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ABSTRACT
Machine learning (ML) was used to predict contact (tc) and !ight (tf ) 
time, duty factor (DF) and peak vertical force (Fv;max) from IMU- 
based estimations. One hundred runners ran on an instrumented 
treadmill (9–13 km/h) while wearing a sacral-mounted IMU. Linear 
regression (LR), support vector regression and two-layer neural- 
network were trained (80 participants) using IMU-based estima-
tions, running speed, stride frequency and body mass. Predictions 
(remaining 20 participants) were compared to gold standard 
(kinetic data collected using the force plate) by calculating the 
mean absolute percentage error (MAPE). MAPEs of Fv;max did not 
signi"cantly di#er among its estimation and predictions (P = 0.37), 
while prediction MAPEs for tc, tf and DF were signi"cantly smaller 
than corresponding estimation MAPEs (P ≤ 0.003). There were no 
signi"cant di#erences among prediction MAPEs obtained from the 
three ML models (P ≥ 0.80). Errors of the ML models were equal to 
or smaller than (≤32%) the smallest real di#erence for the four 
variables, while errors of the estimations were not (15–45%), indi-
cating that ML models were su&ciently accurate to detect 
a clinically important di#erence. The simplest ML model (LR) should 
be used to improve the accuracy of the IMU-based estimations. 
These improvements may be bene"cial when monitoring running- 
related injury risk factors in real-world settings.

ARTICLE HISTORY 
Received 16 March 2022  
Accepted 13 December 2022 

KEYWORDS 
Biomechanics; inertial 
measurement unit; duty 
factor; contact time; running 
injuries

Introduction

While providing many health benefits, running is also associated with lower limb overuse 
injuries (Fredette et al., 2021; Hreljac et al., 2000; Hreljac, 2004; Nielsen et al., 2012). 
These injuries often occur when a repetitive stress is applied to the system beyond its 
maximum tolerance (Hreljac, 2004). The peak vertical ground reaction force (Fv;max), 
contact time (tc) and duty factor (DF), i.e., the product of tc and stride frequency (SF) 
(Folland et al., 2017; Minetti, 1998), were shown to play a role in running-related injury 
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development (Edwards, 2018; Kiernan et al., 2018; Lenhart et al., 2014; Malisoux et al.,  
2022; Matijevich et al., 2019; Sasimontonkul et al., 2007; Scott & Winter, 1990). Flight 
time (tf ) might also play a role as it takes both the vertical ground reaction force and its 
time of production into account (Appendix).

These variables have often been estimated using inertial measurement units (IMUs) 
(Chew et al., 2018; Day et al., 2021; Falbriard et al., 2018; Lee et al., 2010; Norris et al.,  
2014; Patoz et al., 2022), which are effective devices to longitudinally monitor these 
variables outside of a laboratory (Camomilla et al., 2018). However, obtaining accurate 
estimations based on IMU data depends on several factors such as the number of sensors, 
sensor position, or signal filtering (Alcantara et al., 2021). For instance, error on tc was 
~10 ms when using foot-worn inertial sensors (Chew et al., 2018; Falbriard et al., 2018). 
Using a single sacral-mounted IMU to estimate tc, tf and Fv;max led to root mean square 
errors (RMSEs) of 20 ms and 0.15BW compared to gold standard values (force plate) 
(Patoz et al., 2022). Similarly, Day et al. (2021) reported Pearson correlation coefficients 
(r) of ~0.65 between IMU estimations and gold standard values for tc and Fv;max. A sacral- 
mounted IMU is a natural choice because it approximates the location of the centre of 
mass (Napier et al., 2020) but led to error two times larger for tc. However, applying 
advanced analysis methods such as machine learning (ML) on top of these estimations 
may provide more accurate predictions.

ML was used to explain the differences of gait patterns between high- and low- 
mileage runners (Xu et al., 2022) as well as to estimate biomechanical variables 
based on IMU data (Alcantara et al., 2021; Derie et al., 2020; Matijevich et al., 2020; 
Wouda et al., 2018). ML has the advantage to provide an analytical model which is 
trained and tested using different subsets of the dataset (Halilaj et al., 2018) and 
built from physics-based variables, i.e., variables that demonstrated to provide 
changes in running biomechanics (Alcantara et al., 2021). The modelling of the 
relationships between clinical outcomes and biomechanical measures was attempted 
using ML models like linear regressions (LRs), support vector machines and artifi-
cial neural networks (NNs) (Backes et al., 2020; Halilaj et al., 2018). Though limited 
to linear relationships, LRs are widely used because the regression coefficients are 
useful for model interpretability (Chambers, 1992). On the other hand, support 
vector machines and NNs are used to model non-linear relationships. Although 
they usually provide better accuracies than LRs, their coefficients are difficult to 
interpret because of their large numbers (Halilaj et al., 2018). Therefore, using both 
basic and complex ML models might illustrate the tradeoff between interpretability 
and accuracy and give the option to prioritise between the former and the latter.

Hence, the purpose of this study was to apply ML to predict tc, tf , DF and Fv;max 
from their respective IMU-based estimations. It was hypothesised that further 
applying ML to these IMU-based estimations should provide predictions with higher 
accuracies than those previously reported for the estimations (Patoz et al., 2022). 
Errors of the ML models were also compared to the smallest real difference (SRD) 
for the four variables, i.e., it was investigated if the ML models were sufficiently 
accurate to detect a clinically important difference. The comparison among the 
predictions of several ML models would allow defining which model has the best 
tradeoff between interpretability and accuracy.
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Materials and methods

Participant characteristics

An existing database of 100 recreational runners (Patoz et al., 2022) (females: 27, age: 29  
± 7 years, height: 169 ± 5 cm, body mass: 61 ± 6 kg and weekly running distance: 22 ± 16  
km; males: 73, age: 30 ± 8 years, height: 180 ± 6 cm, body mass: 71 ± 7 kg and weekly 
running distance: 38 ± 24 km) was used in the present study. Participants were required 
to run at least once a week and to not have current or recent lower-extremity injury (≤1  
month) to be involved in this study. The local Ethics Committee of the XXX approved the 
study protocol prior to data collection (XXX) and adhered to the latest version of the 
Declaration of Helsinki of the World Medical Association. Written informed consent was 
obtained for all subjects.

Experimental procedure, data collection and estimations from inertial 
measurement unit data

The experimental procedure, data collection and IMU-based estimations have already 
been described elsewhere (Patoz et al., 2022) and are briefly summarised herein.

An IMU of 9.4 g (Movesense sensor, Suunto, Vantaa, Finland) was attached to the 
sacrum of participants. Then, after a warm-up run of 7-min (9–13 km/h) on an instru-
mented treadmill (Arsalis T150–FMT-MED, Louvain-la-Neuve, Belgium), three 1-min 
running trials (9, 11 and 13 km/h) were recorded in a randomised order. These speeds 
were chosen because they represent the most commonly adopted speeds of recreational 
runners (Selinger et al., 2022). Data analysis was performed on the IMU and kinetic data 
corresponding to the first 10 strides following the 30-s mark. IMU and kinetic data were 
not exactly synchronised (technical limitation), but the same 10 strides were used for 
each running trial of each participant because the synchronisation delay between IMU 
and kinetic data was small (≤50 ms).

A home-made iOS application running on an iPhone SE (Apple, Cupertino, CA, USA) 
was used to collect IMU data (saturation range: ±8g) at 208 Hz (manufacturing specifica-
tion). IMU data were then transferred to a personal computer for post processing.

Kinetic data were collected at 200 Hz using the force plate embedded into the treadmill 
(Arsalis, Louvain-la-Neuve, Belgium) together with the Vicon Nexus software (v2.9.3, 
Vicon, Oxford, UK). The Visual3D Professional software (v6.01.12, C-Motion Inc., 
Germantown, MD, USA) was used to process the 3D ground reaction forces (analog 
signal), which were first exported in .c3d format. The forces were low-pass filtered at 20  
Hz using a fourth-order Butterworth filter.

Gold standard tc and tf were given by the time during which the vertical ground 
reaction force was above and below 20 N, respectively (Smith et al., 2015). Gold standard 
DF was given by the product of tc and SF. Gold standard Fv;max was given by the 
maximum of the vertical ground reaction force during tc and was expressed in body 
weight units. The gold standard variables were computed within Visual3D and given as 
the average over 10 analysed strides.

A custom c++ code (ISO/IEC, 2020) was used to process IMU data and has already 
been described elsewhere (Patoz et al., 2022). Briefly, the vertical ground reaction force 
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was approximated by the vertical acceleration (previously reoriented and filtered using 
a truncated Fourier series to 5 Hz) multiplied by body mass. Then, tc, tf , DF and Fv;max 
were estimated as in the gold standard case but using the approximated vertical ground 
reaction force. In other words, tc and tf were given by the time during which the 
approximated vertical ground reaction force was above and below 20 N, respectively, 
DF was given by the product of tc and SF, and Fv;max was given by the maximum of the 
approximated vertical ground reaction force during tc. The custom c++ code provided 
the estimated variables as the average over the 10 analysed strides.

Predicted variables obtained using machine learning models

Three ML models: LR, support vector regression (SVR) – the regression analog of 
support vector machine – with the radial basis function kernel, and two-layer NN 
(NN2), were constructed to predict tc, tf , DF and Fv;max using a train/test method (80– 
20% split; 80 and 20 runners in the training and testing set, respectively). All the running 
trials from one subject were included in only one set to ensure that the models generalise 
well to new data and a similar distribution of male (72.5%) and female (27.5%) was 
maintained in both subsets to avoid introducing bias in the model during training 
(Halilaj et al., 2018). For each variable predicted by the three models, four features 
were used as predictors: running speed, runner’s body mass, SF and corresponding IMU- 
based estimation. This choice follows from their relationship with changes in running 
biomechanics (Alcantara et al., 2021; Nagahara et al., 2018; Nilsson & Thorstensson,  
1989) and to keep the models relatively simple. The SF included in the features was the 
IMU-based estimation and was almost identical to the gold standard (Figure 1). The 
features were standardised by removing the mean and by scaling to unit variance. The 
different models were trained using a 5-fold cross-validation approach for hyperpara-
meter optimisation. Hyperparameters are given in Table 1. The trained models were used 
to make predictions on the testing set, which was previously standardised based on the 
mean and standard deviation (SD) of the training set, leading to a total of 60 predictions 
(three running speeds × 20 individuals). The accuracy between gold standard and 
predicted values was quantified using r, RMSE and mean absolute percentage error 
(MAPE). Besides, RMSE was compared to the SRD to evaluate if the precision of 
a model is sufficient to detect a clinically important difference. Indeed, SRD can be 
defined as the smallest change that indicates a clinically important difference and was 
calculated as SRD à 1:96σ, where σ is the within-subject standard deviation of the gold 
standard values. The analysis was performed using Python (v3.7.4, available at http:// 
www.python.org).

Statistical analysis

All data are presented as mean ± SD. To examine the presence of systematic bias between 
gold standard tc, tf , DF and Fv;max values and corresponding predicted or estimated 
values, Bland-Altman plots were constructed (Atkinson & Nevill, 1998; Bland & Altman,  
1995). In case of a systematic bias, a positive value indicates the estimated or predicted 
variable is overestimated. In addition, lower and upper limit of agreements and 95% 
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confidence intervals were calculated. Moreover, residual plots were inspected and no 
obvious deviations from homoscedasticity and normality were observed; therefore, one- 
way [model (no model vs LR vs SVR vs NN2)] repeated measures ANOVA with 

Figure 1. Gold standard (obtained using force plate data) stride frequency (SF) as function of 
estimated SF (obtained using inertial measurement unit data, no machine learning) for the entire 
set of data and corresponding Pearson correlation coefficient (r), root mean square error (RMSE) and 
mean absolute percentage error (MAPE). Each point represents the value for a given participant- 
running speed combination (300 points: three running speeds x 100 runners). Colors represent 
different participants while the three symbols represent different running speeds (o: 9 km/h, . : 11  
km/h, / : 13 km/h).

Table 1. Hyperparameters optimised during the 5-fold cross validation for the three machine learning 
models employed.

Machine 
learning model Hyperparameter Values
Linear 

regression Intercept in the model True and False
Support vector 

regression
C 

(inversely proportional to the strength of the regularisation)
20 points 

(logarithmic scale 
between 0.001 and 

10,000)
Epsilon 

(specifies the epsilon-tube within which no penalty is associated in 
the training loss function with points predicted within a distance 

epsilon from the actual value)

20 points 
(logarithmic scale 

between 0.001 and 100)

Two-layer 
neural 
network

Activation function of the first layer relu, tanh, sigmoid and 
softmax

Dimensionality of the inner layer 8, 16, 32 and 64
Batch size 2, 4, 8 and 16

Loss function mean absolute error and 
mean squared error
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Mauchly’s correction for sphericity and employing Holm corrections for pairwise post 
hoc comparisons were used to compare MAPE between models. This comparison was 
possible because an MAPE was calculated for each estimation/prediction made in the 
testing set. Statistical analysis was performed using Jamovi (v1.6.23, available at https:// 
www.jamovi.org) with a level of significance set at P ≤ 0.05.

Results

Participant characteristics and biomechanical variables within training and 
testing sets

Participant characteristics were not significantly different between training and testing 
sets (P ≥ 0.24; Table 2). Gold standard values in the training set and gold standard, 
estimated (using IMU data, no ML) and predicted values in the testing set are reported in 
Tables 3 and 4, respectively.

Accuracy of the machine learning models (predictions) and estimations

The ML models predicted tc with an r of 0.89 ± 0.01, RMSE of 12.2 ± 0.2 ms and MAPE of 
3.6 ± 0.1% (mean ± SD for the three models). As for tf , the r, RMSE and MAPE were 0.86  
± 0.01, 11.7 ± 0.4 ms and 9.3 ± 0.4%. DF was predicted with an r of 0.84 ± 0.03, RMSE of 
1.7 ± 0.1%, and MAPE of 3.6 ± 0.2%. As for Fv;max, the r, RMSE and MAPE were 0.77 ±  
0.01, 0.13 ± 0.01BW and 3.8 ± 0.1% (Figure 2). For completeness, Figure 2 also depicts 
the gold standard as function of estimated values for the testing set together with their 
corresponding r, RMSE and MAPE.

A significant model effect was reported for the MAPE of tc, tf and DF (P ≤ 0.001) but 
not of Fv;max (P = 0.37). Post hoc tests revealed that the MAPEs obtained using the three 
ML models were significantly smaller than the MAPE obtained without ML for tc, tf and 

Table 2. Participant characteristics for the training (80 runners) and testing (20 runners) 
sets.

Characteristics Training set Testing set p-value

Sex M = 58; F = 22 M = 15; F = 5 NA
Age (yr) 30 ± 7 30 ± 8 0.96
Height (cm) 177 ± 8 177 ± 7 0.89
Body mass (kg) 68 ± 8 70 ± 6 0.29
Running distance (km/week) 32 ± 24 39 ± 20 0.24

The values are presented as mean ± standard deviation. M: male, F: female and NA: not applicable.

Table 3. Gold standard (obtained using force plate data) contact time (tc), flight time 
(tf ), duty factor (DF) and peak vertical ground reaction force (Fv;max) for the training set 
(80 runners) at three running speeds.

Running speed  
(km/h)

tc  
(ms)

tf  
(ms)

DF  
(%)

Fv;max  
(BW)

9 277 ± 23 95 ± 23 37.3 ± 2.9 2.4 ± 0.2
11 249 ± 20 113 ± 19 34.4 ± 2.4 2.5 ± 0.2
13 227 ± 17 124 ± 17 32.3 ± 2.2 2.6 ± 0.2

The values are presented as mean ± standard deviation.
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DF (P ≤ 0.003; Figure 2). However, there was no significant difference among the MAPEs 
obtained using the three ML models for these three variables (P ≥ 0.80).

Bland-Altman plots between gold standard and predicted or estimated values are 
given in Figure 3, and systematic bias as well as lower and upper limit agreements are 
reported in Table 5. The smallest bias was reported for LR.

Accuracy improvement between the predictions and estimations

Using ML allowed increasing r by 28 ± 1%, 59 ± 2%, 65 ± 5% and 15 ± 1%, for tc, tf , DF 
and Fv;max, respectively, compared to those obtained from IMU-based estimations. As for 
the RMSEs, they decreased by 37 ± 1%, 39 ± 2%, 37 ± 4% and 16 ± 4% for tc, tf , DF and 
Fv;max, respectively, while the MAPEs decreased by 40 ± 1%, 40 ± 3%, 41 ± 3% and 9 ± 1% 
(Table 6).

Ability to detect a clinically important di!erence

SRD was equal to 13.2 ms, 15.4 ms, 1.8% and 0.13BW for tc, tf , DF and Fv;max, respec-
tively. RMSE of the ML models were equal to or smaller than (≤32%) the SRDs of the four 
variables. However, RMSE of the estimated values were larger than the SRDs of the four 
variables (15–45%).

Optimal coe"cients of the linear regression models

The optimal coefficients obtained for the predictors used in the LR models are given in 
Table 7. Among all predictors, SF did not contribute significantly to the predictions (P ≥  
0.69; Table 7). Hence, new LR models which did not include SF as a predictor were 
optimised, and optimal coefficients are reported in Table 8. These new LR models 
predicted tc with an r of 0.88, RMSE of 12.9 ms and MAPE of 3.9 ± 3.3%. As for tf , r, 

Table 4. Gold standard (obtained using force plate data) contact time (tc), flight time (tf ), duty factor 
(DF) and peak vertical ground reaction force (Fv;max) as well as corresponding estimated (obtained 
using inertial measurement unit data, no machine learning) and predicted [obtained using three 
machine learning models: linear regression (LR), support vector regression with the radial basis 
function kernel (SVR) and two-layer neural network (NN2)] values for the testing set (20 runners) at 
three running speeds.

Variable
Running speed  

(km/h) Gold standard Estimated
Predicted 

LR
Predicted 

SVR
Predicted 

NN2
tc (ms) 9 282 ± 18 268 ± 14 279 ± 13 278 ± 13 278 ± 13

11 253 ± 17 257 ± 13 253 ± 12 251 ± 15 252 ± 11
13 229 ± 14 246 ± 11 229 ± 9 227 ± 10 228 ± 9

tf (ms) 9 86 ± 19 100 ± 9 89 ± 15 91 ± 14 89 ± 17
11 105 ± 21 101 ± 9 105 ± 16 107 ± 15 108 ± 16
13 117 ± 18 100 ± 8 118 ± 13 119 ± 13 119 ± 14

DF (%) 9 38.4 ± 2.3 36.4 ± 1.0 38.0 ± 1.7 37.5 ± 1.3 37.8 ± 1.3
11 35.4 ± 2.4 35.9 ± 0.9 35.3 ± 1.6 34.9 ± 1.5 35.4 ± 1.5
13 33.2 ± 2.1 35.6 ± 0.7 33.1 ± 1.4 32.8 ± 1.4 33.1 ± 1.4

Fv;max (BW) 9 2.35 ± 0.15 2.39 ± 0.10 2.34 ± 0.11 2.34 ± 0.11 2.33 ± 0.12
11 2.47 ± 0.20 2.45 ± 0.11 2.48 ± 0.13 2.48 ± 0.13 2.50 ± 0.13
13 2.59 ± 0.18 2.47 ± 0.09 2.60 ± 0.10 2.59 ± 0.11 2.58 ± 0.09

The values are presented as mean ± standard deviation.
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RMSE and MAPE were 0.85, 12.2 ms and 9.9 ± 8.9%. DF was predicted with an r of 0.82, 
RMSE of 1.8% and MAPE of 4.1 ± 3.1%, while Fv;max with an r, RMSE and MAPE of 0.77, 
0.13BW and 3.8 ± 3.0%.

Figure 2. Gold standard (obtained using force plate data) as function of predicted (obtained using 
three different machine learning models) and estimated (obtained using inertial measurement unit 
data, no machine learning) (A) contact time, (B) flight time, (C) duty factor and (D) peak vertical ground 
reaction force for the testing set and corresponding Pearson correlation coefficient (r), root mean 
square error (RMSE) and mean absolute percentage error (MAPE). The one-way repeated measures 
ANOVA revealed a significant model effect (no model vs linear regression vs support vector regression 
with the radial basis function kernel vs two-layer neural network) for contact time, flight time and duty 
factor when comparing the MAPE among the models. *significant difference (P ≤0.003) between the 
MAPE of the predictions obtained using a given machine learning model and the MAPE of the 
estimations obtained using inertial measurement unit data, as determined by Holm post hoc tests. 
Each point represents the value for a given participant-running speed combination (60 points: three 
running speeds x 20 runners). Colors represent different participants while the three symbols 
represent different running speeds (o: 9 km/h, . : 11 km/h, / : 13 km/h).
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Discussion and implications

The purpose of the present study was to apply ML to predict tc, tf , DF and Fv;max from 
their respective IMU-based estimations. According to the hypothesis, further applying 
ML to IMU-based estimations of tc, tf , DF and Fv;max increased the accuracy of their 
predictions. However, the enhancement was not significant for Fv;max. The simplest ML 
model (LR) was characterised by a similar prediction accuracy than more complicated 

Figure 3. Comparison between gold standard (obtained using force plate data) and predicted 
(obtained using three different machine learning models) as well as estimated (obtained using inertial 
measurement unit data, no machine learning) (A) contact time, (B) flight time, (C) duty factor and (D) 
peak vertical ground reaction force for the testing set [differences (Δ) as a function of mean values 
together with systematic bias (solid line) as well as lower and upper limit of agreements (dashed lines), 
i.e., a Bland-Altman plot]. Each point represents the value for a given participant-running speed 
combination (60 points: three running speeds x 20 runners). Colors represent different participants 
while the three symbols represent different running speeds (o: 9 km/h, . : 11 km/h, / : 13 km/h). For 
systematic bias, positive values indicate the estimated or predicted variable is overestimated.
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models (SVR and NN2). Therefore, the simplest ML model (LR) should be used to 
improve the accuracy of the estimations of tc, tf , DF and Fv;max obtained using a sacral- 
mounted IMU across a range of running speeds. These improvements may be beneficial 
when monitoring running-related injury risk factors in real-world settings.

ML was able to improve the prediction accuracy, as reported by the higher r and lower 
RMSE and MAPE compared to those of the IMU-based estimations (Figures 2 and 3 and 
Table 6). Nonetheless, the enhancement reported for Fv;max was not significant. Using more 
complicated ML models (SVR and NN2) did not further improve the prediction accuracy 

Table 5. Systematic bias, lower limit of agreement (Lloa) and upper limit of agreement (Uloa) between 
contact time (tc), flight time (tf ), duty factor (DF) and peak vertical ground reaction force (Fv;max) 
obtained using a force plate (gold standard method) and machine learning models (predictions; linear 
regression, support vector regression with the radial basis function kernel and two-layer neural 
network) as well as an inertial measurement unit (estimations; no machine learning) for the testing 
set (20 runners).

Variable Method Systematic bias Lloa Uloa
tc (ms) Linear regression −1.0 [−4.0, 2.0] −24.3 [−29.4, −19.1] 22.2 [17.1, 27.3]

Support vector regression −3.0 [−6.0, 0.0] −26.3 [−31.4, −21.1] 20.3 [15.2, 25.5]
Two-layer neural network −2.2 [−5.3, 0.9] −26.0 [−31.3, −20.7] 21.7 [16.4, 26.9]
No machine learning 2.3 [−2.5, 7.2] −35.1 [−43.4, −26.9] 39.8 [31.5, 48.0]

tf (ms) Linear regression 1.3 [−1.6, 4.3] −21.6 [−26.6, −16.5] 24.2 [19.2, 29.3]
Support vector regression 3.1 [0.3, 5.8] −18.3 [−23.0, −13.6] 24.4 [19.7, 29.1]
Two-layer neural network 2.6 [−0.4, 5.6] −20.5 [−25.6, −15.4] 25.8 [20.7, 30.9]
No machine learning −2.2 [−7.1, 2.6] −39.8 [−48.0, −31.5] 35.3 [27.0, 43.6]

DF (%) Linear regression −0.2 [−0.6, 0.2] −3.3 [−4.0, −2.6] 2.9 [2.3, 3.6]
Support vector regression −0.6 [−1.0, −0.2] −3.9 [−4.6, −3.2] 2.7 [2.0, 3.5]
Two-layer neural network −0.2 [−0.6, 0.2] −3.3 [−4.0, −2.6] 2.9 [2.2, 3.5]
No machine learning 0.3 [−0.3, 1.0] −4.8 [−6.0, −3.7] 5.5 [4.3, 6.6]

Fv;max (BW) Linear regression 0.00 [−0.03, 0.04] −0.24 [−0.29, −0.18] 0.25 [0.19, 0.30]
Support vector regression 0.00 [−0.03, 0.04] −0.24 [−0.30, −0.19] 0.25 [0.20, 0.31]
Two-layer neural network 0.00 [−0.03, 0.04] −0.25 [−0.30, −0.19] 0.26 [0.20, 0.31]
No machine learning −0.03 [−0.07, 0.01] −0.31 [−0.37, −0.25] 0.25 [0.19, 0.31]

Confidence intervals of 95% are given in square brackets [lower, upper]. For systematic bias, positive values indicate the 
estimated or predicted variable is overestimated.

Table 6. Percentage difference of the Pearson correlation coefficient (r), root mean square error 
(RMSE) and mean absolute percentage error (MAPE) between those obtained using estimations based 
on inertial-measurement unit data and those obtained using a machine learning model among linear 
regression, support vector regression with the radial basis function kernel and two-layer neural 
network, for four predicted variables, i.e., contact time, flight time, duty factor and peak vertical 
ground reaction force.

Variable Metrics
Linear regression 

(%)

Support vector 
regression  

(%)

Two-layer neural 
network  

(%)

Contact time r 29 27 27
RMSE −38 −36 −36
MAPE −40 −42 −40

Flight time r 59 61 57
RMSE −39 −41 −37
MAPE −38 −43 −38

Duty factor r 67 59 69
RMSE −40 −32 −40
MAPE −42 −37 −43

Peak vertical ground reaction 
force

r 16 15 13
RMSE −20 −13 −13
MAPE −11 −9 −8
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compared to the simple LR (Figure 2 and Table 6). These results corroborate previous 
findings which observed similar errors for LR and quantile regression forest when predict-
ing tc, Fv;max and vertical impulse with an accelerometer (Alcantara et al., 2021). Moreover, 
the present RMSE and MAPE of tc and Fv;max were similar to those previously obtained (tc: 
~10 ms and ~4% and Fv;max: ~0.14BW and ~4%) using a different algorithm to estimate tc 
and Fv;max from IMU data (Alcantara et al., 2021). Nonetheless, these previous results 
might suffer from generalisation due to the small sample size (N = 37). Using three inertial 

Table 7. Optimal coefficients, standard error and p-values (P) obtained for the predictors used in 
the linear regression models, i.e., intercept, runner’s body mass, stride frequency, running speed 
and estimated variable obtained using inertial measurement unit data, constructed to predict 
contact time (tc), flight time (tf ), duty factor (DF) and peak vertical ground reaction force (Fv;max).

Variable Metrics Coefficient Standard error P

tc (ms) intercept 251.08 56.09 <0.001
runner’s body mass 5.40 0.11 <0.001
stride frequency 9.40 23.22 0.69
running speed −13.71 0.60 <0.001
estimated tc 22.20 0.10 <0.001

tf (ms) intercept 110.64 28.24 <0.001
runner’s body mass −5.33 0.11 <0.001
stride frequency −3.35 15.80 0.83
running speed 13.80 0.61 <0.001
estimated tf 12.50 0.10 <0.001

DF (%) intercept 34.68 4.67 <0.001
runner’s body mass 0.74 0.02 <0.001
stride frequency 0.67 1.92 0.73
running speed −1.92 0.08 <0.001
estimated DF 1.56 0.10 <0.001

Fv;max (BW) intercept 2.51 0.27 <0.001
runner’s body mass 0.01 0.00 <0.001
stride frequency −0.01 0.14 0.93
running speed 0.07 0.01 <0.001
estimated Fv;max 0.15 0.07 0.02

Significant coefficients (P ≤ 0.05) are reported in bold font.

Table 8. Optimal coefficients, standard error and p-values (P) obtained for the linear regression 
models which excluded stride frequency as a predictor to predict contact time (tc), flight time 
(tf ), duty factor (DF) and peak vertical ground reaction force (Fv;max).

Variable Metrics Coefficient Standard error P

tc (ms) intercept 251.08 20.84 <0.001
runner’s body mass 5.29 0.11 <0.001
running speed −13.27 0.64 <0.001
estimated tc 14.42 0.06 <0.001

tf (ms) intercept 110.64 13.43 <0.001
runner’s body mass −4.79 0.11 <0.001
running speed 12.27 0.53 <0.001
estimated tf 13.88 0.09 <0.001

DF (%) intercept 34.68 4.17 <0.001
runner’s body mass 0.63 0.02 <0.001
running speed −1.61 0.08 <0.001
estimated DF 1.56 0.11 <0.001

Fv;max (BW) intercept 2.51 0.19 <0.001
runner’s body mass 0.01 0.00 <0.001
running speed 0.07 0.01 <0.001
estimated Fv;max 0.15 0.07 0.02

Significant coefficients (P ≤ 0.05) are reported in bold font.
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sensors placed on the lower limb (two on lower leg and one on pelvis), Wouda et al. (2018) 
achieved a 3% error with a NN (10–14 km/h), which is similar to the present accuracy 
(MAPE ~4%, Figure 2). Despite their low prediction error, their results were harder to 
interpret because of the experimental setup (three IMUs instead of one) and more 
complicated ML model than the model employed herein. Practically, the improvements 
reported herein may be beneficial for practitioners seeking to monitor running-related 
injury risk factors in real-world settings, though keeping in mind that there exists only 
limited evidence for most running-related injury-specific risk factors (Willwacher et al.,  
2022). Besides, as asymmetry level might be an important factor to consider for injured 
runner (Russell Esposito et al., 2015), an ML model should be used to predict the 
biomechanical variables of the right and left lower limbs separately. Moreover, as the 
biomechanical variables of an injured lower limb might give different values than the ones 
used in the current training set (healthy individuals), the ML model should further be 
trained using injured runners and by separating the values of the biomechanical variables 
of the injured and non-injured lower limb in the training process.

ML was able to decrease the confidence limits (95% confidence intervals and lower 
and upper limit of agreements) compared to those of the IMU-based estimations 
(Table 5). In addition, the systematic bias reported for the simple linear regression was 
smaller than the bias obtained without ML (Table 5). Moreover, Figure 3 suggests that the 
IMU-based estimations have a proportional bias (i.e., the error depends on the value of 
the estimated parameter). This proportional bias drastically decreased when using ML. 
Hence, these results strengthen the use of ML to obtain more accurate predictions.

SF was not reported as a predictor of the four variables (P ≥ 0.69; Table 7). Hence, LRs 
which consider only the body mass, running speed and IMU-based estimation should be 
used to improve the prediction accuracy (see Table 8 for the coefficients). The optimal 
coefficients of an ML model might be specific to the IMU-based estimations used in the 
training and testing sets because each algorithm used to obtain these IMU-based estima-
tions might have its own bias. Hence, these LRs can be used to predict tc, tf and DF, and 
Fv;max to a lower extent, as long as the IMU-based estimations were obtained using the 
present algorithm, which is described elsewhere (Patoz et al., 2022). Nonetheless, further 
studies should try to create an ML model based on IMU-based estimations obtained from 
different algorithms, so that its usage could largely be generalised.

Previously, ML was also used to predict the vertical impulse from its IMU-based 
estimation as well as body mass, running speed and step frequency (Alcantara et al.,  
2021). The authors reported an almost perfect correlation between gold standard and 
predicted vertical impulse values (r = 0.995) and obtained that the intercept and step 
frequency of the LR were the only significant predictors of the vertical impulse. However, 
this was not necessarily needed. Indeed, as the integral of the vertical external forces 
during a running step is null (Equation 1): 

Útc
0 Fz tÖ Üdt �mg tc á tf

� �
à 0; (1) 

we get 

tstep à
Útc
0 Fz tÖ Üdt

mg à Iz
mg ; (2) 
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where tstep à tc á tf and Iz represent the step time and vertical impulse, respectively. 
Therefore, according to Equation (2), the step frequency, i.e., the inverse of tstep, is given 
by the inverse of the vertical impulse expressed in body weight units. Hence, the model 
created by Alcantara et al. (2021) to predict the vertical impulse was redundant and not 
necessarily needed. First, the vertical impulse is directly given by tstep and thus by the 
inverse of the step frequency (Equation 2). Second, they assumed that the step frequency 
estimated using IMU data is a valid surrogate to its gold standard counterpart (they used 
the step frequency estimated using IMU data as a predictor for the vertical impulse, tc, 
and Fz;max). Thus, they already indirectly assumed that the estimated vertical impulse, i.e., 
tstep (the inverse of the step frequency), is equivalent to its gold standard counterpart. In 
the present study, gold standard and estimated SF were shown to be equivalent (r = 0.998; 
Figure 1), which corroborates what has just been explained. Indeed, tstep could be 
approximated by half of the stride time because small symmetry indices ≤4% were 
previously reported for tstep of competitive, recreational and novice runners at running 
speeds ranging from 8 to 12 km/h (Mo et al., 2020).

As expected, as gold standard and estimated SF were equivalent (r = 0.998; Figure 1), 
similar MAPEs were reported between tc and DF (~4%; Figure 2). Thus, the DF predic-
tion is almost only dependent on the tc prediction. Finally, it is worth mentioning that 
using predicted tc values and IMU-based estimations of SF to predict DF instead of 
constructing a specific LR led to a slightly larger prediction accuracy. Indeed, using 
predicted tc values from the LR reported in Table 8, DF was predicted with an r of 0.82, 
RMSE of 1.8% and MAPE of 3.9 ± 3.3%.

The strength of the present results is due to the large dataset employed (N = 100). This 
dataset allows better generalisation of the results than those previously obtained with the 
smaller cohorts of 37 runners (Alcantara et al., 2021), though the generalisation might 
not apply to populations not represented in the training set. Hence, further studies 
should include a broader population (increase N) by including elite athletes and less 
experienced runners. Moreover, injured runners should also be included in the training 
set, and the values of the biomechanical variables of the left and right lower limb should 
be separated in the training process, especially in the case of an asymmetry-based injury. 
In this case, the dataset would contain as much different running gaits as possible, which 
would make the trained ML models as much generalisable as possible. Further studies 
could also apply other ML models and even more complex models such as deep learning 
models, though their complexity makes them very difficult to interpret (Halilaj et al.,  
2018). Furthermore, running trials were performed only at level, endurance speeds and 
on a treadmill. However, predictions obtained using ML might also perform well over-
ground because spatiotemporal parameters between treadmill and overground running 
are largely comparable (Van Hooren et al., 2020). Nonetheless, running speed must be 
known to use ML models. In real-life situation, the ML model could use the instanta-
neous running speed provided by the gps of the smartwatch or smartphone to predict the 
biomechanical variables in real-time. Finally, further studies should focus on improving 
the predictions by using additional conditions (i.e., faster speeds, positive and negative 
slopes and different types of ground) when training the ML models.
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Conclusion

Further applying ML to IMU-based estimations of tc, tf , DF and Fv;max increased the 
accuracy of their predictions, though the enhancement was not significant for Fv;max. The 
simplest ML model (LR) was characterised by a similar prediction accuracy than more 
complicated models (SVR and NN2). Moreover, errors of the ML models were equal to 
or smaller than the SRD for the four variables, while errors of the estimations were not, 
indicating that ML models were sufficiently accurate to detect a clinically important 
difference. Therefore, the simplest ML model (LR) should be used to improve the 
accuracy of the estimations of tc, tf , DF and Fv;max obtained using a sacral-mounted 
IMU across a range of running speeds. These improvements may be beneficial for 
practitioners seeking to monitor running-related injury risk factors in real-world 
settings.
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Appendix. The Relation between Flight Time and Net Vertical Impulse

The integral of the vertical external forces during a running step is null. Hence, tf relates to the net 
vertical impulse (Iz;net), i.e., the integral of the vertical ground reaction force ÖFz), which is above 
body weight during tc (Equations A1 and A2) (Heise & Martin, 2001) 

Útc
0 Fz tÖ Ü �mgÖ Üdt �mg tf à 0; (A1) 

tf à
Útc
0 Fz tÖ Ü �mgÖ Üdt

mg à Iz;net

mg : (A2) 

Therefore, tf takes both the vertical ground reaction force and its time of production into account. 
Hence, tf might play a role in running-related injury development.
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