
Edit Metric Decoding:
Return of the Side Effect Machines

Sheridan Houghten
Dept. of Computer Science

Brock University
St. Catharines, ON, Canada

Email: shoughten@brocku.ca

Tyler K. Collins
Dept. of Computer Science

Brock University
St. Catharines, ON, Canada
Email: tk11br@brocku.ca

James Alexander Hughes
Computer Science Dept.

University of Western Ontario
London, ON, Canada

Email: jhughe54@uwo.ca

Joseph Alexander Brown
AI in Games Development Lab

Innopolis University
Innopolis, Tatarstan, Russia

Email: j.brown@innopolis.ru

Abstract—Side Effect Machines (SEMs) are an extension of
finite state machines which place a counter on each node
that is incremented when that node is visited. Previous studies
examined a genetic algorithm to discover node connections in
SEMs for edit metric decoding for biological applications, namely
to handle sequencing errors. Edit metric codes, while useful
for decoding such biologically created errors, have a structure
which significantly differentiates them from other codes based
on Hamming distance. Further, the inclusion of biologically-
motivated restrictions on allowed words makes development of
decoders a bespoke process based on the exact code used. This
study examines the use of evolutionary programming for the
creation of such decoders, thus allowing for the number of states
to be evolved directly, not witnessed in previous approaches which
used genetic algorithms. Both direct and fuzzy decoding are used,
obtaining correct decoding rates of up to 95% in some SEMs.

I. INTRODUCTION

In this study side effect machines, an offshoot of finite
automata, are employed for efficient decoding of tags that
have been incorporated into genetic constructs. The tags in
question are designed to be resilient to errors that may be
introduced during sequencing. Evolutionary programming is
used to create side effect machines that are able to recover a
high proportion of the original data.

A. Background

Error-correcting codes are used to retain information that
may otherwise be lost during transmission over a noisy chan-
nel. Redundant information is added to the original message
to form a codeword. The set of all allowed codewords forms a
code. The codeword is transmitted in the place of the original
message, and if noise occurs during transmission that changes
the word transmitted, these errors are detected if the received
word is not one of the allowed codewords. If the exact changes
to the transmitted word can be identified then the errors can be
corrected. Codes are designed so that the codewords are well
separated – the further they are separated from one another,
the higher the number of errors that can be corrected.

Traditionally, error-correcting codes were defined using
Hamming distance. This measures the number of substitu-
tion errors, in which individual symbols are independently
changed. For example, the words 101010 and 010110 are
Hamming distance 4 from each other, as the first four symbols

all differ between the two words, while the remaining two
symbols are the same.

In some applications it is useful for a genetic construct to
contain tags, which are short sequences incorporated into the
genetic construct that provide identifying information. When
this genetic construct is sequenced, errors may occur. The
sequencer may misread a base, leading to a substitution error.
It may also skip a base, causing a deletion, or it may read
one that is not there, causing an insertion. The tags must
be resilient to such errors, and so should be designed as
codewords. In this case, however, it is inappropriate to use
Hamming distance because it does not take into consideration
insertions and deletions of symbols. Instead, edit distance,
also known as Levenshtein distance [17], is the appropriate
choice. The edit distance between two words is defined as
the minimum number of insertions, deletions and substitutions
required to transform one word into the other. If the fourth
symbol (‘0’) in the word 101010 is deleted and then a ‘0’ is
inserted at the start, the word 010110 is created, and so these
two words are at edit distance 2 from each other.

As the language of DNA is constructed from 4 possible
symbols (‘A’, ‘C’, ‘G’, and ‘T’), the tags are codewords in
which the alphabet consists of these same 4 symbols. The
code has a specified minimum distance, which is the smallest
pairwise edit distance between codewords. A (n,M, d)q code
is a code with M codewords of length n and with minimum
distance d, where each codeword is constructed using an
alphabet of q symbols. A code with minimum distance d is
able to correct b(d − 1)/2c errors. A code with a greater
number of codewords has a greater number of possible tags
and thus has more available labels to represent information.
Meanwhile, the practicality of incorporating tags is dependent
on their length. For a given length, as minimum distance
(and hence level of error correction) increases, the maximum
possible number of codewords decreases.

A number of previous studies have considered the problem
of finding codes with as many codewords as possible, given
length and minimum distance. Techniques include exhaustive
search [15] along with various computational intelligence
techniques (e.g. [3], [2]).

It should be noted that, along with the length, minimum
distance and number of codewords, there may also be further



A,G,T 

 

1 

4 3 

2 
C,G,T 

A,T 

C 

G 

G 

C 
A 

A 

T 

C 

Received Pattern c1 c2 c3 c4
ACCGTCAGTCTT 2 4 3 3
CTGCGTACGTCT 1 6 1 4
TCTAAAGCTGGC 2 5 1 4

Fig. 1. Example Four State SEM with Example Patterns and Output Vectors

considerations as to the suitability of a given codeword for a
particular application. For example, there may be restrictions
on the GC content of the codewords or on the existence of
certain substrings, and in some cases the minimum distance
also applies between codewords and reverse complements of
codewords. Examples of studies that consider such further
restrictions include [6], [19] and [20].

The process of finding and correcting errors is called decod-
ing. Maximum-likelihood decoding is based on the assumption
that the original (uncorrupted) word is the codeword closest to
the received word. Some codes defined using Hamming dis-
tance have a mathematical structure allowing for particularly
efficient decoding algorithms, making these codes very useful
in practice. However, this is not even a remote possibility
when considering edit-metric codes for biological applications:
the codes are simply sets of codewords with little in the
way of mathematical structure connecting them, even before
considering any additional biological restrictions such as those
described above.

As a result, previous work in [8] [9] [16] employed side
effect machines for efficient decoding of such codes.

II. SIDE EFFECT MACHINES

Side Effect Machines (SEMs) extend finite state machines
by placing a counter on each node. Each time a state is entered,
its counter is incremented.

Figure 1 shows a four state side effect machine. As a
convention the SEM always begins on a set state, usually

state 1. The counters are represented by the classification
vector c = (c1, c2, c3, c4) where ci, 1 ≤ i ≤ 4, records the
number of times that state i has been entered. For example,
an input of ACCGTCAGTCTT gives a path through the
states of 312422433124, which yields the classifying vector
c = (2, 4, 3, 3), since state 1 is visited 2 times, state 2 is
visited 4 times, and states 3 and 4 are each visited 3 times.

Side Effect Machines act as a transducer between an input
language, Σ, onto a NS string, where S is the maximum num-
ber of states in the SEM representation. Brown [7] examines
their placement into the Chomsky Hierarchy and determines
that the key to their recognizing abilities is based upon the
power of the examination of the output vector, as the machine
is limited by its finite number of states; however, it is more
powerful than finite state recognizers as it is also able to count.

Genetic algorithms have been used to evolve SEMs in a
variety of different ways. Those evolved SEMs have been
used to classify DNA sequences (see e.g. [4] [18]) and for
motif discovery [1]. In a study examining the classification
of transposable elements [5], it was revealed that biological
meaning could be extracted from SEMs.

A. Decoding using Side Effect Machines

As stated earlier, SEMs have also been used for efficient
decoding of edit metric codes. Decoding a received word w
involves finding the codeword that is closest (i.e. has the
smallest edit distance) to w. For words of length n, edit
distance is calculated using a O(n2) dynamic programming
algorithm. To find the closest codeword, therefore, requires
this operation to be performed for all M codewords.

To avoid this heavy cost, a SEM could be used, with the
SEM designed to minimize the Euclidean distance between
the classifying vector of the received word w and that of
the correct codeword. Specifically, in earlier studies genetic
algorithms were used with a goal of evolving such SEMs.

In the first study [8] genetic algorithms were used to evolve
SEMs for decoding of (12, 55, 7)4 edit metric codes. In the
direct approach, the classifying vector of the received word
w was compared to the classifying vectors of all codewords,
with w decoded as the codeword v with the closest classifying
vector. Note that as SEMs are probabilistic, additional verifica-
tion can be provided by calculating the edit distance between
w and v. If this distance is within the error-correcting capacity
of the code then the SEM has decoded correctly; otherwise,
a response such as “unable to decode” should be provided.
In the study the SEM was also used for fuzzy classification:
the classifying vectors of all codewords were ranked in order
of their Euclidean distance to the classifying vector of the
received word, and all those within a given tolerance were
checked, in order, using edit distance. The best SEM was able
to correct 81% of words with 1 or 2 errors, in both training
and testing data; when extended to fuzzy classification, this
improved to over 90% for a tolerance level of 3.

The second study [9] expanded upon the first by studying
five different codes, all of length 12 and minimum distance
7, and with between 54 and 56 codewords. Performance was



found to improve rapidly as the number of states in the
SEMs increased, however with negligible improvement after
the number of states reached 12. The study also considered a
hierarchical classification of multiple SEMs.

The third study [16] used three different approaches. The
first was a basic GA with a direct representation in which the
SEMs were the chromosomes. The other two both used the
recentering-restarting evolutionary algorithm, one with a direct
representation and the other with an indirect representation
based upon transpositions. Three codes were studied, all of
length 12 and minimum distance 7, and with between 55 and
60 codewords. As in [8], both direct and fuzzy classification
were considered. For direct classification, performance for
the direct representation again improved significantly as the
number of states increased, up to about 12. For direct classi-
fication, the indirect representation did not compete well with
the direct representation, although again there was a general
improvement when the number of states increased. However,
the indirect representation performed very well when using
fuzzy classification; in this case it appeared to be better able
to generalize, as with four states some SEMs were able to
correctly decode over 99% of words with 1 or 2 errors.

All of the above clearly demonstrates the importance of
carefully studying the number of states in SEMs used for
decoding. Our approach in the current study is to allow the
number of states to vary during evolution. This is accom-
plished using Evolutionary Programming.

III. EVOLUTIONARY PROGRAMMING

Evolutionary Programming (EP) was developed by L. Fogel
[14] to act as method of developing finite state automata from
a given input string to match with an expected output. It is
considered one of the foundational algorithms in the field
of Evolutionary Algorithms (EAs) due to its contemporary
development to genetic algorithms, genetic programming, and
evolutionary strategies, but currently it is perhaps one of
the least frequently used. The original formulation of the
algorithm used a population of finite state machines, which
were utilized on an online controller to the problem with a
constant flow of input and outputs. Later extensions [13] would
use different representations, and a system of controlling the
selection pressure by adding a “bout” system, which is similar
to tournament selection in genetic algorithms.

More recently, a modified EP method was used in mixed
wireless controllers in an online setting in order to control the
direction of transmission between nodes in a mixed basis net-
work. These controllers have been found to provide coverage
which meets or exceeds the 802.11 DCF standard [12][11][10].

The automata used in these systems are Finite State Ma-
chines (FSM).

A. Representation

As mentioned above, side effect machines are utilized as
representations. The machine is stored as a transition matrix,
with size equal to the number of states. Each entry corresponds
to a particular state, with a state number and four output

transitions (A, C, G and T). There is also a designated initial
state. When the machine is given an input string, a pointer is
placed on the initial state, the string is parsed and run through
the machine, and an output vector is generated. This output
vector has length equal to the size of the machine, and is used
to collect the counters.

Note that while the upper and lower bounds on the number
of states provide only the available states, the SEM might
not have all states fully connected as the mutations do not
ensure connectivity. This allows for null mutations, allowing
the machine to transition over a number of additions. This
however does allow for a potential use of these states as bloat,
protecting the heritability, though requiring a post processing
of the machines to discover the simplified machine.

B. Mutations

Mutation is a unary operation selecting from the following
uniformly at random as long as the operation is not deemed
illegal based on the current parent:

1) Change Initial State: Select a state uniformly at random,
and make this selected state the initial state of the machine.

2) Add a State: Place a new state into the machine, by
first connecting all outgoing transitions, and then selecting
a transition uniformly at random in the machine. This later
action is to attempt to provide some connection of this new
state into the machine, although as stated above we do not
require the machine to be connected.

This operation is illegal if the parent is at the upper bound
of the number of allowed states.

3) Delete a State: Select a state uniformly at random in the
machine. The input edges to the state are then passed through
to the outputs of that state: e.g. if state 1 transitions to state 2
by C and state 2 transitions to state 3 by C, then when deleting
state 2, state 1 will now transition to state 3 by C.

If the deleted state is the initial state, then the initial state
is changed to the next state numerically.

This operation is illegal if the parent is at the lower bound
of the number of allowed states.

4) Change a Transition: Take a transition in the machine
and change its ending state to another available state, chosen
uniformly at random.

Note that in other versions of EP there is also an option
to change the output. However, since SEMs are extensions
which work on increasing a counter, no equivalent mutation
is utilized in the current study.

IV. METHODOLOGY

Three codes were used in the experimental analysis. For
comparison with earlier work, these are the same codes used in
[16]. The first code, which we label Code55, is a (12, 55, 7)4
code, i.e. a quaternary code (for symbols ‘A’, ‘C’, ‘G’ and
‘T’) consisting of 55 codewords each of length 12 and with
minimum edit distance 7. The other two codes, which we label
Code60-1 and Code60-2, are both (12, 60, 7)4 codes. For all
of these codes, the maximum number of errors that can be
corrected is b(7− 1)/2c = 3.



TABLE I
PARAMETER VALUES FOR INITIAL SETS OF EXPERIMENTS

Experiment 1 Experiment 2
Population Size 300 300
Number of Generations 1250 1250
Bout Size 10 10
Minimum Number of States 4 4
Maximum Number of States 18 18
Probability of Changing a Transition 0.60 0.75
Probability of Changing Initial State 0.10 0.05
Probability of Adding a State 0.15 0.10
Probability of Removing a State 0.15 0.10

Two sets of words (error patterns) were produced for each
of the codes, one used strictly for training and one used strictly
for verification. These sets each consist of, for each codeword,
12 words with a single error, 12 with two errors, and 12 with
three errors, where the errors are a combination of insertions,
deletions and substitutions of symbols. Thus the training set
and verification set for Code55 both have a size of 55× 12 =
660 for each of distances 1, 2 and 3, while the training set
and verification set for the other two codes both have a size of
60× 12 = 720 for each of distances 1, 2 and 3. Each of these
words will be run through the SEMs produced. If error pattern
x was generated from codeword y by 1, 2 or 3 errors (any
combination of insertions, deletions and substitutions) then no
other codeword can be closer than y because the minimum
distance between codewords is 7. Therefore upon running x
through the SEM, if the SEM returns y as the classification
then it has correctly decoded x.

A perfect score is obtained by a given SEM if it correctly
decodes all error patterns. Thus for Code55 a perfect score,
whether for the training set or the verification set, is 660×3 =
1980 while for both Code60-1 and Code 60-2 a perfect score
is 720× 3 = 2160.

A. Initial Experiments — Direct Classification

Two initial sets of experiments were performed, with the
parameters determined empirically. These parameters are sum-
marized in Table I. Further, to ensure that the maximum
number of states was not too restrictive, two matching sets of
experiments were later performed with the maximum number
of states increased to 24.

B. Fuzzy Experiments

Fuzzy classification is explained in Section II-A. For com-
parison with earlier work, the same tolerance value, i.e. a
Euclidean distance of 3, was used in the current study. The
same parameter values were used as in the initial experiments.

V. RESULTS

The summary statistics for Experiment 1, for both direct
and fuzzy classification, are presented in Table II. The median
number of states, along with the interquartile range for the 100
runs for each code are also presented. For the rows labelled
All, the values are the median total fitness, i.e. the number
of correctly decoded error patterns of the 1980 in Code55,

and of the 2160 for each of codes 60-1 and 60-2, along with
the interquartile range of these values. This is also broken up
according to distances 1, 2, and 3. For these, the maximum
partial fitness is 660 per distance for Code55 and 720 per
distance for Code60-1 and Code60-2. Table III contains the
equivalent summary statistics for Experiment 2.

As can be seen from these tables, the results were very sim-
ilar in terms of fitness for both experiments, when considering
both direct and fuzzy classification. Violin plots showing the
distribution of fitness for training and verification, for both
direct and fuzzy classification, are shown in Figure 2. In this
figure, the y-axis is the total number of error patterns that
the machines were able to decode for each distance. Recall
that this is a maximum of 660 for Code55 and 720 for both
Code60-1 and Code60-2. In each plot, the training and ver-
ification distributions for both direct and fuzzy classification
are presented for the 3 distances. As one would expect, the
ability of the machines to decode decreases as the distance
increases. As one would also expect, the machines were able
to correct more errors with the fuzzy decoding, and this is most
significant for distance 3. It is thus easy to argue that the very
small increase in runtime required by fuzzy classification is
worthwhile in this case. In both experiments, the best machines
corrected 90 − 91% of distance 1 error patterns using direct
classification, and 94− 95% using fuzzy classification.

Between the two experiments there is a small difference
in terms of the median number of states. It is important to
note that any given machine may not actually use all of its
states, i.e. some may be unreachable from the start state. It
was found that in all experiments, the mean number of states
tended to slowly increase throughout evolution, but then flatten
out. The slight propensity towards larger machines could be a
manifestation of bloat.

The distribution of final machine sizes is shown in Figure 3.
This shows some inconsistency in the distributions within the
100 runs for each of the experiments. Because it was observed
that in some cases there were a significant number of larger
machines, a brief investigation was performed of experiments
in which the number of allowed states ranged from 8 to 24.
However, these performed relatively poorly and so no further
investigation along these lines was performed.

Figure 4 shows a comparison of the number of states in
the machine to their accuracy (error or fitness) for each of
the 100 runs for each experiment set. This figure shows that
machines with more states typically perform better than those
with fewer; however, after a certain point (typically 14–16
states) the difference is negligible. In Experiment 1, as the
number of states increases, there appears to be more variance
in the results. As one would expect, the training fitness was
slightly better than the verification fitness.

Figures 5 and 6 show the training vs. verification fitness
for direct and fuzzy classification respectively. In the direct
classification, it can be seen that the larger machines (red)
performed the best and the smaller machines (blue) performed
the worst. It is interesting to ask whether larger or smaller
machines tend to more greatly overfit their training data. To



TABLE II
SUMMARY STATISTICS FOR EXPERIMENT 1

Direct Fuzzy
Training Verification Training Verification

Dist. Max Median IQR Max Median IQR States IQR Max Median IQR Max Median IQR
Code55 All 1477 1390.0 ± 33.75 1437 1337.5 ± 31.0 13.5 ± 3.0 1704 1615.5 ± 38.0 1698 1594.5 ± 38.125

1 597 570.0 ± 9.0 590 554.5 ± 11.5 623 598.0 ± 9.0 624 588.5 ± 10.5
2 525 487.0 ± 10.5 512 476.0 ± 10.0 582 553.0 ± 12.125 587 552.0 ± 12.5
3 378 336.5 ± 15.125 366 303.0 ± 15.125 513 468.5 ± 21.0 504 457.0 ± 15.875

Code60-1 All 1576 1497.5 ± 34.125 1532 1428.0 ± 32.25 13.0 ± 2.5 1852 1744.0 ± 34.0 1823 1711.5 ± 36.625
1 652 613.0 ± 10.625 644 607.0 ± 11.625 678 641.5 ± 9.5 670 638.0 ± 11.25
2 561 520.0 ± 12.125 542 501.0 ± 12.125 639 596.0 ± 11.0 636 584.5 ± 11.375
3 410 358.0 ± 19.125 365 317.0 ± 19.125 539 502.0 ± 14.125 547 485.0 ± 18.25

Code60-2 All 1561 1465.0 ± 38.0 1497 1401.0 ± 35.25 13.0 ± 3.0 1863 1737.5 ± 38.75 1854 1712.0 ± 42.25
1 647 607.0 ± 15.125 635 599.5 ± 14.25 681 646.0 ± 12.125 679 640.0 ± 12.5
2 553 518.5 ± 15.125 535 495.5 ± 12.125 644 600.5 ± 13.0 641 588.5 ± 12.625
3 383 339.5 ± 19.0 351 309.5 ± 19.0 543 490.5 ± 16.625 553 478.5 ± 21.25

TABLE III
SUMMARY STATISTICS FOR EXPERIMENT 2

Direct Fuzzy
Training Verification Training Verification

Dist. Max Median IQR Max Median IQR States IQR Max Median IQR Max Median IQR
Code55 All 1475 1374.5 ± 34.125 1425 1333.5 ± 31.625 11.0 ± 2.0 1704 1606.0 ± 40.125 1690 1593.0 ± 38.75

1 593 568.5 ± 10.125 593 553.0 ± 9.625 623 594.0 ± 11.125 621 586.0 ± 10.0
2 524 478.0 ± 11.75 510 476.5 ± 9.625 583 548.0 ± 12.75 578 551.0 ± 13.625
3 372 329.0 ± 14.625 354 305.0 ± 14.625 513 466.5 ± 14.875 493 453.0 ± 13.75

Code60-1 All 1593 1474.0 ± 41.0 1531 1422.0 ± 34.5 11.0 ± 2.0 1874 1751.0 ± 37.0 1847 1726.0 ± 39.5
1 646 614.0 ± 10.0 643 610.0 ± 10.5 680 642.0 ± 10.0 674 644.0 ± 12.5
2 558 515.0 ± 14.0 544 498.0 ± 12.5 640 601.0 ± 12.0 637 587.0 ± 13.5
3 416 347.0 ± 23.5 374 317.0 ± 23.5 559 505.0 ± 17.5 545 491.0 ± 18.5

Code60-2 All 1585 1456.0 ± 44.5 1495 1401.0 ± 39.0 12.0 ± 2.5 1853 1719.0 ± 46.0 1856 1694.0 ± 49.0
1 639 606.0 ± 14.5 635 597.0 ± 17.0 672 640.0 ± 12.0 672 637.0 ± 13.5
2 563 509.0 ± 15.5 526 494.0 ± 13.0 642 597.0 ± 15.0 633 588.0 ± 15.0
3 391 341.0 ± 18.0 353 309.0 ± 18.0 550 485.0 ± 20.0 562 466.0 ± 26.0

Fig. 2. Violin plots showing the distribution of correctly decoded error patterns for the 100 runs for each set of experiments



Fig. 3. Distribution of Machine Sizes and Median of the 100 Runs

Fig. 4. A comparison of the number of states in the machine to their accuracy (error or fitness) for each of the 100 runs for each experiment set. For the
training and verification fitness, the x-axis corresponds to overall fitness (higher is better), and for the training and verification distances (D1, D2, D3), the
x-axis is the number of incorrectly classified error patterns (closer to zero is better).

answer this question, the slope of the line of best fit (noting
that the data appears to be linear) was found. For Experiment 1
the slopes were 0.87, 0.77, and 0.84, and for Experiment 2 the
slopes were 0, 84, 0.81, and 0.78. The fact that these slopes are
all less than 1 indicates that the larger machines had a higher
difference between training and verification fitness relative to
the smaller machines. One should be careful using this as an
indication of overfitting however, since the larger machines
typically still have the best verification fitness.

With the fuzzy analysis, the machine sizes seem to have
little impact on the quality of results and the difference
between the training and verification errors is much lower.
The slopes of the lines of best fit are 1.01, 1.01, and 1.10 for
Experiment 1, and 0.98, 0.97, and 1.02 for Experiment 2. This

provides an indication that the best performing machines are
not overfitting, although it should be noted that the evolution
was based on the direct decoding.

Table IV presents the p-values obtained by comparing the
results from Experiment 1 with those from Experiment 2,
for both the direct and fuzzy classification, and for training
and verification. These p-values were calculated with Mann-
Whitney U tests. Those values less than 0.05, indicating a
significant difference, are highlighted in bold. As can be seen
from this table, in general there is no significant difference
between Experiment 1 and Experiment 2. The main exception
to this is in the training dataset for the direct classification,
most notably for Code55.



Fig. 5. Training vs. verification fitness for direct classification, for each of the 100 runs for each experiment. The points are colored to show small, medium,
and large sized machines. Any point below the x = y line means that it had a better final training fitness than verification fitness, and conversely for points
above the line.

Fig. 6. Training vs. verification fitness for fuzzy classification, for each of the 100 runs for each experiment. The points are colored to show small, medium,
and large sized machines. Any point below the x = y line means that it had a better final training fitness than verification fitness, and conversely for points
above the line.

TABLE IV
P-VALUE TABLE COMPARING DISTRIBUTION OF RESULTS FROM

EXPERIMENT 1 AND EXPERIMENT 2.

Direct Fuzzy
Dist. Training Verification Training Verification

Code55 All 2.05e-02 4.20e-01 2.51e-01 2.85e-01
1 1.38e-01 1.80e-01 4.95e-02 5.01e-02
2 1.48e-02 4.01e-01 1.82e-01 3.80e-01
3 3.98e-02 4.03e-01 4.50e-01 4.83e-01

Code60-1 All 7.89e-02 3.94e-01 1.00e-01 4.82e-02
1 3.72e-01 2.87e-01 2.51e-01 6.58e-02
2 7.88e-02 2.71e-01 1.16e-01 1.21e-01
3 3.50e-02 3.05e-01 8.28e-02 2.97e-02

Code60-2 All 1.62e-01 3.57e-01 9.70e-02 9.91e-02
1 3.85e-01 4.53e-01 7.93e-02 1.80e-01
2 1.36e-02 2.34e-01 5.54e-02 8.19e-02
3 4.91e-01 4.06e-01 1.80e-01 1.08e-01

VI. CONCLUSIONS AND FURTHER WORK

This is, to the best of our knowledge, the first use of
evolutionary programming in evolving SEMs. The results are
very competitive with earlier studies. In addition, the value of
being able to easily modify the number of states during the
evolution cannot be overstated.

The results indicate a preference for larger machines, with
the increase in fitness being negligible after approximately 14–
16 states. This is similar to [9], which obtained its best results
with 12 states. With that being said, however, it is important
to recognize that the current study is the only one which does
not force an exact number of states, and furthermore there
is no guarantee that all of the states are actually reachable



from the start state. An outlier is the work described in [16],
which obtained very good results with only 4 states. Although
both initial experiments in the current study do have a lower
bound of 4 states, the allowed range in the number of states
is possibly too large to allow for good small machines to be
evolved.

Important future work includes analyzing the best machines
generated to determine the exact count of states that are
actually reachable from the start state. This could be used
to then simplify the resulting machines.

In [5], it was shown that biological meaning could be
extracted from SEMs. This is also an interesting idea to
apply here, with the possibility of identifying some underlying
structure of the codes and/or the words that are most easily
decoded.

The decoders still show difficulty on error patterns that
are higher distances from codewords. This is of course not
surprising, given that these are the exact words that are
closest to not only the correct codewords, but also other
codewords. In the current study, in some cases these error
patterns are distance three from the correct codeword and may
be only distance 4 from other codeword(s). Although the fuzzy
decoders greatly improve results for these error patterns, it is
a definite future goal to improve the rate of correct decoding
for such words.

Finally, the codes used in the current study were chosen
because they are the same as those used in earlier work. It
is important to expand the analysis to include other codes,
in particular for different lengths, numbers of codewords and
minimum distance.

ACKNOWLEDGEMENTS

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

This research was also enabled in part by support provided
by WestGrid https://www.westgrid.ca/ and Compute Canada
www.computecanada.ca.

REFERENCES

[1] Farhad Alizadeh Noori and Sheridan Houghten. A multi-objective
genetic algorithm with side effect machines for motif discovery. In
2012 IEEE Symposium on Computational Intelligence in Bioinformatics
and Computational Biology, pages 275–282. IEEE, 2012.

[2] Daniel Ashlock and Sheridan Houghten. Hybridization and ring op-
timization for larger sets of embeddable biomarkers. In 2017 IEEE
Conference on Computational Intelligence in Bioinformatics and Com-
putational Biology, pages 1–8. IEEE, 2017.

[3] Daniel Ashlock, Sheridan K. Houghten, Joseph Alexander Brown, and
John Orth. On the synthesis of dna error correcting codes. Biosystems,
110(1):1–8, 2012.

[4] Daniel Ashlock and Elizabeth Warner. Side effect machines for sequence
classification. In 2008 Canadian Conference on Electrical and Computer
Engineering, pages 001453–001456. IEEE, 2008.

[5] Wendy Ashlock and Suprakash Datta. Distinguishing endogenous retro-
viral ltrs from sine elements using features extracted from evolved side
effect machines. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 9(6):1676–1689, 2012.

[6] Nabil Bennenni, Kenza Guenda, and T Aaron Gulliver. Greedy construc-
tion of dna codes and new bounds. arXiv preprint arXiv:1505.06262,
2015.

[7] Joseph A. Brown. On side effect machines as a representation for
evolutionary algorithms. In 2015 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology, pages 1–8,
Aug 2015.

[8] Joseph A. Brown, Sheridan K. Houghten, and Daniel Ashlock. Edit
metric decoding: A new hope. In Proceedings of the 2nd Canadian
Conference on Computer Science and Software Engineering, C3S2E ’09,
pages 233–242, New York, NY, USA, 2009. ACM.

[9] Joseph A. Brown, Sheridan K. Houghten, and Daniel Ashlock. Side
effect machines for quaternary edit metric decoding. In 2010 IEEE
Symposium on Computational Intelligence in Bioinformatics and Com-
putational Biology, pages 1–8, May 2010.

[10] Jason B. Ernst and Joseph A. Brown. An online evolutionary program-
ming method for parameters of wireless networks. In 2011 International
Conference on Broadband and Wireless Computing, Communication and
Applications, pages 515–520, Oct 2011.

[11] Jason B. Ernst and Joseph A. Brown. Co-existence of evolutionary
mixed-bias scheduling with quiescence and ieee 802.11 dcf for wireless
mesh networks. In 2012 26th International Conference on Advanced
Information Networking and Applications Workshops, pages 678–683,
March 2012.

[12] Jason B. Ernst and Joseph A. Brown. Performance evaluation of mixed-
bias scheduling schemes for wireless mesh networks. International
Journal of Space-Based and Situated Computing, 3(1):22–34, 2013.
PMID: 51984.

[13] Lawrence J. Fogel. The future of evolutionary programming. In 1990
Conference Record Twenty-Fourth Asilomar Conference on Signals,
Systems and Computers, volume 2, pages 1036–, Nov 1990.

[14] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial
Intelligence though Simulated Evolution. John Wiley & Sons, New York,
1966.

[15] Sheridan K Houghten, Daniel Ashlock, and Jessie Lenarz. Construction
of optimal edit metric codes. In Information Theory Workshop, 2006.
ITW’06 Chengdu. IEEE, pages 259–263. IEEE, 2006.

[16] James A. Hughes, Joseph A. Brown, Sheridan Houghten, and Daniel
Ashlock. Edit metric decoding: Representation strikes back. In 2013
IEEE Congress on Evolutionary Computation, pages 229–236, June
2013.

[17] Vladimir I Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710, 1966.

[18] Andrew McEachern, Daniel Ashlock, and Justin Schonfeld. Sequence
classification with side effect machines evolved via ring optimization.
Biosystems, 113(1):9–27, 2013.

[19] Jing Sun, Sheridan Houghten, and Jonathan Ross. Bounds on edit metric
codes with combinatorial dna constraints. Congressus Numerantium,
204:65–92, 2010.

[20] Bin Wang, Xiaopeng Wei, Jing Dong, and Qiang Zhang. Improved lower
bounds of dna tags based on a modified genetic algorithm. PloS one,
10(2):e0110640, 2015.


