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Abstract. An approach to obtaining periodic and mean-periodic so-
lutions of Linear Ordinary Differential Equation (LODE) with constant
coefficients is presented. The use of the Computer Algebra System(CAS)
Mathematica for practical application of this approach is considered.

Keywords: Operational calculus, convolution, Duhamel principle, ini-
tial value problem, boundary value problem, linear ordinary differential
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1 The Operational Calculus Approach and Its
Application

The main features of the operational calculus approach are presented. Its ap-
plication for solving problems related to some classes of differential equations is
considered.

The main characteristics of the program packages developed with use of the
CAS Mathematica and supporting such application are briefly described. They
provide the use of:

– the Heaviside algorithm for solving initial value problems for LODE with
constant coefficients;

– an extension of the Heaviside algorithm to a class of boundary value prob-
lems for LODE with constant coefficients, connected with the problems of
obtaining periodic solutions of LODE both in the non-resonance and the
resonance cases; the obtaining of mean-periodic solutions of LODE with
constant coefficients using such an approach is outlined;

The features of the program tools implemented with use of the CAS Mathe-
matica[20] are briefly described.



1.1 About the Operational Calculus

The essence of the operational calculus consists in transformation of calculus
problems to algebraic problems, treating the differentiation operator as an alge-
braic object.

Some ideas of “symbolic” operational calculus come from the works of Leib-
nitz, Euler, Cauchy and other mathematicians (see [18], [15], and also [19]).
Nevertheless, Oliver Heaviside (1850–1925) is regarded to be the father of the
operational calculus. He was the first who successfully applied this method in
his research for solving initial value problems related to electromagnetic theory
(see [9]). But Heaviside did not established a sound mathematical theory and his
calculus was regarded by some scientists as inconsistent. The first justification
of his approach was done by means of the Laplace transformation. Quite later
– in the middle of the last century – the Polish mathematician Jan Mikusiński
(1913–1987) made a return to the original operator viewpoint and developed a
direct algebraic approach to the Heaviside operational calculus. He based his cal-
culus on the notion of convolution quotient, without referring it to the Laplace
transformation. His calculus is known as Mikusiński’s operational calculus. From
historical point of view, it is fair to call it as operational calculus of Heaviside –
Mikusiński.

Scientists in many countries have published works related to the operational
calculus of Mikusiński. Some of them are L. Berg, T.K.Boehme, I.H.Dimovski,
V.A. Ditkin, A.P.Prudnikov, K. Yosida, etc. Other names are mentioned in some
references, for example in [15]. Some recent results can be found in [21], and
others.

Mainly the results of I.H. Dimovski ([2], [3]) on development of operational
calculi of Mikusiński’s type are considered below.

The operational calculus has been widely used for solving problems in math-
ematics, physics, mechanics, electrical engineering, etc. The algorithms and the
program tools described here are intended to facilitate the use of the operational
calculus approach by means of computer.

1.2 Heaviside Algorithm

Since the main idea of the Operational Calculus (OC) of Oliver Heaviside
is the conversion of differential equations to algebraic equations by treating of
the differentiation operator as an algebraic object, an algorithm for doing that
is needed.

The so called Heaviside algorithm based on the operational calculus approach
is intended for solving initial value problems for linear ordinary differential equa-
tions with constant coefficients. We use it in the frames of Mikusiński’s opera-
tional calculus.

A description and implementation of the Heaviside algorithm using a CAS
are also considered. Special attention is paid to the features making this imple-
mentation efficient. Illustrative examples are included The Heaviside algorithm



for solving initial value problems for LODE with constant coefficients in the
frames of the Mikusinski‘s operational calculus is described.

The most important role in the Mikusiński’s operational calculus plays the
classical Duhamel convolution (see [12]):

(f ∗ g) =

t∫
0

f(t− τ)g(τ)dτ, (1)

in the space C[0,∞) of the continuous functions on [0,∞). Mikusiński considers
this space as a ring on IR or CI. He uses the fact that due to a famous theorem
of Titchmarsh the operation (1) has no divisors of zero and hence (C[0,∞), ∗) is
an integrity domain. In the same way, as the ring ZZ of the integers is extended to
the fieldQ of the rational numbers, he extends the ring (C[0,∞)∗) to the smallest
field M containing the initial ring. This field is called Mikusiński’s field and it

is denoted it by M. The elements of M are convolution fractions
f

g
=
{f(t)}
{g(t)}

,

called “operators”.
In Mikusiński’s calculus each function f : [0,∞) → IR is considered as an

algebraic object and the notation f = {f(x)} is used.
Basic operators in the Mikusiński approach are the integration operator l:

lf(t) =

t∫
0

f(τ)dτ, and the algebraic analogon s =
1

l
of the differentiation

operator
d

dt
.

The relation between the derivative f ′(t) and the product s {f(t)} is pre-
sented by the basic formula of the Mikusiński operational calculus

{f ′(t)} = s {f(t)} − f(0), (2)

where f ∈ C1[0,∞) and f(0) is considered as a “numerical operator”. If a
function f = {f(t)} has continuous derivatives to n-th order for 0 ≤ t < ∞, a
more general formula can be derived:

f (n) = sn f −
n−1∑
i=0

si f (n−1−i)(0), n = 1, 2, 3, . . . (3)

1.3 Solving Initial Value Problems for Linear Ordinary Differential
Equation Using the Heaviside Algorithm

Let P (λ) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an be a non-zero polynomial of
n-th degree with real or complex coefficients.

Consider the following initial value problem:

P

(
d

dt

)
y = f(t), y(0) = γ0, y

′(0) = γ1, · · · , y(n−1)(0) = γn−1. (4)

Using the main formula (2)–(3) of the operational calculus of Mikusinski, an
“algebraization” of the problem can be made. The problem (4) reduces to the



following single algebraic equation of first degree:

P (s) y = f +Q(s), (5)

with P (s) =
n∑
j=1

aj s
j , Q(s) =

n∑
j=1

(
n∑
k=j

an−k γk−j

)
sj−1 ,degQ < degP.

The formal solution has the form

y =
1

P (s)
f +

Q(s)

P (s)
. (6)

It can be interpreted as a functional solution if we decompose 1/P (s) and
Q(s)/P (s) in elementary fractions and interpret these fractions as functions
using the formula (see [12]):

1

(s − α)
n =

{
tn− 1

(n − 1)!
eα t
}
, n = 1, 2, . . . (7)

Thus we represent 1/P (s) and Q(s)/P (s) as functions:

G(t) = 1/P (s), R(t) = Q(s)/P (s) (8)

and the solution takes the form

y(t) = G(t) ∗ f(t) +R(t) (9)

At last the computation of the convolution product denoted by ∗ in (9) has
to be performed.

The solution of an initial value problem for simultaneous ordinary linear
differential equations with constant coefficients can be performed in a similar
way: algebraization of the problem and reducing it to a system of linear alge-
braic equations; solving the obtained system using linear algebra methods and
functional interpretation of the solution.

1.4 Program Implementation of the Heaviside algorithm

A program implementation of the Heaviside algorithm would allow it to be
used by means of computer. Having in mind the kind of the operations of this
algorithm and the capabilities of the computer algebra system Mathematica,
this system was chosen for development of a program package implementing the
Heaviside algorithm.

Information about a full program implementation of the Heaviside algorithm
was not found.

Main steps of the algorithm
Formulating once again the steps of the Heaviside algorithm, the features of

their program implementation are considered below.
Step 1. Algebraization of the problem. The language tools of Mathematica

allow the transformation of (4) into (5) to be made in a convenient way, using
rules for presentation of the formulae (2)–(3) and for the initial conditions of
(4).



Step 2. Solution of the algebraic equation (5). A polynomial equation (or
a system of such equations) has to be solved and Mathematica provides such
capabilities. The result is obtained in the form (6).

Step 3. Factorization of the polynomial P (s) and partial fraction decomposi-

tion of
1

P (s)
and

Q(s)

P (s)
. The built-in function named Factor of Mathematica is

used; a presentation of P (s) as a product of factors, each of which is a polynomial
of first or second degree, raised to an integer positive number, is obtained. More
details are described in [17] and [4]. This process may not finish with success if
some of the coefficients of P (s) are parameters and in the same time degP > 4.
In this case the solution of problem (4) is aborted. If the factorization of P
is finished successfully, the Mathematica function Apart represents the rational

expressions
1

P (s)
and

Q(s)

P (s)
as sums of terms with minimal denominators of

minimal degrees.

Step 4 Interpretation of the rational expressions
1

P (s)
and

Q(s)

P (s)
. Each frac-

tion in these expressions has to be interpreted as a function by means of formulae,
such as (7). The main part of the Mikusinski’s table is used. The formulae are
presented as Mathematica rules with appropriate pattern matching. An uniform
interpretation of all fractions is obtained. As a result, the presentations (8)–(9)
are achieved.

Step 5. Computation of the Duhamel convolution in the final form of the
solution. The Mathematica integratoris used.

Step 6. Showing the result: solution or a message that the problem can not
be solved. It was mentioned above when the problem will not be solved in case of
one equation. In case of solving initial value problem for a system of equations,
similar situation may occur, but, in addition, the problem will not be solved if
on Step 2 the algebraic system has not solution.

1.5 Program Package for the Heaviside Algorithm

An implementation of the Heaviside algorithm following the steps described
above, is developed as a Mathematica program package. Its main function
DSolveOC defines the performance of all steps of the Heaviside algorithm. The
call of this function is similar to the call of the Mathematica function DSolve.
The output also has similar form. The solution is presented as a rule or as a list
of rules in case of several solutions. The use of options for visualization of the
solution and for some additional capabilities is provided.

Illustrative examples

With the following two examples we illustrate the use of the main function
DSolveOC of the package. The solutions, of two initial value problems - for linear
ordinary differential equation and for a system of two linear ordinary differential
equations are shown.

Example 1. Initial value problem for one LODE with constant coefficients:



task1 = 9x’’’@tD + x’@tD � ã2 t, x@0D � 0, x’@0D � 0, x’’@0D � 0=

9x¢@tD + xH3L@tD � ã2 t, x@0D � 0, x¢@0D � 0, x¢¢@0D � 0=
DSolveOC@task1, x@tD, tD
DSolveOCA9x’’’@tD + x’@tD � ã2 t, x@0D � 0, x’@0D � 0, x’’@0D � 0=, x@tD, tE

x@tD ®
1

10
I-5 + ã2 t + 4 Cos@tD - 2 Sin@tDM

Example 2. Initial value problem for a system of LODE with constant
coefficients; an option for visualization of the solution is used.

mysyst = 9-x@tD + 2 y@tD + x¢@tD � -2 ãt, -2 x@tD - y@tD + y¢@tD � 0, x@0D � 0, y@0D � 1=
DSolveOC@mysyst, 8x@tD, y@tD<, t, GraphInterval ® 80, Π<D

9x@tD ® -4 ãt Cos@tD Sin@tD,

y@tD ® ãt H-1 + 2 Cos@2 tDL

0.5 1.0 1.5 2.0 2.5 3.0

-10

10

20

y@tD

x@tD

Concluding Remarks

– The Heaviside algorithm gives a closed form solution of an initial value prob-
lem for a linear ordinary differential equation or a system of such equations
in a direct way, without trying to find partial and general solution.

– An uniform approach is used for homogenous and for non-homogenous equa-
tions.

– No special requirements to the right-hand side function are posed (as in the
case of Laplace transformation).

– In the Heaviside algorithm the initial value conditions are supposed to be
given in the point 0. It is easy to develop an extension of the algorithm
allowing the initial value conditions to be given in point t0 6= 0.

– For solving an initial value problem for a system of ordinary linear differential
equations with constant coefficients, all steps of the Heaviside algorithm can
be performed in a similar way, as in case of solving initial value problem for
one equation.

The presented implementation of the Heaviside algorithm is considered in
more details in [4] and [17].

2 Extension of the Heaviside Algorithm to a Class of
Boundary Value Problems for LODE with Constant
Coefficients. Periodic Solutions of Such Equations

An approach to obtaining periodic and mean-periodic solutions of LODE
with constant coefficients is presented.



2.1 An Auxiliary Boundary Value Problem.

An extension of the Heaviside – Mikusiński operational calculus is developed
by I. Dimovski and S. Grozdev (see [2], [7], [8]) and in the framework of this
operational calculus an extension of the Heaviside algorithm is proposed. It is
intended for solving nonlocal initial value problems for LODE with constant co-
efficients. This approach is used for obtaining periodic solutions of such equations
[16].

Let’s consider a non-zero polynomial with constant coefficients of degree n:

P (λ) = a0λ
n + a1λ

n−1 + · · ·+ an−1λ+ an
and the following ordinary linear differential equation with constant coefficients:

P

(
d

dt

)
y = f(t), −∞ < t <∞ (10)

We are looking for a periodic solution y(t) with period T of this equation,
i.e. a solution satisfying the identity:

y(t+ T ) = y(t), −∞ < t <∞ (11)

An obvious necessary condition for the existance of a periodic solution of
(10) with period T is the function f(t) to be periodic with period T , i.e. for each
t ∈ R the following condition to be satisfied:

f(t+ T ) = f(t) (12)

.

The following Theorem could be proven: A solution of (10) with periodic
right-hand side f(t) with period T is T-periodic if and only if the following
“boundary” conditions are satisfied:

y(T )− y(0) = 0, y′(T )− y′(0) = 0, . . . y(n−1)(T )− y(n−1)(0) = 0 (13)

This theorem allows the problem of obtaining periodic solutions of (10) to be
reduced to the problem of finding a solution of this equation in the interval
(−∞, ∞), satisfying the “boundary” conditions (13).

Further we reduce this problem to the following intermediate (auxiliary)
boundary-value problem:

P

(
d

dt

)
y = f(t), −∞ < t <∞

T∫
0

y (τ) dτ = α0, y
(k)(T )− y(k)(0) = αk+1, k = 0, 1, . . . n− 2.

(14)



2.2 An Operational Method for Solving the Auxiliary Problem.
Convolution of Dimovski.

The Heaviside algorithm is developed for solving initial value problems for
LODE with constant coefficients and it can not be used directly for finding
periodic solutions of such equations.

Use of Fourier transform and Laplace transform for obtaining periodic solu-
tions can be found in some works of Kaplan [10], Rosenvasser ([13], [14]), Lurie
[11] and some others. We use an alternative direct approach, similar to those
of Mikusiński, but using another convolution, based on the operational calculus
of Dimovski (see [2]) and related to the nonlocal boundary value problem in
C(IR) :

y′ = f(x),

∫ T

0

y(τ)dτ = 0,

where T is a constant.
The solution

Lf(t) =

∫ t

0

f(τ)dτ − 1

T

∫ T

0

(∫ τ

0

f(σ)dσ

)
dτ

is an analogue of the integration operator lf(t) =

∫ t

0

f(τ)dτ

of Mikusiński’s operational calculus.
The operational calculus of Dimovski for the operator L is an analogue of the

operational calculus of Mikusiński, but the following convolution of Dimovski is
used:

(f
t∗ g)(t) = Φτ{

∫ t

τ

f(t+ τ − σ)g(σ)dσ},

with an arbitrary linear functional Φ in C(IR). In this case the functional

Φ{f} =
1

T

∫ T

0

f(τ)dτ is used. The convolution

(f
t∗ g)(t) =

1

T

∫ T

0

(∫ t

τ

f(t+ τ − σ)g(σ)dσ

)
dτ

has the property Lf(t) = {1} t∗ f.
Dimovski and Grozdev proposed a simpler convolution (without using of

repeated integrals):

(f ∗ g)(t) =
f(t)

T

∫ T

0

g(τ) dτ +
g(t)

T

∫ T

0

f(τ) dτ

− 1

T

∫ t

0

f(t− τ) g(τ) dτ − 1

T

∫ T

t

f(t+ T − τ) g(τ) dτ,

(15)

for which {1} t∗ f = f .



The constant function {1} plays the role of a unity in the convolution algebra
( C(IR), ∗ ). The operator L has the following representation:

L{1} = t− T

2
, i.e. Lf =

{
t− T

2

}
t∗ f.

Further, convolution fractions of the form f/g are considered (with f, g ∈
C[0, T ], g being a nondivisor of 0 of the operation (15)). The ring of the con-
tinuous functions on (−∞, ∞) is extended to the smallest ring M, containing

the convolution fractions
f

g
with denominators which are nondivisors of 0. The

most important convolution fraction

S =
1

L

is considered as an algebraic analogue of d/dt.

The basic formula of the Operational Calculus of Dimovski is:

{f ′(t)} = S {f(t)} − 1

T

T∫
0

f(τ)dτ. (16)

Here
1

T

T∫
0

f(τ)dτ is considered as a constant function.

For f (n) the following formula can be derived from (16):

f (n) = Snf − Sn

T

∫ T

0

f(τ)dτ −
n−1∑
k=1

Sk

T

(
f (n−1−k)(T )− f (n−1−k)(0)

)
(17)

For the case T = 1, the integral operator L is called by Dimovski and
Grozdev Bernoullian integration operator due to the following relation with
the polynomials of Bernoulli:

Ln{1} =
Tn

n!
Bn

(
t

T

)
, n = 0, 1, 2, . . . ,

where Bn (t) is the polynomial of Bernoulli of degree n.
Further the scheme of Mikusiński has to be followed, using the convo-

lution (15) and taking into account the following differences:
1) The operation (15) has a unit element.
2) This operation has divisors of 0.

The eigenfunctions of L are divisors of 0 of (15). These functions have the

form ϕn(t) = Ce
2πint
T , n ∈ ZZ \ {0}.

For the application of the new operational calculus it is important we to have

formulae for convolution fractions of the type
1

(S − λ)k
, k ∈ IN . They exist iff

S − λ is a nondivisor of 0 and this is not truth iff λ =
2πin

T
and n ∈ ZZ \ {0}.



Thus for each λ 6= 2πin

T
, n ∈ ZZ \{0} the following formulae hold:

1

S − λ
= − 1

λ
+

T et λ

eλT − 1
(18)

S

S − λ
=

T λ et λ

eλT − 1
(19)

Corollary. If λ 6= 2πin

T
, n ∈ ZZ \ {0}, more general formulae hold (for each

integer k ≥ 1):

1

(S − λ)k
=

1

(k − 1)!

∂k−1

∂λk−1

(
− 1

λ
+

T et λ

eλT − 1

)
(20)

S

(S − λ)k
=

1

(k − 1)!

∂k−1

∂λk−1

(
T λ et λ

eλT − 1

)
(21)

The formulae (18)–(21) are intended to be used for interpretation of rational
expressions in the extended Heaviside algorithm. For the purposes of the program
implementation of this algorithm additional formulae were derived–for the case
when the denominator is an integer power of a second degree polynomial.

Non-resonance case. Let’s apply the Operational Calculus of Dimovski for
solving the auxiliary problem, formulated above:

P

(
d

dt

)
y = f(t), −∞ < t <∞

T∫
0

y (τ) dτ = α0, y
(k)(T )− y(k)(0) = αk+1, k = 0, 1, . . . n− 2.

(22)

Using the formulae (16)–(17), we can make an “algebraization” of the problem,
thus reducing it to one algebraic equation of 1st degree:

P (S)y = f + S Q(S), (23)

where P (S) and Q(S) are polynomials of S and the degree of Q(S) is less than
the degree of P (S).

The formal solution of the above equation has the form

y =
1

P (s)
f + S

Q(s)

P (s)
. (24)

The above representation contains division by P (S) and this is possible if P (S)

is not a divisor of 0 in M, i.e. iff P

(
2πim

T

)
6= 0 for each m ∈ ZZ \ {0}. This is

the so–called non-resonance case.



Main steps of the extended Heaviside algorithm for solving the
intermediate problem in the non-resonance case:
1) Finding the roots λ1, λ2, . . . , λn of the equation P (λ) = 0.

2) Finding out that none of the roots have the form
2πim

T
with

m ∈ ZZ \ {0}.
3) Finding the polynomial Q(S).

4) Expanding
1

P (S)
and

Q(S)

P (S)
into a sum of partial fractions.

5) Interpretation of the fractions w =
1

P (S)
and v = S

Q(S)

P (S)
as functions.

6) Representation of the solution in the form u = w ∗ f + v.

A comparison with the classical Heaviside algorithm:

– for algebraization of the problem the formulae (16)-(17) are used now.

– we have here an additional step (step 2);

– new interpretation formulae (such as (18)-(21)) are used on step 5);

– the operation ∗ on step 6) is not the Duhamel convolution; it is the convo-
lution (15).

Resonance case.

If the above condition λ 6= 2πin

T
, n ∈ ZZ \{0} fails for one or more roots of P ,

we have the so-called resonance case and the corresponding roots are called
resonance roots.

Let’s denote with n1, n2, . . . , np all integer numbers, for which

P

(
2πink
T

)
= 0, k = 1, 2, . . . , p, and let Cn1, n2, ..., np be the subalgebra of

(C(IR), ∗), such that the convolution (15) plays the role of multiplication in it.
It was mentioned above that the eigenfunctions of the operator L have the form
ϕn(t) = e

2πint
T , n ∈ ZZ \ {0}. It is shown in [8] that if f ∈ C[0, T ], then

f ∗ {e 2πint
T } = χn(f) e

2πint
T , n = ±1, ±2, . . . ,

where

χn(f) =
1

T

∫ 1

0

(e
2πint
T − 1)f(t)dt, n = ±1, ±2, . . . , (25)

is a complete system of multiplicative functionals. We call them Fourier coeffi-

cients of f with respect to
{
e

2πint
T

}
, n ∈ ZZ \{0}.

Due to a theorem proven in the above cited paper, at least one of the Fourier
coefficients of the function f has to be equal to zero in order this function to
be a divisor of 0 in the algebra (C(IR), ∗). One can prove that this condition is
necessary as well.



Let’s denote by L̃ the restriction of the operator L to Cn1, n2, ..., np . Then

instead of Lf = r ∗ f , for r(t) = t− T

2
in [0, T ], the following presentation in

Cn1, n2, ..., np will hold: L̃f = r̃ ∗ f, where

r̃(t) = r(t)−
p∑

k=1

χnk(r)e
2πinkt

T = t− T

2
−

p∑
k=1

T

2πinkt
e

2πinkt

T .

We denote byMn1, n2,...,np the ring of the convolution fractions of Cn1, n2, ..., np ,
whose denominators are nondivisors of 0 of the convolution (15).Denote the al-

gebraic inverse element of L̃ by S̃, i.e. S̃ =
1

L̃
.

Two important theorems, proven by Dimovski and Grozdev, are denoted here
by T1 and T2, respectively:

T1. The elements S̃ − 2πink
T

, k = 1, 2, . . . , p of the ring Mn1, n2,...,np are

reversible and

1

(S̃ − 2πink
T )m

=

{
(−1)m−1

( 2πink
T )m

+
e

2πinkt

T

m!
Bm(

t

T
)

}
∗ (26)

for m = 1, 2, . . . , where Bm is the polynomial of Bernoulli of degree m (the
sign ∗ means a convolution operator).

T2. If P (
2πink
T

) = 0 for k = 1, 2, . . . , p and P (
2πin

T
) 6= 0 for all other

integer numbers n 6= 0, an necessary and sufficient condition for solvability of
(22) is:

1

T

∫ 1

0

f(t)(e
2πinkt

T − 1)dt = 0, k = 1, 2, . . . , p , (27)

i.e. the Fourier coefficients of f(t) with numbers n1, n2, . . . , np to be equal to
0.

Let’s formulate now the algorithm for solving (22) in the resonance
case:

1) As in the non-resonance case, we can make an algebraization of the prob-
lem, i.e. we can reduce it to a single equation but in Cn1, n2, ..., np :

P (S̃) ỹ = f +Q(S̃). (28)

2) We consider the homogenous BVP:

P

(
d

dt

)
y = 0,

∫ T

0

y(τ)dτ = 0, y(j)(T )− y(j)(0) = 0, j = 0, 1, . . . n− 2.

It is equivalent to the equation P (S̃) y = 0 and its solutions have the form:

y =
{
C1e

2πik1t
T + . . .+ Cme

2πikmt
T

}
,

where C1, C2 . . . , Cm are constants.



3) The solution of (22) has the form:

y = ỹ +
{
C1e

2πik1t
T + . . .+ Cme

2πikmt
T

}
, (29)

where ỹ is the solution of (28).

The reducing of the problem for obtaining periodic solutions of LODE with
constant coefficients to the auxiliary problem deserves special attention. This
consideration is omitted here.

General algorithm for obtaining a periodic solution.
1) Algebraization of the given problem and finding roots λ1, λ2, . . . , λn of the
equation P (λ) = 0.

2) a) Finding out roots of the form
2πim

T
( m ∈ ZZ \ {0}).

2) b) Verifying whether the roots selected in 2 a) satisfy the conditions (27). If
for some of the selected roots these conditions are not satisfied, periodic solutions
do not exist.
3) Forming the polynomial Q(S).

4) Partial fraction decomposition of
1

P (S)
and

Q(S)

P (S)
and separation of the

resonance and non-resonance parts.

5) Interpretation of the fractions w =
1

P (S)
and v =

Q(S)

P (S)
as functions. As

was mentioned above, different groups of formulae are used for interpretation of
the fractions from the resonance and the non-resonance parts.
6) Presentation of the solution in the form:

unr = w1 ∗ f + v1, ur = w2 ∗ f + v2
u = unr + ur,

(30)

where w1 and w2 are functions, obtained at step 5) after interpretation of the
non-resonance and resonance parts respectively of the partial fraction decom-
position of w; v1 and v2 are functions obtained at step 5) after interpretation
of the non-resonance and resonance parts respectively of the partial fraction
decomposition of v.

The general solution u is the sum of both parts of the solution–the non-
resonance part unr and the resonance part ur. It is possible, of course, for each
of these parts to be equal to zero.

2.3 Program Implementation of the Algorithm

The program implementation of the general algorithm follows the successive
steps formulated above. For obtaining both parts of the solution – the non-
resonance and the resonance one, the above described extended algorithm of
Heaviside is used. Its implementation is in fact a modified implementation of
the classical algorithm of Heaviside. The main differences are as follows:

(i) For algebraization of the problem the formula (17) is used now.



(ii) Other interpretation formulae are used here. The main formulae men-
tioned above are (18) – (21) and (26). For practical applications more formulae
based on them are derived (see [17]).

(iii) The operation denoted by ∗ in (30) is the convolution (15); convolution
powers are computed as in case of use of Duhamel convolution.

(iv) The verification of condition (27) here is a part of the algorithm.
The implementation of the general algorithm considered above includes find-

ing of periodic solutions of systems of linear ordinary differential equations with
constant coefficients as well.

Main part of the interpretation formulae used by our program
implementation:

For the non-resonance case:
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For the resonance case:
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2.4 Program package

The developed program package for Mathematica, provides application of all
described operations of the general algorithm for obtaining periodic solutions of
LODE with constant coefficients.

The main function of the package is called DSolveOCP and its use is similar
to the use of the considered above function DSolveOC. An additional argument
is the period T . Due to the above considerations, the boundary conditions have

the form

T∫
0

y (τ) dτ = α0, y
(k)(T )− y(k)(0) = αk+1, k = 0, 1, . . . n− 2. The use

of an option for visualization of the solution, together with the right–hand side
function is provided.

Some illustrative examples follow – for the resonance case and for the “mixed”
case when the solution is a sum of two parts – resonance and non-resonance ones.

Example for the non-resonance case:

<< DSolveOCPpack‘

Example1 : 8yHtL a2
+ y¢¢HtL � sinHtL, ΑH1L � 0<; T = 2 Π

DSolveOCP@8y’’@tD + a^2 y@tD � Sin@tD, Α@1D � 0<, y@tD, t, 2 ΠD

y@tD ®

1
�����������������������������������������

2 a3 H-1 + a2L2 Π

 H2 a2 Cos@tD Sin@a ΠD HH-1 + a2L Π Cos@a ΠD - 2 a Sin@a ΠDL +

Ha H1 - 3 a2 + 2 a4L Π + a H-1 + a2L Π Cos@2 a ΠD + H1 - 3 a2L Sin@2 a ΠDL Sin@tDL

Example for the resonance case (with option for visualization of the solution):

Example 2 : y’’@tD + 4 y@tD == Cos@3 tD

DSolveOCP@8y’’@tD+4 y@tD==Cos@3 tD, Α@1D==0<, y@tD, t, 2 Π, Graph->TrueD

y@tD -> -1 � 5 Cos@3 tD

Out[14]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

f

solution



Example for a “mixed” case:

Example3 : 84 yHtL + 4 y¢HtL + y¢¢HtL + yH3LHtL � cosH5 tL, ΑH1L � 0, ΑH2L � 0<; T = 2 Π;

de = y’’’@tD + y’’@tD + 4 y’@tD + 4 y@tD � Cos@5 tD;

DSolveOCP@8de, Α@1D � 0, Α@2D � 0<, y@tD, t, 2 ΠD

y@tD ®
1
����������

546
H-Cos@5 tD - 5 Sin@5 tDL

3 Mean-Periodic Solutions of LODE with Constant
Coefficients

A more general approach to obtaining periodic solutions of LODE with con-
stant coefficients is considered in the papers [5] and [6].

Let P (λ) = a0λ
n+a1λ

n−1 + · · ·+an−1λ+an be a non-zero polynomial with
constant coefficients of degree n and let us consider an ordinary linear differen-
tial equation of the form:

P

(
d

dt

)
y = f(t), −∞ < t <∞ (31)

Let Φ be a linear functional on C(IR). We are looking for solutions of (31)
which satisfy the relation

Φ {y(t+ τ)} = 0 (32)

for all t ∈ IR, i.e. for mean-periodic solutions of (31) with respect to the functional
Φ.

Definition 1. The boundary value problem

P

(
d

dt

)
y = f(t), Φ{y(k)} = αk, k = 0, 1, . . . , n− 1, f ∈ C(∆) (33)

is said to be a non-local Cauchy problem, associated with the functional Φ.

Definition 2. Let Φ ∈ [C(IR)]
∗

be a given linear functional on the space of
the continuous functions on the real line. A function f ∈ C(IR) is said to be
mean-periodic [1] with respect to the functional Φ if

Φτ{f(t+ τ)} = 0 for t ∈ IR.

The periodic functions with a period T > 0 are mean-periodic with respect
to the functional

Φ{f} = f(T )− f(0).

The antiperiodic functions with an antiperiod T > 0, i.e. the functions, sat-
isfying the functional equation f(T + t) = −f(t), are mean-periodic functions
with respect to the linear functional

Φ{f} =
1

2
{f(0) + f(T )}.



Further considerations related to the mean-periodic functions and the use of
the Mikusiński type operational calculus of Dimovski (and the Heaviside algo-
rithm with some modifications) for obtaining mean-periodic solutions of LODE
with constant coefficients are presented in [5] and [6].

For deriving some formulae and for practical application of the described
algorithms the CAS Mathematica is used.

3.1 Advantages of the Presented Approach for Obtaining
Periodic Solutions of LODE with Constant Coefficients

The presented approach is more efficient than those in the above mentioned
books of Kaplan [10], Rosenvasser [14] and Lurie [11].

The function DSolve of Mathematica remains as undetermined the constants
appearing in the solution in the resonance case.

In the classical methods for finding periodic solutions, originally the gen-
eral solution is found and after that the periodicity conditions are used for de-
termi - ning the unknown constants in it. In the above guggested approach these
conditions are taken into account at the level of algebraization of the problem.

In case of use the Laplace transformation for finding periodic solutions, the
existence of Laplace transform of the right-hand side of the equation is needed.

The presented approach is more efficient (especially in the resonance cases)
than the well known (and published) approaches.

A more general approach for the case of mean-periodic solutions is suggested.
All proposed algorithms are convenient for use in the program environment

of a CAS (Mathematica in our case).
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