The searching 

procedure can be trapped in local minima depending on where the initial guess is put. 

Subsequently, as it can be presumed, the result is significantly affected by the initial guess [14]. 

For example, the objective function to fit a circle is shown in fig. 3 (right). The surface is 

constructed by varying the  ,x y center position of the circle. The different colors show how the 

surface changes as the candidate radius r  changes.  Even though in this case the optimization 

zone is convex, different levels of radius r  create different separated optimization zones. This 

can trap the searching process in one of the optimization zones. Therefore, it is possible the final 

solution is not a global optimum, depending on the initial solution. Fig. 4 illustrates how initial 

guess as starting solution affects the final results. If the initial guess is far from optimum, an 

unexpected final result can be obtained (fig. 4a). On the other hand, a good initial guess 

significantly improves the final solution reducing the objective function value (fig. 4b). 

 

5. Chaos Optimization 
 

Chaos is defined as a semi-randomness property. This property is generated by a nonlinear 

deterministic equation. It creates a chaotic dynamic step which can easily escape from local 

optima. The concept is different with using rejection-accepting probability test in random-based 

algorithms, such as improvement heuristic search [15]. Searching through regularity of chaotic 

motion, represented by one-dimensional logistic map, is its fundamental recipe [16]. Chaos 

optimization (CO) uses these chaos properties, which are ergodicity, stochastic property, and 

regularity [17]. The one-dimensional logistic map used is: 

 

1 (1 )k c k k  t t t           (7) 

 

Where  3.56,4c   is a control argument and k is iteration number. Yang [18] recommended 

00 1 t  where 0 {0,0.25,0.5,0.75,1.0}t . The behavior of equation (7) becomes chaotic in the 

sense that its value is drastically changed within the limit of c and kt presenting the regularity of 

chaotic motion. Fig. 5 shows the plot of time series of this function and paired-plot between two 

consecutive chaos variables.  

 

This CO is used to improve the initial guess of LM non-linear fitting iterative method, so that the 

initial guess is near the optimal solution, thus preserving the computation time, which is very 

important when the sample size is large (millions of points). The combination of CO algorithm 

with LM algorithm to improve the initial guess is as follows: 

 

Algorithm 2: Chaos search to improve the initial guess in LM method 
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Input: Vector 0p is the initial guess for the parameter (1:n-param) 

Goal: New vector 0p  is the improved initial guess by 

)( iFMin p , },{ iii bap  , ):( 1 kkLet ppp  , ):( 1 kk
ttt   

),...,(),...,(: 11 nn ttandppwhere  tp  

1:  Set 0,0  rk , Set max max10, 30k r   

2:  Produce randomly. }0.1,75.0,5.0,25.0,0{}1,0{0  andt . 

3: 
 Set MPEMPEk  pbpatttt

00 ,,*, 00

 
),...,(),,...,(: nini bbaawhere  ba  

4:  Set 0* p p initial guess parameter 

5: 
 DO WHILE {  maxrr  ;  

DO WHILE { maxkk  ; 

6: 
 Set );( r

i
r
i

r
i

r
ii abtap   

calculate kF  
N
i ii pd0

2 )(  

7: 
IF *FF k  THEN 

kkk ttpppFF  *,*),(*  

8: }4,56.3{),1(;1 11    k
i

k
i

k
i tttkk  

9:        }END k-th iteration; 1 rr  

10: 

)(*1 r

i

r

ii

r

i abpa    

     and  

)(*1 r

i

r

ii

r

i abpb    

11:        IF 
r
i

r
i aa 1

THEN }5.0,0{,1  r

i

r

i aa  

12:        IF 
r

i

r

i bb 1
THEN }5.0,0{,1  r

i

r

i bb  

13: 
       IF maxrr  THEN produce }1,0{0 t by random, 

0,0 tt  kk GOTO(7) 

14: 

        ELSE CO is terminated,  

return *0 pp  ;} 

END r-th iteration; 

15: Insert the new 0p into Algorithm 1: LM algorithm. 

 

To adjust small ergodic range around *ip , the parameters are set as 45.0 [17], 

4 [18], 50max r , and 50max K . The value 4 is set such that a significant difference in the 

long term will be obtained from a small change of t . As it can be seen from fig. 5 right, with a 

small change in two consecutive t, a chaotic behavior will be observed in the time series manner 

(fig. 5 left). The value of maxK and maxr were chosen to minimize the overhead computational cost 

in determining the initial point. The statements IF 
r
i

r
i aa 1

THEN }5.0,0{,1  r
i

r
i aa  and       IF 

r

i

r

i bb 1
THEN }5.0,0{,1  r

i
r
i bb are to encourage movement farther from the initial bounding 

area, set in the beginning of the search. With reference to Fig. 4 (right), the initial guess is 

expected to lie on the correct optimization zone to find the global optimum. 

 

6. Implementation and Discussion 
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6.1 Performance Improvement 
 

Points with random error according to uniform distribution and normal distribution were 

generated as presented in table 1. For Chaos-LM method, initial point guess of the initial solution 

of LM optimization iteration was improved by sending it to CO method. In LM algorithm, the 

stopping rule is set as maximum iteration = 1000 and 100 for the Chaos-LM method. Fig. 6 

visualizes the generated data by plotting the points cloud. The algorithm is implemented in 

MATLAB and run on an Intel Centrino Core 2 Duo 2.2 GHz. 

 

Table 1: Details of data generation. 

Type of Data 
Number of points and Nominal Parameter 

Circle Sphere Cylinder 

Uniform 
Range 

(µm) 
(x,y,r)=(15,15,20) mm (x,y,z,r)=(15,15,15,20) mm 

(x,y,z,r)=(15,1

5,15,5) and n 

(1,1,1) mm 

Type 1 [-2.2,2,2] 1000 pts grid [30x30] grid [25x25] 

Type 2 [-5,5] 1000 pts grid [30x30] grid [25x25] 

Normal sigma σ      

Type 1 1.1 1000 pts grid [30x30] grid [25x25] 

Type 2 2.5 1000 pts grid [30x30] grid [25x25] 

 

The initial guess of the center of circle and sphere is the centroid. The centroid location for each 

x,y,z is the average of the points i nx . The centroid is also the initial guess of point on the axis 

of a cylinder. For the radius, its initial estimation is: 

 

0

(max min ) (max min )1

2 2

i i i ix x y y
r

   
  

 
       (8) 

for the circle and: 

 

0
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2 3

i i i i i ix x y y z z
r
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





    (9) 

 

for the sphere and cylinder. For the special case of a cylinder, its initial guess for cosine direction 

of the axis is derived by fitting a 3D line to the point clouds. The fitting method is implemented 

with a method according to NIST [6].Two levels of sigma for the data deviation were 

considered. Type 1 represents only the uncertainty of the instrument (Maximum Permissible 

Error/MPE), while type 2 simulates the uncertainty due to the part and the instrument. Type 2 

data represents a more realistic situation since an inspected part always contains feature 

deviation from its nominal [19]. 

 

Results from 100 runs show that the combination of these methods, Chaos and LM, increases the 

accuracy of the fitting process. The indication is that the fitted geometry has less residual error, 

in term of the magnitude of their norm of sum of square residuals, while preserving the 

computation cost. Table 2 provides the complete results of the fitting of full geometry point 

clouds both with only LM method and with Chaos-LM method. Chaos-LM encourages the initial 
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guess of the solution to move to a better starting point, thanks to the property of the chaotic 

motion which non-repeatedly searches through a set of states in a certain bounded domain [15]. 

Sensitiveness of the final solution of LM method to where the initial guess starts is related to the 

Taylor approximation in the Gauss-Newton method, which depends highly on the non-linearity 

degree of the neighborhood. The quality of this Taylor approximation, which is usually until first 

term approximation, decreases for higher non-linear function. Because of this, a “trapped” 

condition during searching process can occur. Fig. 7, 8 and 9 propose some visualizations of the 

fitting result for circle, sphere and cylinder respectively. From this, one can observe that the 

Chaos-LM fitting (fig. 7, 8, and 9 right) finally lie on the middle of the point cloud. This is 

coherent with the fundamental behavior of least-square fitting which is an average over the 

considered data (in this case the point cloud). Plot of the norm of residual and Central Processing 

Unit (CPU) time for circle, sphere, and cylinder are respectively presented in fig. 10 and 11. In 

the special case of a cylinder fitting result, the computation time slightly increases compared to 

the LM method. Indeed, the improvement in the sum of squared residuals is significant. 

Furthermore, from the graph one can observe that the variation interval of the CPU time for this 

cylinder fitting is intersecting each other, so they are not significantly different. 

 

Table 2: Simulation results of the full-geometric point cloud fitting. 

Random 

Error Type 

[µm] 

Levenberg-Marquardt Algorithm 

Circle Sphere Cylinder 

||r|| (µ±3σ) 

[mm] 

CPU time 

(µ±3σ) [s] 

||r|| (µ±3σ) 

[mm] 

CPU time 

(µ±3σ) [s] 

||r|| (µ±3σ) 

[mm] 

CPU time 

(µ±3σ) [s] 

U [-2.2,2.2] 
75.2584±0.
0627 0.8334±0.0502 4.1007±0.2632 1.0459±0.1059 71.427±0.0646 0.5114±0.0512 

U [-5,5] 

75.26±0.05

48 0.8081±0.0244 7.6507±1.2160 0.5935±0.0442 71.4316±0.1288 0.6317±0.0825 

N (σ=1.1) 
75.2265±0.
0166 0.825± 0.0376 1.5108±0.0202 1.0353±0.1272 71.4232±0.0150 0.6368±0.0766 

N (σ=2.5) 

75.225±0.0

375 0.8754±0.1270 1.6651±0.0453 1.0694±0.1653 71.4252±0.0363 0.6276±0.0804 

Random 

Error Type 
[µm] 

Chaos and Levenberg-Marquardt Algorithm 

Circle Sphere Cylinder 

||r|| (µ±3σ) 
[mm] 

CPU time 
(µ±3σ) [s] 

||r|| (µ±3σ) 
[mm] 

CPU time 
(µ±3σ) [s] 

||r|| (µ±3σ) 
[mm] 

CPU time 
(µ±3σ) [s] 

U [-2.2,2.2] 

5.6646±1.6

784 0.5578±0.0539 2.79±0.2570 0.5634±0.05555 5.7257±2.0102 0.6225±0.0277 

U [-5,5] 
4.3562±1.3
061 0.5551±0.0338 6.2199±0.4602 0.5628±0.1088 5.7994±2.9641 0.6706±0.0515 

N (σ=1.1) 

5.1907±1.2

732 0.5677±0.1053 0.4279±0.1524 0.5458±0.0569 6.9329±2.9690 0.6788±0.0907 

N (σ=2.5) 
5.469±1.46
21 0.5442±0.0836 0.8185±0.0991 0.4663±0.0512 6.9169±1.6543 0.6987±0.1103 

 

A very important condition, difficult to address with standard approaches to fitting, arises when 

the cloud of points does not cover the whole feature, e.g. only a hemisphere has been sampled. 

This may be due to access limitation of the sensor to capture part surface, like e.g. in the case of 

laser scanning instruments, or to the real incompleteness of the sphere, like in the case of a 

circular groove. Both LM and Chaos-LM methods are applied to half-circle, half-sphere, and 

half-cylinder point clouds. This is a significantly more difficult situation compared to fitting a 

complete cloud of points. One of the reasons is that the estimation of initial solution tends to be 
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less accurate since, in general, the initial estimation is based on the symmetrical properties of the 

geometry to be fitted. The data generation is identical to the one considered for the full-geometry 

case as presented in table 1. From this data generation, half of the cloud of points is then 

discarded to get the half-geometry. The number of runs in the simulation and the performance 

measures of both fitting methods are identical to the previous “normal case”. Details of all results 

of the simulation runs are presented in table 3. One can observe that the accuracy of fitting half-

geometry point clouds is significantly improved by Chaos-LM method compared to only LM 

method. Instead, the CPU time needed for Chaos-LM to have better result is higher than the one 

of the LM method. Since there are increments in CPU time to get a better result of Chaos-LM 

method, the comparison of the two algorithms in this case has to be further investigated. 

Graphical presentation of the fitting results for half-circle, half-sphere and half-cylinder are 

provided in fig. 12, fig.13, and fig. 14 respectively to intuitively understand the significant result 

of accuracy improvement by Chaos-LM in the case of half-geometries fitting. Finally, to 

graphically explain the results in table 3, fig. 15 and fig. 16 respectively plot the norm of 

residual r and CPU time of the half-geometries fitting. 

 

Table 3: Simulation results of the half-geometric point cloud fitting. 

Random 
Error Type 

[µm] 

Levenberg-Marquardt Algorithm 

Circle Sphere Cylinder 

||r|| (µ±3σ) 
[mm] 

CPU time 
(µ±3σ) [s] 

||r|| (µ±3σ) [mm] 
CPU time 
(µ±3σ) [s] 

||r|| (µ±3σ) [mm] 
CPU time  
(µ±3σ) [s] 

U [-2.2,2.2] 
88.0124±0.00

87 
0.8263±0.0610 41.9479±0.4454 0.2918±0.0128 41.2638±0.0271 0.6307±0.0412 

U [-5,5] 
88.0106±0.02

09 
0.8364±0.0869 41.1334±0.9747 0.2931±0.0153 41.2651±0.0510 0.6273±0.0557 

N (σ=1.1) 
88.0143±0.00

21 
0.4542±0.0535 21.2072±0.0603 0.2916±0.0155 41.2643±0.0067 0.4978±0.0159 

N (σ=2.5) 
88.0149±0.00

53 
0.4634±0.0551 21.1117±0.1741 0.2957±0.0285 41.2636±0.0140 0.6243±0.0895 

Random 
Error Type 

[µm] 

Chaos and Levenberg-Marquardt Algorithm 

Circle Sphere Cylinder 

||r|| (µ±3σ) 
[mm] 

CPU time 
(µ±3σ) [s] 

||r|| (µ±3σ) [mm] 
CPU time  
(µ±3σ) [s] 

||r|| (µ±3σ) [mm] 
CPU time 
(µ±3σ) [s] 

U [-2.2,2.2] 
14.8104±7.56

09 
1.2904±0.0361 8.5878±4.8903 0.5509±0.0450 18.9191±3.1847 1.2009±0.0611 

U [-5,5] 
15.9923±12.0

558 
1.2212±0.1456 9.2163±6.3610 0.413±0.0247 18.7634±3.0584 1.2185±0.1001 

N (σ=1.1) 
15.0230±13.5

643 
1.2944±0.0831 4.9317±4.002 0.4170±0.0269 18.7751±3.5261 1.0946±0.1623 

N (σ=2.5) 
16.7502 

±12.1930 
1.3000±0.08 4.9572±2.3395 0.55±0.0335 19.1193±4.0786 

 
1.2163±0.0627 
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Convergence curve analyses are presented in two parts which are for full- and half- geometries 

fitting. One should note that in both cases, the value of convergence curve can not reach zero 

since error exist on the points to be fit due to the simulated perturbation. The selected type of 

simulation is uniform distribution in the range of -5µm and 5 µm U [-5,5]. For each group, three 

convergence curves are shown corresponding to circle, sphere and cylinder. On the x-axe of the 

graph, there are two types of iteration. For LM method, it corresponds to LM number of 

iterations which ranges from 100 to 1000 iterations. For Chaos-LM, this axis corresponds to the 

number of chaos iteration in the range from 10 to 100 iterations. In the case of full-geometric 

fitting, the convergence rate is much faster in the case of circle and cylinder. Fig. 17, fig. 18, and 

fig. 19 depict the convergence curves for the full-geometries case. The convergences rate of LM 

method for circle and cylinder fitting are much slower, as the small gradient of the curve 

compared to the Chaos-LM one denotes. In the case of the sphere, both LM and Chaos-LM 

method have a similar convergence rate though Chaos-LM method is faster with respect to the 

LM one. Clearer “trapped” phenomena of LM method in fitting can be observed in the case of 

half-geometries fitting problem. The convergence curves for the half-geometries are shown in 

fig. 20, fig. 21, fig. 22 respectively. From all these three figures, the LM method does not show 

improvement as the number of LM iterations is increased. This situation clearly shows that LM 

has been trapped in some local optimum region. It means that, although the number of iteration is 

increased, the result of LM can not give a better result so one can say it is “early converged”. On 

the other hand, a different situation can be seen for the Chaos-LM method. This method can 

escape from a local optimum with an increase of the chaos iterations. The reason is that, by using 

chaotic movement and increasing the number of iterations, more regions are visited to explore 

new better feasible solution that can give a better result. Chaos-LM can show a significant 

improvement and convergence result without a large number of iteration increments. From the 

investigation of the convergence, one can observe that the best number of chaos iterations for 

Chaos-LM is around 30.  

 

The chaos optimization to improve the initial guess is effective in LS fitting problem. The chaos 

search encourages the initial guess of the solution to move to a better starting point that is nearer 

to the true solution thanks to the property of the chaotic motion that non-repeatedly searches 

through a set of states in a certain bounded domain [20]. With this property, the searching 

process can cover a wider search space within a small number of iteration. This is a different 

property compared to improvement heuristic search such as genetic algorithm, tabu search, etc 

[21]. Generally, improvement heuristic searches algorithm need larger number of iterations to 

increase the “visited feasible solution” around the search space in which the computational cost 

becomes problematic. 

 

Combinations of Chaos and LM algorithms have a linear complexity in term of the relation 

between number of points processed and the increase in computation time. One can see that they 

are constructed from two algorithms, which are the Chaos and the LM algorithm. Each of them 

contains two nested loops inside their algorithm. Since the two loops of the algorithm are not 

related to the number of the points n, which are the points to be fitted, the relation of the 

algorithm steps to their inputs is only in the calculation to evaluate the objective function through 

all number of points n . Let the total order of the algorithms be 21)( nnnf  nnn 2 where 

subscript 1 and 2 correspond to algorithm 1 (chaos) and 2 (LM), respectively. Hence, the 
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algorithm efficiency is )(n  since )(.)(,00 00 ngknfnnkandn   such 

that )()( 21 nnnnf  .  

 

6.2 Case Studies 

 
To test the Chaos-LM method in a real fitting situation, a case study was carried out. It is derived 

from Kawalec and Magdziag [22]. In their case, a calibrated ring gauge was used since they 

focused on comparison of methods to solve the circle fitting problem. Instead, in the proposed 

case study, measurement of a calibrated ceramic sphere of a “ZEISS” CMM for stylus 

qualification was used as shown in fig. 23. The sphere has a calibrated radius of 14.991 mm. The 

CMM machine used was “ZEISS PRISMO HTG” with MPEE=2 µm+L/300 µm.  The choice of 

sphere is due to the fact that a 3D geometry fitting can be applied and a sphere is a good example 

of a common artifact for CMMs. The strategy used to obtain the points was by means of 

scanning strategy. The point cloud to be fit is a half-geometry. There are two types of point 

clouds. The first type is low density cloud and the second type is high density (fig. 24). The low 

density point cloud contains 312 points. A total of 3435 points were collected for high density 

point cloud. The initial parameter of the sphere, for both LM and Chaos-LM method, has been 

chosen near the optimal. The initial x and y are from the average of respectively x- and y-

position of the points, and z is selected from maximum z-position of the points minus the known 

nominal radius of 15 mm. Table 5 summarizes both the fitting results and the deviation from the 

calibrated radius of the sphere. From the results, the fitted radius of the sphere from Chaos-LM 

method is much better than the LM one. Note that the results of LM method are already from 

50000 iterations. Both in the low and high density cases, the procedures are run with the same 

number of iteration. In the case of low density, the accuracy is even better than in the high 

density one since for high density, more solution space is obtained such that an increase of 

iterations can produce similar results with regard to the lower density result. Visualization of the 

fitting results is provided in fig. 25 both for low and high density points respectively.  

 

Another case study was carried out by measuring and fitting an industrial-made cylinder work 

piece made of hardened steel having nominal diameter of 6 mm. The measurement procedure is 

shown in fig. 26a. Total points obtained were 190 points by circular path scanning strategy of 

three segments. Fig. 26b presents the fitting result. The blue points are the obtained points. 

Meanwhile, the red points are the fitted cylinder with its axis line in green. Since the geometry is 

symmetry, the selection for initial parameters is identical to the one set in the simulation run of 

section 6.1 for cylinder case. The results show the improvement of Chaos-LM fitting. Details of 

the results are depicted in table 6. The cylinder is not calibrated. Subsequently, the norm of 

residual r  is presented to compare the fitting quality. In this case, Chaos-LM gives better 

result. Moreover, from the table, it can be observed that the fitting result by LM is outside the 

tolerance limit, meanwhile the Chaos-LM result is inside. 

 

Table 5: Results of fitting half-calibrated sphere for high and low density point cloud. 

  x (mm) y (mm) z (mm) radius (mm) 
deviation from 

calibrated radius 
(mm) 

Calibrated Value - - - 14.9911 - 
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High Density      

LM Method 68.2182 -66.1638 41.9932 14.9111 0.08001 

Chaos-LM Method 67.5716 -66.7949 42.2488 14.9919 0.00080 

Low Density      

LM Method 68.261 -66.1605 41.9712 14.9009 0.09020 

Chaos-LM Method 67.5458 -66.7681 42.2524 14.9904 0.00070 

 

Table 6: Results of fitting industrial cylinder. 

  x [mm] y [mm] z [mm] nx ny nz 
Diameter 

[mm] 
|| r || 
[mm] 

Nominal 
Value 

- - -       6 ± 0.01   

LM Method 
39.7946 37.5621 39.6751 -0.007 

-
0.0181 

-
0.9191 5.928 3.489 

Chaos-LM 
Method 39.6788 37.2259 38.9024 

-
0.0531 

-
0.0571 

-
1.8548 6.0018 1.8278 

 

7. Concluding Remarks 

 
The problem of fitting non-liner geometries has been addressed. This problem is critical in 

dimensional metrology to assure the quality of manufacturing products. The geometries 

considered are circle, sphere and cylinder due to their various and common use in applications 

such as metrological calibration and mechanical assembly. The increasing capability of modern 

metrology instruments in sampling high density clouds of points in short time demands accurate 

and fast fitting procedures. Both cases of fitting full- and half-geometries are presented. From the 

fitting of full-geometries, results show that the use of chaos optimization to improve the initial 

guess for LM non-linear least square fitting has significantly improved the accuracy of the fitting 

and kept the computational time small. A slower fitting is observed in the case of half-

geometries. Even though slower, Chaos-LM method can give the expected results by escaping 

from local optima. LM method is trapped and early converged in the case of half-geometries 

fitting, so that no improvement of the result can be obtained by increasing the number of 

iterations. Convergent rate efficiency of the proposed method is significantly higher in the case 

of incomplete points cloud. It seems that the LM method could have higher probability to be 

trapped in the local optima in this case. Two real case studies are presented. The case studies are 

to fit a calibrated sphere from point clouds representing half of the sphere geometry and to fit an 

industrial-made cylinder. The Chaos-LM method gives expected results. Finally, a note should 

be highlighted that a filtering procedure of the point cloud may be needed before the fitting 

process is carried out, since least-square fitting procedure is not completely robust to the outlier 

points. The future direction of this work is to identify the link between the non-linear problem 

and chaos property such that an adaptive region bounding and chaotic motion generation can be 

determined precisely. 
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Figure 1: Critical step of geometrical fitting process in metrology. 

 

 
Figure 2: (a) Definition of point distance for circle (sphere) and cylinder, (b) Definition of point 

distance for 3D-line. 
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Figure 3: Illustration of Schweifel and Square of circle distance multimodal function. 

 

 
Figure 4: Different initial solutions affect the final solution. (a) Initial guess is far from optimal, 

(b) initial guess is near optimal. 
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Figure 5: Logistic map. (a) time-series plot of logistic map, (b) paired-plot between two 

consecutive chaos variables. 

 

 
Figure 6: Illustration of data generated for circle, sphere, and cylinder. 
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Figure 7: Substitute full circle fitting results of (a) LM method and (b) Chaos-LM. 

 

 
Figure 8: Substitute full sphere fitting results of (a) LM method and (b) Chaos-LM. 
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Figure 9: Substitute full cylinder fitting results of (a) LM method and (b) Chaos-LM. 

 

 



Measurement Science and Technology 21 

Figure 10: Norm of residual of LM method and Chaos-LM method for full point cloud geometry 

fitting. 

 
Figure 11: CPU time of LM method and Chaos-LM method for full point cloud geometry fitting. 
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Figure 12: Substitute Half circle point cloud fitting results of (a) LM method and (b) Chaos-LM. 

 
Figure 13: Substitute Half sphere point cloud fitting results of (a) LM method and (b) Chaos-LM. 
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Figure 14: Substitute Half cylinder point cloud fitting results of (a) LM method and (b) Chaos-

LM. 
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Figure 15: Norm of residual of LM method and Chaos-LM method for Half point cloud 

geometry fitting. 
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Figure 16: CPU time of LM method and Chaos-LM method for Half point cloud geometry 

fitting. 
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Figure 17: Convergent rate for fitting full circle point cloud. 

 

 
Figure 18: Convergent rate for fitting full sphere point cloud. 
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Figure 19: Convergent rate for fitting full cylinder point cloud. 

 

 
Figure 20: Convergent rate for fitting half circle point cloud. 
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Figure 21: Convergent rate for fitting half sphere point cloud. 

 

 
Figure 22: Convergent rate for fitting half cylinder point cloud. 
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Figure 23: Measurement of calibrated ceramic sphere with Bridge-type CMM. 

 

 
Figure 24: Obtained point cloud. (a) Low density, (b) High density. 
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Figure 25: Sphere fitting of (a) low density, (b) high density. 

 

 
Figure 26: (a) Measurement of industrial cylinder, (b) The fitting results. 

 

 

 


