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Abstract: Postpartum fat mass (FM) and fat-free mass (FFM) may be informative predictors of future
disease risk among women; hence, there is growing use of bioelectrical impedance analysis (BIA) to
quantify FFM and FM among postpartum women due to the quick, non-invasive, and inexpensive
nature of BIA. Despite this, very few studies have examined BIA’s performance, and it remains
unclear as to whether specific BIA equations are needed for postpartum women. To explore these
questions, we measured total body FFM and FM with a multi-frequency, segmental BIA, and dual-X-
ray absorptiometry (DXA) in (1) women at one and four months postpartum (n = 21); and (2) height-
and weight-matched non-postpartum women (controls, n = 21). BIA was compared to DXA using
Deming regression models, paired t-tests, and Bland–Altman plots. Between-group comparisons
were performed using an analysis of variance models. The mean difference between DXA and BIA
was 1.2 ± 1.7 kg FFM (p < 0.01) and −1.0 ± 1.7 kg FM (p < 0.05) in postpartum women at both time
points. The measurements of longitudinal changes in FFM and FM were not significantly different
between BIA and DXA. Furthermore, there was no significant difference in BIA’s performance in
postpartum vs. non-postpartum women (p = 0.29), which suggests that population-specific equations
are not needed for postpartum women. The results of this study suggest that BIA is a suitable method
to assess postpartum body composition among women at one and four months postpartum, using
existing age-, race-, and sex-adjusted equations.

Keywords: bioelectrical impedance analysis; postpartum; dual-X-ray absorptiometry; women; body
composition; fat mass; fat-free mass

1. Introduction

The postpartum period, up to one year following delivery, has been highlighted as a
tipping point for a woman’s future health [1–4]. In particular, postpartum weight retention,
which affects up to 75% of postpartum women, has been underscored as a significant
contributor to future obesity and chronic disease risk [5–7]. There is growing interest
in postpartum body composition due to evidence that postpartum fat mass (FM) and
fat-free mass (FFM) may be more informative predictors of future disease risk than body
weight or body mass index (BMI) alone [1,8]. As a result, comprehensive assessments
of body composition that can aid in understanding the composition, distribution, and
trajectory of postpartum changes in FM, FFM, and weight are needed to support the further
investigation of postpartum health.

Bioelectrical impedance analysis (BIA) is often used to assess postpartum body com-
position in clinical and research settings because it is more affordable, accessible, and less
burdensome than other methods, including magnetic resonance imaging (MRI), computed
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tomography (CT), and dual-X-ray absorptiometry (DXA) [9]. BIA estimates body composi-
tion by measuring the body’s resistance to an applied current and employing population-
and device-specific prediction equations [9]. Historically, BIA has been considered less
accurate than other methods, especially under non-standard conditions, including certain
disease states, asymmetrical body shapes, and altered hydration states [9–11]; however, ad-
vancements in BIA devices, such as the implementation of multi-frequency and segmental
approaches, have been shown to improve BIA’s performance and robustness against devi-
ations from the norm, such as those which occur during the postpartum period [9,12,13].
Nevertheless, there is a paucity of evidence to either support or refute the use of BIA to
measure postpartum body composition.

BIA measures postpartum body composition using age-, sex-, and race-adjusted
equations that have been developed using non-postpartum women. Such equations do not
account for the altered physiology of the postpartum body, which includes (1) variations in
body shape (e.g., larger waist circumference) and (2) dramatic perturbations of hydration
and body water from pregnancy and lactation/breastfeeding [7]; however, there are no
studies that have compared the performance of BIA equations, using postpartum and
non-postpartum women, to determine whether the new equations are needed. Very few
studies have compared BIA with a reference method, such as DXA, in postpartum women.
Furthermore, most comparison studies in postpartum women have (1) only evaluated
FM and (2) used BIA devices that are no longer commercially available, which due to
advancements in design and functionality, limits their relevance when making decisions
regarding the use of newer and potentially improved BIA devices [14–16].

The purpose of this study was to examine the performance of a multi-frequency, seg-
mental BIA, which provides a longitudinal assessment of body composition in postpartum
women; hence, we compared estimates of FFM and FM between BIA and DXA in two
groups of women: (1) women at one and four months postpartum; and (2) height- and
weight-matched, weight-stable, non-postpartum women.

2. Methods
2.1. Study Design and Participants

In this study, we performed a secondary analysis of data from 21 postpartum women
who participated in a longitudinal cohort study of maternal factors that influence breast
milk composition between January 2017 and March 2018. We selected 21 non-postpartum
women, who were matched one to one with the postpartum women by height and weight,
from a group of 72 healthy, weight-stable women who had not given birth in the prior year,
and who had participated in a study of body composition assessment methods between
October 2019 and March 2020. Both studies recruited participants from the University of
Alabama at Birmingham (UAB) and the surrounding areas. For postpartum women, the
inclusion criteria were age ≥19 years old, 1 month postpartum, and exclusively breast-
feeding (i.e., no formula supplementation). The exclusion criteria for postpartum women
were smoking, illicit drug use, diagnosis, history, or medication use that would influence
metabolism (e.g., type 1 or 2 diabetes, thyroid disorders, polycystic ovary syndrome), and
delivery of an infant with medical conditions that would interfere with adequate feeding
or development (e.g., failure to thrive, cleft lip or palate, dysphagia, feeding/swallowing
conditions requiring a feeding tube). For the non-postpartum control group, the inclusion
criteria were age ≥18 years old with a BMI of 18.45–45 kg/m2. Exclusion criteria for the
control group were childbirth within the last year, weight fluctuations ±4.54 kg in the prior
six months; previous diagnoses of chronic or critical diseases, such as cancer, cardiovas-
cular, or cerebrovascular events; and use of potassium supplements, diuretics, or drugs
that are known to regulate fluid balance. For both groups, those with contraindications for
bioimpedance were excluded, including amputations, artificial joints, pins, plates, or other
types of metal objects in the body; pacemakers or automatic defibrillators; coronary stents
or metal suture material in the heart. The UAB Institutional Review Board approved the
study, and all participants provided written and verbal consent.
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2.2. Measurements and Tests

For both cohorts, all measurements and tests were performed at the UAB Human Phys-
iology Core facilities using the same instruments and protocols. For postpartum women,
body composition measurements were performed at one and four months postpartum.
Measurements were taken immediately following a complete expression of milk from one
breast. For non-postpartum women, body composition measurements were performed in
the follicular phase (i.e., days 1–8) of the menstrual cycle. For both cohorts, study visits
occurred between 8:00 am and 10:00 am following an overnight fast (i.e., no food or drink
except plain water) of at least 10 h. Before testing, participants were asked to avoid drinking
alcohol within 24 h of testing, to avoid exercise or sauna use within 12 h of testing, and to
refrain from using hand or body lotion the morning of the testing.

Anthropometric measurements were assessed for all participants, including height,
weight, and waist circumference. Height was measured to the nearest 1 mm using a
Seca® 264 digital stationary stadiometer (seca GmbH & Co. KG, Hamburg, Germany).
Weight was measured to the nearest 45 g, with women wearing minimal clothing using
the platform scale of the BIA. Waist circumference was measured to the nearest 0.1 cm
at the umbilicus using a flexible measuring tape. The body composition measures of
FM, FFM, TBW, intracellular water (ICW), and extracellular water (ECW) were collected
using a multi-frequency segmental bioimpedance analyzer device (seca® medical Body
Composition Analyzer 515/514; seca GmbH & Co. KG, Hamburg, Germany). The seca
mBCA 514 is an 8-point (e.g., lead) analyzer that uses contact-plate electrodes positioned
on a standing platform and handrails for optimal use in clinical settings. Resistance and
reactance were measured at 19 frequencies: 1, 1.5, 2, 3, 5, 7.5, 10, 15, 20, 30, 50, 75, 100,
150, 200, 300, 500, 750, and 1000 kHz. Body composition values were estimated using
proprietary equations that account for age, sex, race/ethnicity, height, and weight. FM and
FFM were also measured by DXA (iDXA, GE Healthcare Lunar, Madison, WI, USA). The
DXA was phantom calibrated daily to assure the instrument’s reliability. Urine pregnancy
tests were administered before each participant underwent a DXA scan. All participants
self-reported their age and race/ethnicity.

2.3. Statistical Analysis

Postpartum women were pair matched (1:1) with healthy controls using their 1-month
postpartum height (±3.0 cm) and weight (±5.0 kg). Characteristics of each group were
calculated and compared between the two groups using a student’s t-test for continuous
variables and a chi-squared test for categorical variables. Longitudinal changes in body
composition between one and four months postpartum were examined using paired t-
tests. FM and FFM measurements from BIA were compared with DXA for (1) one month
postpartum women, (2) four month postpartum women, and (3) non-postpartum controls
using the slope and intercept of Deming linear regression models. Deming regression
models were used because they consider potential errors in both measurements, as neither
BIA nor DXA is considered a gold standard. Bland–Altman plots were constructed from the
average vs. the difference in FM and FFM from BIA and DXA. The slopes of the trendlines
for the Bland–Altman plots were examined for evidence of systematic bias. FM and FFM
values were also compared between BIA and DXA using paired t-tests, and the mean
differences were compared between groups using an analysis of variance (ANOVA) model.
All analyses were performed using SAS® version 9.4 (SAS Institute, Cary, NC, USA), and
the statistical significance was set at p < 0.05.

3. Results

Study participants (n = 42) are characterized by group in Table 1. Twenty-one postpar-
tum women and 21 height- and weight-matched non-postpartum controls were included in
the present analyses. The average difference between one-month postpartum women and
matched non-postpartum controls was −0.2 ± 1.1 cm for height and 0.7 ± 4.1 kg for weight.
Overall, participants were 30 ± 6 years old [range: 19–45 years], 86% White and 14% Black,
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with a BMI of 29.7 ± 7.6 kg/m2 (range: 18.5–44.5). There were no significant differences
in demographic or body composition measures between the groups; however, the post-
partum women were slightly older (p = 0.07), more racially homogeneous (95% vs. 76.2%
White, p = 0.08), and had a slightly larger waist circumference at one month postpartum
(100.1 ± 16.0 cm vs. 89.9 ± 19.1 cm, p = 0.07), compared with the non-postpartum controls.

Table 1. Participant characteristics by group (n = 42).

Characteristic
Postpartum

Women (n = 21)
Non-Postpartum
Women (n = 21) p-Value

Mean ± SD or n (%) Mean ± SD or n (%)

Age, years 31.5 ± 4.8 27.7 ± 9.8 0.07

Race
Black
White

1 (4.8)
20 (95.2)

5 (23.8)
16 (76.2)

0.08

Height, cm 164.8 ± 6.0 164.3 ± 5.8 0.69

Weight, kg 80.4 ± 23.0 80.4 ± 22.6 0.90

BMI, kg/m2 29.6 ± 7.5 29.8 ± 7.8 0.97

Obesity,
BMI < 34 kg/m2

BMI ≥ 34 kg/m2
14 (67.7)
7 (33.3)

14 (67.7)
7 (33.3) 1.00

Waist Circ., cm 100.1 ± 16.0 89.8 ± 19.1 0.07

Fat-Free Mass, DXA kg 46.3 ± 8.0 47.8 ± 7.7 0.51

Fat Mass, DXA, kg 34.1 ± 15.1 32.7 ± 15.5 0.35

Total Body Water, BIA, kg 35.9 ± 5.8 35.6 ± 4.4 0.78

Extracellular Water, kg 15.7 ± 3.1 15.8 ± 2.3 0.84

Intracellular Water, kg 20.3 ± 2.9 19.9 ± 2.3 0.53
Characteristics are shown for postpartum women at one-month postpartum. p-values are for between-group
comparisons using the t-test or chi-squared test. Abbreviations: BMI, body mass index; BIA, bioelectrical
impedance analysis; DXA, dual X-ray absorptiometry.

The longitudinal changes in the body composition of postpartum women between one
and four months postpartum are shown in Table 2. Eighteen (86%) of the 21 postpartum
women attended the four-month postpartum study visit. Overall, postpartum women did
not show significant changes in weight (−0.8 ± 2.9 kg; p = 0.23), FFMDXA (−0.4 ± 1.0 kg;
p = 0.09), or FMDXA (−0.4 ± 2.4 kg; p = 0.45); however, there was a significant decrease in
ECF between one and four months postpartum (p = 0.0021), which indicates the normaliza-
tion of hydration and fluid volumes. The longitudinal changes in FFM (p = 0.41) and FM
(p = 0.74) were not statistically different when measured with BIA vs. DXA.

Deming regression analyses for FFM and FM, by group and time point, are shown
in Figure 1. For FFM (Figure 1A–C), the slope of the regression lines showed a constant
and proportional overestimation of FFM by BIA at one month postpartum. At four months
postpartum, and among non-postpartum controls, BIA overestimated FFM at lower val-
ues, and the bias trend shifted towards underestimation at higher FFM values. For FM
(Figure 1D–F), the slope of the regression line was 1.0, and it was aligned with the line of
identity for each group, indicating no proportional bias between the two methods for the
prediction of FM in any group.
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Table 2. Change in body composition between one and four months postpartum.

Characteristic

1 Month
Postpartum

(n = 18)

4 Months
Postpartum

(n = 18)
Change p-Value

Mean ± SD Mean ± SD Mean ± SD

Weight, kg 78.9 ± 18.7 78.1 ± 19.7 −0.8 ± 2.8 0.23

BMI, kg/m2 29.4 ± 6.9 29.1 ± 7.2 −0.3 ± 1.0 0.19

Waist Circ., cm 98.9 ± 12.5 99.0 ± 14.0 −0.1 ± 3.9 0.96

Fat-Free Mass, DXA, kg 45.8 ± 7.1 45.4 ± 7.3 −0.4 ± 1.0 0.09

Fat Mass, DXA, kg 33.2 ± 12.7 32.7 ± 13.3 −0.4 ± 2.4 0.45

Total Body Water, BIA, L 35.0 ± 4.8 34.4 ± 5.2 −0.6 ± 1.2 0.05

Extracellular Water, L 15.5 ± 2.4 15.1 ± 2.4 −0.4 ± 0.5 0.0021

Intracellular Water, L 19.5 ± 2.5 19.5 ± 2.8 0.0 ± 0.5 0.76
p-values test the significance of longitudinal changes by paired t-test. Bold values indicate p < 0.05. Participants
with missing 4-month values were omitted from analyses (n = 3). Abbreviations: BMI, body mass index; BIA,
bioelectrical impedance analysis; DXA, dual X-ray absorptiometry.
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Figure 1. Deming regression plots for fat-free mass (A–C) and fat mass (D–F) for women at one 

month postpartum (black), four months postpartum (blue), and the non-postpartum control group 
Figure 1. Deming regression plots for fat-free mass (A–C) and fat mass (D–F) for women at one
month postpartum (black), four months postpartum (blue), and the non-postpartum control group
(grey). Solid diagonal lines represent the line of identity, and dashed lines show the respective
regression trendlines.

Bland–Altman plots showing the agreement between BIA and DXA for FFM and
FM are shown in Figure 2. For FFM, Bland–Altman plots (Figure 2A–C) showed that the
difference between BIA and DXA increased at higher FFM values at one month postpartum.
Conversely, at four months postpartum, and for non-postpartum controls, the difference
between BIA and DXA decreased at higher FFM values. The mean differences in FFM
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were 1.2 ± 1.7 kg, 1.2 ± 1.5 kg, and 1.0 ± 2.1 kg at one-month postpartum, four months
postpartum, and among non-postpartum controls, respectively. Paired t-tests indicated that
the FFM estimates from BIA were significantly higher than DXA for postpartum women
at both time points (p < 0.01), and for non-postpartum controls (p < 0.05). There was no
significant difference in the agreement (i.e., mean difference), of BIA with DXA, between
groups (p = 0.29). The overall mean difference in FFM was 1.1 ± 1.9 kg (4.2%).
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Figure 2. Bland–Altman Plots for Fat-Free Mass (A–C) and Fat Mass (D–F) for women at one month
postpartum (black), four months postpartum (blue), and the non-postpartum control group (grey).
Dashed lines show the respective mean differences and limits of agreement.

Second, for FM, the Bland–Altman plots (Figure 2D–F) showed that the bias between
BIA and DXA shifted from underestimation to overestimation as the FM increased in
postpartum women at both time points; however, for non-postpartum controls, BIA shifted
from a slight overestimation at lower FM values to an underestimation at higher FM values.
The mean difference between BIA and DXA for FM was −1.0 ± 1.7 kg, −1.0 ± 1.5 kg,
and −0.2 ± 2.1 kg at one month postpartum, four months postpartum, and among non-
postpartum controls, respectively (Table 3). Paired t-tests indicated that BIA and DXA
estimates of FM were significantly different at one and four months postpartum (p < 0.05),
but the BIA’s estimates of FM were not significantly different from DXA among non-
postpartum controls (p = 0.67). There was no significant difference in the agreement (mean
difference), of the BIA with DXA, between groups (p = 0.27). The overall mean difference
in FM was −0.6 ± 1.9 kg (6.2%).
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Table 3. Paired t-tests of Mean Difference for Fat-Free Mass and Fat Mass.

Component Parameter
DXA BIA Mean Difference †

p-Value
Mean ± SD Mean ± SD Mean ± SD

Fat-Free Mass, kg

One month Postpartum 46.3 ± 8.0 47.5 ± 7.3 1.2 ± 1.7 **

0.29Four months Postpartum 45.4 ± 7.3 46.5 ± 6.5 1.2 ± 1.5 **

Non-postpartum controls 47.8 ± 7.7 48.8 ± 7.5 1.0 ± 2.1 *

Fat Mass, kg

One month postpartum 34.1 ± 15.1 33.2 ± 15.6 −1.0 ± 1.7 *

0.27Four months postpartum 32.7 ± 13.3 31.8 ± 13.8 −1.0 ± 1.5 *

Non-postpartum controls 32.7 ± 15.5 32.5 ± 15.8 −0.2 ± 2.1

† Mean difference = BIA–DXA; Paired t-test for DXA vs. BIA: * p < 0.05; ** p < 0.01. p-values are for a comparison of
the mean differences across groups by analysis of variance. Abbreviations: BIA, bioelectrical impedance analysis;
DXA, dual X-ray absorptiometry; pp, postpartum.

4. Discussion

The main finding of this study is that, compared with DXA, BIA overestimated FFM by
1.2 ± 1.7 kg (4.2 ± 2.6%) and underestimated FM by 1.0 ± 1.7 kg (6.4 ± 5.1%) in postpartum
women, at both one and four months postpartum. Given that the bias between DXA and
BIA was consistent at both time points, BIA’s measurement of longitudinal changes in FFM
and FM was not statistically different from DXA. These findings suggest that BIA may be
best suited for the assessment of relative changes in body composition among postpartum
women rather than to assess absolute FM or FFM at any given time point. These findings
are consistent with those of previous studies, which have found similar cross-sectional
and longitudinal differences in FM between BIA and DXA in (1) lactating women who are
overweight or obese at 2–3 months postpartum, and who underwent a 12-week weight loss
intervention [14]; (2) lactating women at 2–3 months postpartum [17]; and (3) women at
two weeks postpartum (not accounting for lactation/breastfeeding status) [16]. However,
none of the previous studies reported comparisons for FFM, which is an important factor to
consider for metabolic health, especially with weight loss, and the BIA instruments used in
those studies are no longer commercially available. Therefore, the results of this study add
a comparison between BIA and DXA to the literature, which focuses on postpartum women,
and that includes the FFM and FM compartments using a contemporary BIA device.

The secondary finding of this study is that there was no significant difference in the
performance of BIA’s standard equations for FM or FFM between postpartum women
and non-postpartum controls. It should be noted that BIA’s estimates of FM were only
significantly lower than DXA in postpartum women. It is likely that BIA’s FM estimates
are only different from DXA in postpartum women because the equations used were
designed for, and validated in, non-postpartum women, which suggests that BIA’s FM
estimates might be slightly improved if there were specific FM equations for postpartum
women. The need for such equations has been previously suggested by Medoua et al.,
who hypothesized that lactation was the primary reason for the observed bias in the
BIA’s FM estimates among postpartum women [17]; however, to date, no studies have
compared BIA’s performance between lactating and non-lactating postpartum women,
therefore, in this study, we aimed to test this hypothesis by matching postpartum women
who exclusively breastfed, with non-postpartum (i.e., non-lactating) controls. Although
we did not find a significant difference between groups, the results of this study suggest
that population-specific equations might improve FM estimates, but such equations are
not necessary for FFM. Given that BIA equations tend to be population- and device-
specific [10,18], those that use BIA in postpartum women might do well to standardize
their specific device’s measurements against a suitable reference method, such as DXA or
isotope dilution, in a sample that is similar to the target population.

This study should be interpreted in consideration of the following strengths and
limitations. The primary strength of this study is that it examined the performance of a
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contemporary bioimpedance analyzer in postpartum women. We used the seca mBCA
514, which is a modern, eight-electrode, segmental multifrequency device with updated
equations, that include both resistance and reactance, and it adjusts for differences in body
shape, which likely improves measurement accuracy [9,12,13,19–21]. Previous studies have
demonstrated that this device has highly reproducible and upright positioning, and it uses
metal plates instead of gel electrodes, which makes it optimal for high-throughput use in
clinical and research settings [19]. This study is also strengthened by the performance of
assessments at multiple time points without intervention among postpartum women, and
it is further strengthened by the inclusion of height- and weight-matched controls.

The potential limitations of this study include the small sample size and the racial
homogeneity of the participants. In addition, we compared BIA with DXA, which is a
rigorous method that was preferable to isotope dilution due to the participant’s active
breastfeeding status, but DXA is not a gold standard. Moreover, this study performed
the earliest measurements at one month postpartum, and thus, the period of rapid fluid
changes that occur at 2–4 weeks postpartum had concluded [22–24]. Furthermore, this
study did not include non-lactating postpartum women, who constitute slightly more than
half of women at three months postpartum [25], and have significant differences in body
composition compared with lactating postpartum women [8,26]. Lastly, the results of this
study may not be generalizable among all BIA instruments given that BIA equations tend to
be device-specific. Future studies should evaluate BIA’s performance with postpartum body
composition in larger, more diverse cohorts that include both lactating and non-lactating
women, as well as comparisons across devices.

Overall, this study suggests that, relative to DXA, BIA is a suitable method to assess
postpartum body composition at one and four months postpartum, using the existing
age-, race-, and sex-adjusted equations. BIA produced similar measurements in terms
of longitudinal changes, which suggests that BIA may be most suitable for the clinical
management of postpartum weight loss. Applications where the threshold for measurement
accuracy may be higher, such as between-group comparisons and intervention studies,
should consider the potential over- or underestimation of FFM and FM. Nevertheless, BIA
is non-invasive, cost-effective, easily accessible, and often portable, which is especially
advantageous in settings with limited access to diagnostic tools [9]. In general, the results
of this study suggest that BIA is a valid tool to aid clinicians and researchers seeking to
understand the composition and trajectory of postpartum weight change, which will be
important given the potential for postpartum weight changes to impact women’s future
health outcomes.
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