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Abstract: Monitoring invasive plant species is a crucial task to assess their presence in affected
ecosystems. However, it is a laborious and complex task as it requires vast surface areas, with
difficult access, to be surveyed. Remotely sensed data can be a great contribution to such operations,
especially for clearly visible and predominant species. In the scope of this study, water hyacinth
(Eichhornia crassipes) was monitored in the Lower Mondego region (Portugal). For this purpose,
Sentinel-2 satellite data were explored enabling us to follow spatial patterns in three water channels
from 2018 to 2021. By applying a straightforward and effective methodology, it was possible to
estimate areas that could contain water hyacinth and to obtain the total surface area occupied by this
invasive species. The normalized difference vegetation index (NDVI) was used for this purpose. It
was verified that the occupation of this invasive species over the study area exponentially increases
from May to October. However, this increase was not verified in 2021, which could be a consequence
of the adopted mitigation measures. To provide the results of this study, the methodology was
applied through a semi-automatic geographic information system (GIS) application. This tool enables
researchers and ecologists to apply the same approach in monitoring water hyacinth or any other
invasive plant species in similar or different contexts. This methodology proved to be more effective
than machine learning approaches when applied to multispectral data acquired with an unmanned
aerial vehicle. In fact, a global accuracy greater than 97% was achieved using the NDVI-based
approach, versus 93% when using the machine learning approach (above 93%).

Keywords: satellite; invasive species; normalized difference vegetation index; remote sensing;
geographical information systems

1. Introduction

Water hyacinth (Eichhornia crassipes) is a free-floating macrophyte native to the Ama-
zon basin and adapted to lentic habitats. Its high ornamental value made it spread globally
since the late nineteenth century. Nowadays, water hyacinth is present in lakes, reservoirs,
ponds, irrigation ditches, and the final sections of rivers on all continents except Antarc-
tica. It is in the top 100 of the most exotic and considered one of the most aggressive and
predominant invasive species in the world [1]. Indeed, Eichhornia crassipes reproduction is
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defined by asexual reproduction and also by the production of a high number of seeds (via
sexual reproduction)—a single inflorescence with 20 flowers can produce about 3000 seeds,
which can remain viable for about 20 years—providing a competitive advantage over other
native macrophytes [2,3] in invaded ecosystems. Furthermore, the vegetative reproduction
originates from plant fragments, which can survive over winter and be disseminated by
winds and currents, creating new invasion foci [4]. Therefore, in invaded areas, this plant
creates extensive mats covering the water surface, changing the aquatic ecosystem, and,
in certain cases, leading to the elimination of native aquatic macrophytes. Consequently,
these changes cause a decrease in phytoplankton, zooplankton, macroinvertebrate, and fish
diversity, due to degradation of the habitat induced by decreasing light input and dissolved
oxygen, increasing turbidity, and reducing water quality. It also provides several disadvan-
tages such as the obstruction of irrigation and navigation canals, which affects water usage
and activities such as navigation, fisheries, agriculture, tourism, and hydroelectric power
generation by blocking turbines and decreasing agricultural productivity (e.g., invasion of
rice fields) and grazing land (increasing livestock production cost) [2,5–9].

Low nutrient availability, temperatures lower than 10 ◦C, and elevated salinity levels
are the most significant limiting factors for water hyacinth expansion. Therefore, the
aquatic ecosystems located at latitudes between 40◦ N and 40◦ S are the most vulnerable
to invasion. In Europe, the southern regions, such as Portugal, Spain, Italy, and France
(Corsica island) present the most susceptibility to water hyacinth invasions [2]. However,
in a climate change scenario, it is expected that invasive capacity will extend to other
regions of Europe [2,5]. In Portugal, the water hyacinth’s first sighting occurred in 1939 [10].
Nowadays, it is spread across the various regions of the country, including Terceira Island
(Azores Archipelago). Some of these invasions deserve special attention, such as the
cases of the Paúl do Boquilobo (biosphere reserve), irrigation channels, rice fields in the
Sado and Sorraia sub-basins (Tagus Basin) [11,12], and Pateira de Fermentelos, one of the
largest freshwater lagoons of the Iberian Peninsula [13]. In the Guadiana Basin it covers
more than 200 ha, invading Alqueva Reservoir [2,4]. Based on the foregoing, it can be
concluded that water hyacinth is extremely difficult to eradicate once established [6]. The
combination of all these factors led to the creation of a European regulation (EU Regulation
No. 1143/2014) stating that this species cannot be introduced, maintained, reproduced, or
commercialized in the European space. In the specific case of Portugal, legal restrictions on
the use and dissemination of water hyacinth were introduced even before the European
legislation (Decree-Law no. 565/99 of 21 December, revised by Decree-Law no. 92/2019,
of 10 July). More recently, the National Assembly Resolution no. 13/2020 recommends
creating a national control plan for this species to minimize economic costs and ecological
impacts. Therefore, to implement the control plan, a better understanding of water hyacinth
spatiotemporal dynamics is needed.

Remote sensing and specifically, satellite imagery data analysis, are added-value tools
to investigate and monitor water hyacinth invasion dynamics on a large scale. Indeed, and
despite the low spatial resolution of satellite images when compared to high spatial resolu-
tion images obtained by unmanned aerial vehicles (UAVs), the correlation between the two
types of data is high, making satellite images, namely Sentinel-2 imagery, appropriate tools
for spatiotemporal studies [14]. Thus, it also provides helpful information, allowing the
implementation of appropriate management strategies to control and prevent invasions,
thus promoting the early eradication of this invasive macrophyte.

Decision making in the management and control of water-hyacinth-affected ecosys-
tems needs constant local monitoring to assess the invasion extent [15]. The effectiveness
of using satellite imagery to monitor the spread of water hyacinth over aquatic ecosystems
has already been proven [16,17]. A wide range of studies can be found in the literature
that used multispectral satellite imagery data from different platforms, such as Landsat
medium-resolution data (30 m spatial resolution). Dube et al. [18] monitored water hyacinth
presence in Lake Chivero (Zimbabwe) using Landsat 8 data classified with discriminant
analysis (DA) and partial least squares discriminant analysis (PLS-DA). An overall accuracy
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of 95% was obtained, with DA outperforming PLS-DA. Moreover, from the classified water
hyacinth extent, the authors were able to classify different age groups (old, intermedi-
ate, and young). In Dube et al. [15], water hyacinth classification, comparing Landsat 8
Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper (ETM) data,
was performed, with Landsat 8 OLI data reaching a higher overall classification accuracy.
Mukarugwiro et al. [19] used Landsat 8 data to map water hyacinth spatial distribution in
Rwandan waterbodies. The authors classified different land-cover types and evaluated two
machine learning techniques: random forest (RF) and support vector machines (SVM), with
RF reaching the best performance. By applying the same approach, Mukarugwiro et al. [20]
mapped water hyacinth spatiotemporal variation using Landsat satellite imagery from
1989, 2002, and 2017. With temporal data it was possible to estimate the water hyacinth
coverage in each period and its increase. Commercial platforms as WorldView-2 (0.46 m
and 1.84 m of spatial resolution for panchromatic and multispectral data, respectively)
were also used [21,22]. John and Kavya [21] used WorldView-2 to map aquatic macrophyte
communities, including water hyacinth, in the Vembanad estuary (India), using unsuper-
vised classification based on an iterative self-organizing data analysis technique (ISODATA)
algorithm. Damtie, Mengistu and Meshesha [23] monitored Lake Tana (Ethiopia), using
four images, one for each season, from Sentinel-2 (10 m spatial resolution), observing the
effect of this invasive plant on water loss by evapotranspiration increase and mapping
its presence using a maximum likelihood classifier. Using the same classification method,
Damtie and Mengistsu [24] evaluated the impacts of water hyacinth on land use and land
cover in northeastern Lake Tana. The authors used data before water hyacinth presence
(2010) from Landsat 5 (30 m spatial resolution) comparing it with 2019 data from Sentinel-2
and it was possible to map not only its proliferation but also to observe that water, agri-
cultural land, and bare land areas suffered an area coverage reduction in favor of water
hyacinth. Asmare et al. [25], evaluated a 5-year period (December 2013, 2015, and 2017)
in Lake Tana using Landsat 8 data and a decision tree classifier. The amount of coverage
increased from 112 to 1512 ha. Janssens et al. [22] explored the use of Sentinel-2 data to
monitor water hyacinth invasion severity in the Saigon river (Vietnam). It was possible
to map the seasonal dynamics of water hyacinth coverage from 2018 to 2020 by using
a Naïve Bayes classifier. To benefit from the different time series satellite data collected
through time, Ongore et al. [26] monitored the spatiotemporal dynamics of water hyacinth
in Lake Victoria (Kenya) using Landsat 7 (January 2014 to July 2015), Landsat 8 (July 2015
to December 2016) and Sentinel-2 (January 2017 to December 2017) data.

Thamaga and Dube [16] stated that there is still a need to explore the applicability
of non-commercial new-generation spatial sensors to monitor water hyacinth in small
reservoirs (such as Sentinel-2). The use of such data will make it possible to understand the
spatiotemporal evolution of water hyacinth and the development of operational monitoring
tools, making control and eradication programs effective and robust [18]. The European
Space Agency (ESA) Sentinel-2 satellite provides time series with frequent temporal cov-
erage, at high spectral resolution and at no cost to the user, allowing for the monitoring
of river stretches and narrower channels. In this context, Ghoussein et al. [27] performed
multi-temporal mapping of water hyacinth in the Al Kabir river (Lebanon), assessing the
potential of Sentinel-2 data for tracking invasive water hyacinth in a river branch between
2015 and 2020. Gerardo and Lima [28] assessed the use of Sentinel-2 data to map water
hyacinth in a small water course from the Mondego river (Portugal) between 2017 and 2021.
These studies made use of vegetation indices such as normalized difference vegetation
index (NDVI) [29], normalized difference water index (NDWI) [30], and soil adjusted vege-
tation index (SAVI) [31]. More recently, high spatial-resolution multispectral data acquired
using a UAV was also explored to detect water hyacinth growth along with Sentinel-2
data through the use of machine learning classifiers [32], allowing users to map water
hyacinth in periods where Sentinel-2 data are not available. Despite the great advances
provided using remote sensing data for the monitoring and management of invasive plants
in general, and of water hyacinth in particular, most of the studies carried out are based
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on complex methodologies. This makes their implementation difficult by the technicians
who directly intervene in its management, normally without the background knowledge
that allows them to follow these methods. After the phase in which the effectiveness
and efficiency of remote sensing data in this type of application was proven, it is also
important to develop new and straightforward methodologies that allow, at the same time,
the creation of tools that can be used by technicians with different levels of training, but
who directly deal with these issues. With this study, it is intended to advance towards
that direction. Water hyacinth dispersion dynamics are addressed in a multi-temporal
perspective by using Sentinel-2 multispectral data to monitor small water channels in
the Lower Mondego (Portugal), which is severely affected by this invasive species and
where mitigation/containment measures are being taken. The employed methodology
intends to create a straightforward yet effective pipeline based on vegetation index thresh-
olding to compute water hyacinth presence within the water channels intended to be
monitored. A geographic information system (GIS) tool that integrates the methodology
to detect the invasive species was developed by the research team. The tool is free and
open source, providing the advantage to be adapted to other species and other contexts. It
will thus allow ecologists and researchers with little or no knowledge of GIS to use remote
sensing data to perform such analysis, enabling to improve their efforts to reduce this
invasive species.

2. Materials and Methods
2.1. Study Area Characterization

The area analyzed in this study is in central Portugal, within the Mondego River
basin, between the cities of Coimbra and Figueira da Foz, a region known as Lower
Mondego (Baixo Mondego in Portuguese). It is mostly composed of rice fields and three
channels were selected to be monitored. These locations have diversion channels with
potential accumulation of water hyacinth (Figure 1). A total area of approximately 46
ha was monitored. The west channel has a size of 10.7 ha (23.2% of the total analyzed
area), which has two derivation points, one to the Mondego River main water course and
another to the central channel. The central channel, with 25 ha, represents 54.2% of the
studied hydric surface which derives to the Mondego River at the end. The east channel has
10.4 ha, represents 22.6% of the analyzed area, and flows to the derivation point of the
central channel.
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2.2. Remote Sensing Data

Two types of remote sensing data were used to carry out this study: Sentinel-2 Mul-
tispectral Instrument (MSI) imagery and UAV multispectral imagery. The former group
of images constitutes the core of this study, while the latter were used for validation
purposes. The spectral data products provided by the MSI range from the visible to the
short-wave infrared parts of the electromagnetic spectrum. Thirteen spectral bands (B) are
available, in total, with different spatial resolutions central wavelengths: (1) with 10 m—B2
(490 nm), B3 (560 nm), B4 (665 nm) e B8 (842 nm); (2) with 20 m—B5 (705 nm), B6 (740 nm),
B7 (783 nm), B8a (865 nm), B11 (1610 nm) e B12 (2190 nm); and (3) with 60 m—B1 (443 nm),
B9 (940 nm) e B10 (1375 nm). The acquired data were projected onto a 100 km × 100 km
Universal Transverse Mercator (UTM) grid.

The data were downloaded using the Mundi Web Services platform. The search query
respected the following conditions: Level 2A data products, corresponding to Bottom-
Of-Atmosphere (BOA) reflectance; containing a cloud cover percentage below 10%; and
between May 2018 and October 2021. Thus, all 10 m spatial resolution bands were down-
loaded (B2, B3, B4, B8), as well as a true color image (TCI) representation of each period.
Table 1 shows the dates selected for the study. There were periods in which the conditions
of the available data did not meet the search criteria, mainly due to a high cloud cover
percentage over the study area. It should be noted that for this specific study, only data
from the same grid (T29TNE) were used.

Table 1. Date (year, month, and day) of the Level-2A Sentinel-2 in the grid T29TNE.

Month/Year 2018 2019 2020 2021

January — 10 05 —
February — 14 19 28

March — 11 10 20
April — 20 — 04
May 05 05 24 19
June 19 — — 23
July — 14 18 28

August 18 13 22 17
September — 12 01 21

October 02 22 11 19
November — — — —
December 31 — — —

UAV-based data were obtained on 21 July 2021 in the locations numbered in Figure 1.
They were acquired using a Matrice 300 RTK (DJI, Shenzhen, China) with a RedEdge-MX
sensor (MicaSense, Inc., Seattle, DC, USA) coupled to it. This way, high-spatial-resolution
(approximately 0.07 m) data from blue (475 nm), green (560 nm), red (668 nm), red edge
(717 nm), and near infrared (NIR) (842 nm) spectral bands were available. For more details
on the UAV data acquisition and processing please refer to Pádua et al. [32].

2.3. Water Hyacinth Spatio-Temporal Monitoring

The methodology implemented consists of a logical sequence of steps in order to
obtain the spatial distribution of water hyacinth. If applied in a temporal perspective,
this methodology allows measurement of the temporal evolution of the area covered by
water hyacinth and its spatial distribution. In this way, it will be possible to simplify
the observation of seasonal dynamics in the study area and estimate which areas are
most affected.

From the remotely sensed data, vegetation indices were computed, enabling us to
highlight vegetation by considering differences obtained from arithmetic operations to-
wards the available spectral bands. Usually, vegetation indices present higher values for
healthy vegetation in comparison to non-vegetation elements, such as soil, dry vegetation,
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human-made infrastructures, and water. Since water hyacinth is mainly present in aquatic
environments it is important to circumscribe the area to allocate the specimens to areas that
meet the characteristics. Therefore, it is necessary to provide the polygons with locations
that possibly contain water hyacinth. In the case of this study, a set of polygons delimitating
the water channels was used in the analysis.

After identifying the areas that can potentially include water hyacinth, the next step
was to discard all pixels outside the polygons intended to be analyzed by merging them
with vegetation-index data. This way, pixels only within the polygons were kept. Then
a threshold value representing vegetation within the water channels was defined for a
binarization process where all pixels above it were classified as one and equal or below
the threshold value, as zero. This binarization process lead to the creation of a new image
where bright pixels represented water hyacinth, which also allowed us to calculate its
overall occupation area for each water channel as well as another raster product with the
vegetation-index values within the polygons. This way, with the inclusion of different
periods, the multi-temporal analysis and the detection of annual and seasonal changes
was possible.

2.4. Data Processing

Sentinel-2 MSI datasets were used to calculate the NDVI, which is widely used to
analyze vegetation in different contexts. It uses NIR and red bands and is computed
as shown in (1). Sentinel-2 MSI B8 (NIR) and B4 (red) were used to calculate the in-
dex. The same index was generated for the orthorectified UAV-based data in the three
surveyed areas.

NDVI =
NIR − Red
NIR + Red

(1)

A vector shapefile was created with the water channels intended to be analyzed
(Figure 1). These data can be obtained through online platforms such as OpenStreetMap
or from governmental entities. Moreover, it can be easily edited or created from scratch
through photointerpretation of publicly available aerial imagery, such as Google Earth or
Bing Maps, among others. In the context of this study, the data were downloaded from
OpenStreetMap and then adjustments took place to reflect most parts of the water channels
analyzed. The NDVI raster files of all dates (Table 1) were restrained to the polygon areas
and binarized according to a threshold value which, in the case of this study, was selected
from a UAV-Satellite data analysis (see Section 2.6). The threshold value can be obtained in
three ways: (1) by georeferencing areas on the field where there are water hyacinth, and
using that information to identify the corresponding pixels in the image and calibrating
the value; (2) using photointerpretation of the remote sensing data (i.e., by observing the
NDVI values in areas occupied by the invasive plant species), and then adapting/adjusting
the threshold value to the data characteristics using a GIS; (3) analyzing the bimodal
distribution of the histogram values within the areas to monitor.

2.5. Developed Tool

To automate most aspects of the methodology, a GIS open-source application was
developed, named QIASdetection (QGIS Invasive Aquatic Species detection) [33]. It is
operated in QGIS, a free and open-source GIS software, and the Python programming
language and several application programming interfaces (APIs) were used to develop the
main code. The framework Qt Designer was used to create and design the graphical user
interface (GUI).

The application allows users to detect invasive species in aquatic ecosystems by
analyzing the NDVI (already created or estimated from red and NIR bands). The input
layers can be accessed from the QGIS canvas or from a user-specified directory. The
user can define the NDVI filtering with two options: (1) by using a threshold value; or
(2) by defining an interval by specifying minimum and maximum values. The application
generates two outputs: (1) a raster identifying the invasive species (marked with a value of
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1); and (2) a shapefile composed by descriptive statistics, such as the estimated area. The
output files are stored in a folder defined by the user.

2.6. Data Analysis

To evaluate the water-hyacinth-detection accuracy when applying the methodology
used in this study, two validation procedures were conducted using the acquired UAV-
based data. One by conducting a pixel-wise comparison of the water hyacinth detection
with manually digitized binary images of the UAV surveyed areas. The other assessment
passed through the comparison of the obtained results (using the UAV-based NDVI) with
the results obtained when applying a pixel-wise machine learning classification based on
an RF [32] (the dataset is composed of the reflectance of the five orthorectified spectral
bands acquired from the multispectral sensor onboard the UAV).

UAV data were also correlated with Sentinel-2 data for classification purposes. Due
to differences in their spatial resolution—approximately 0.07 m for data acquired by UAV
and 10 m for data from Sentinel-2—it is expected that some pixels may contain different
elements. Therefore, to evaluate possible differences that may exist in the satellite data, the
NDVI generated by the UAV data were resampled to the same spatial resolution as the
NDVI generated with the Sentinel-2 data on 28 July 2021. A total of 100 pixels were selected
that entirety cover water hyacinth areas and the correlation coefficient (R2) was evaluated.

The temporal monitoring of water hyacinth presence was conducted by analyzing
each period regarding the monthly and annual patterns in its area and location, allowing us
to monitor vegetative growth and/or decline over time. The relationship between the mean
NDVI of the study area and water hyacinth cover percentage was subject to evaluation to
understand the dynamics between these two parameters.

3. Results
3.1. Sentinel-2 and UAV Data Correlation

Despite the spatial resolution differences, the correlation between the UAV and
Sentinel-2 NDVI data (Figure 2) had a good agreement between them with R2 = 0.89
(Figure 2d), demonstrating that there is no significant discrepancy in the values of both
platforms and that they follow a similar spatial trend. When analyzing the data correlation
obtained through the two platforms, satellite and UAV (Figure 2d), it was found that pixels
with a high density of water hyacinth contained NDVI values around 0.8, but there may
be pixels containing a lower density of plants. However, some disagreements may have
occurred due to temporal changes. Thus, by considering the range of values in Figure 2d
and the photointerpretation of the NDVI values on areas with water hyacinth (Figure 2a–c)
it was decided to consider a threshold value of 0.75. This way, pixels above this value are
considered to represent the invasive species under study.

3.2. Comparison of NDVI Thresholding and Machine Learning Performance

The validation conducted when considering all NDVI values above 0.75 in the three
areas surveyed by the UAV (locations shown in Figure 1) enabled the comparison with the
manually digitized masks representing water hyacinth. Area 3 showed the highest area of
water hyacinth (above 9000 m2), followed by area 2 and area 1 with 5940 m2 and 5885 m2,
respectively. The estimated water hyacinth coverage area for the three areas is presented
in Table 2. A total of 598 m2 were estimated in excess when using the NDVI. On the other
hand, the RF estimation resulted in a total underestimation area of 1312 m2.
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Figure 2. Normalized difference vegetation index (NDVI) of area 1 (a), area 2 (b) and area 3 (c)
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Table 2. Water hyacinth detected area (m2) type (correct, over, and under) when using the normalized
difference vegetation index (NDVI) and when applying a random forest (RF) in the three areas
surveyed by the unmanned aerial vehicle.

Area No. Approach
Detection Type (m2) Estimated

Area (m2)
Digitized
Area (m2)Correct Over Under

1
NDVI 5738 250 147 5988

5885RF 5522 2 362 5524

2
NDVI 5769 425 171 6194

5940RF 5406 32 534 5438

3
NDVI 9038 351 111 9389

9149RF 8699 0 450 8699

When comparing the classification results of the evaluated methods, the NDVI thresh-
olding approach shows a mean detection of 97.81% (97.51% in area 1, 97.12% in area 2, and
98.79% in area 3) while the RF classifier provided a mean detection rate of 93.31% (93.84%
in area 1, 91.02% in area 2, and 95.08% in area 3). Figure 3 presents a visual representation of
the correctly, under-, and over-detected pixels when compared with the manually digitized
masks in both approaches. Both approaches present misclassifications in a small region of
area 1, this being more noticeable in the RF classification. In area 2, another plant species
was classified as water hyacinth when relying on the NDVI and a region of water hyacinth
that had a considerable flower density was not detected by the RF algorithm. In area 3,
some plants were not detected by both approaches, while when using NDVI there was a
region located near the bridge that was over-detected.
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Figure 3. Water hyacinth classification results from normalized difference vegetation index (NDVI)
thresholding (a) and from the random forest classifier (b) in the three areas surveyed by the unmanned
aerial vehicle (UAV) on 21 July 2021.

3.3. Multi-Temporal Monitoring

To analyze water hyacinth population growth and/or decline in the study area,
Sentinel-2 time-series data were used (dates in Table 1). Water hyacinth distribution
in different years analyzed (2018 to 2021) presented distinct behaviors, as observed in the
overall occupation area shown in Table 3 and Figure 4a. In May 2018, about 3% (1.3 ha) of
the channels showed signs of infestation by water hyacinth. This value rose to 20% (9.1 ha)
in August, representing, in October, 39% of the total surface. In 2019, the infestation seems
to have worsened. In May, the area covered by water hyacinth was 4% (+1% than 2018);
in August the percentage of coverage was already higher than the maximum recorded in
2018, with 41% of the area analyzed being covered by water hyacinth; in October this rose
to 64% (approximately 30 ha), which is the highest percentage of surface covered by water
hyacinth recorded in the analyzed period. In 2020, only 1% (0.5 ha) of the surface was
potentially covered by water hyacinth in May. In August this value rose to 24%, while in
October it represented more than half (53%) of the entire analyzed surface. In May 2021, 6%
of the area was estimated as being infested with water hyacinth, the highest value recorded
for May. In August this value was 34% (approximately 16 ha), but in October there was a
growth of only 2% compared to August (0% compared to September).

The contribution of each water channel to the temporal changes of water hyacinth
cover were analyzed in the monitored period (cover values in Table 3, cover percentage in
Figure 4b, and spatial distribution in Figure A1). It should be noted that in May of both
2018 and 2019, there was a higher percentage of water hyacinth in the east part. In the
following months, the central channel showed a substantial growth in all years except 2021.
As of October 2019, the central channel was almost entirely occupied by water hyacinth
(distribution in Figure 5). In 2021, a decline was verified in the west and center water
channels of the study area, yet there was an increase in the eastern channel.
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Table 3. Estimated water hyacinth surface occupation (in hectares) from the analyzed periods, from
May 2018 until October 2021.

Year Month East Center West Total

2018

May 1.3 0.0 0.0 1.3
June 2.1 1.1 0.3 3.5

August 1.8 7.0 0.4 9.1
October 1.2 15.9 0.9 18.0

2019

May 1.2 0.5 0.1 1.8
July 0.1 12.9 0.3 13.4

August 0.8 17.3 0.8 18.8
September 3.0 21.2 1.6 25.8

October 4.7 23.2 1.9 29.8

2020

May 0.2 0.3 0.1 0.5
July 0.2 3.8 1.2 5.2

August 1.7 7.9 1.6 11.1
September 2.3 9.5 2.1 13.9

October 3.9 16.7 3.7 24.3

2021

May 0.7 0.6 1.7 3.0
June 0.5 3.4 1.9 5.8
July 2.2 4.5 2.0 8.7

August 4.9 8.6 2.4 15.9
September 5.6 8.4 2.5 16.6

Total surface (ha) 6.3 8.9 1.5 16.7
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Regarding the mean NDVI of the studied area (Figure 6a), there was a constant growth
over time. May had the lowest values in the four years, approximately 0.2, with the lowest
value observed in May 2020. On the other hand, October presented the highest mean NDVI
values in 2018, 2019, and 2020 (respectively, 0.56, 0.69, and 0.63), while, in 2021, the highest
value was reached in September (0.56). In June, the lower values were observed in 2018
and 2020 (0.24), followed by 2021 (0.31) and 2019 (0.38). The same trend was observed in
July, August, and September 2018, presenting the lower mean values, followed by 2020
and 2021, and the higher mean values observed in 2019. Regarding the mean NDVI value
per channel (Figure 6b), the central channel presented the lowest value in the four years
(respectively, 0.07, 0.14, 13, and 0.12). On the other hand, the central channel presented the
higher overall annual value in October 2018, 2019, and 2020, with a mean NDVI of 0.73,
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0.87, and 0.73, respectively. In 2021, the highest mean NDVI value was recorded in October
in the east channel (0.73).
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May to October, for the whole study area (a) and in each analyzed water channel (b).

The analysis of the relationship between the percentage of water hyacinth detected in
the water channels and the mean NDVI is presented in Figure 7. A good data agreement was
obtained with R2 = 0.91, meaning that there was a strong correlation between water hyacinth
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cover percentage and the mean NDVI value of the water channels. Moreover, similar trends
can be verified in the multi-temporal analysis of both parameters (Figures 5 and 6).
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4. Discussion

Regarding the spatial NDVI correlation from UAV and Sentienl-2 (Figure 2d), in other
studies that performed comparable assessments, similar distributions and correlations were
observed among data from both platforms [14,34]. Nevertheless, some studies presented
different correlation coefficients over time, depending on the vegetative development [35].
Concerning water hyacinth, John and Kavya [21] also found out that NDVI showed similar
values to the ones obtained in this study. However, considering the greater spatial resolution
that can be provided by UAV-based data, vegetation-filtering operations can be applied
to the thousands of pixels that can fit in a single Sentinel-2 10 m2 cell [36,37]. On the
other hand, the continuous temporal and spatial availability of Sentinel-2 data and the
non-existent data-acquisition costs to end users promise a tremendous potential for certain
applications. In this context, UAV data can be used to assist ground-truthing operations.
Nevertheless, UAV data should be mainly considered when it is strictly required to obtain
on-demand data for a specific time period and to collect validation data to complement
satellite imagery [19].

The accuracy validation performed by using the UAV-based multispectral data re-
vealed that the method tended to overestimate rather than underestimate (Table 2). The
inverse was verified when applying the machine learning classification, which proved to
be more prone to under-classifying water hyacinth. Moreover, the NDVI approach was
able to correctly classify areas with a lower plant density or with a high presence of flowers,
which the RF method had difficulty classifying (Figure 3). The over-detection cases can be
perfectly justifiable as the NDVI provides higher values when there is a greater density of
healthy green vegetation. The over-detection case verified in the third area was located
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under deep shadows (cast by the nearby bridge) which prevented to correct verification
of the presence of water hyacinth when manually digitizing it, but it is perfectly viable
that this specific estimation could be correct as there is a retention structure right after the
bridge. Nevertheless, the developed tool [33] allows users to define a threshold range by
specifying its maximum and minimum values, which can be explored in other contexts
and also to decrease potential over-detection effects.

The water hyacinth multi-temporal analysis led to the exclusion of some months. In a
preliminary analysis, and after consulting specialists with knowledge of the place under
study, the winter and some spring months were disregarded, and the period between May
and October of each year was selected for the final analysis, as it shows higher expansion
rates during dry seasons of the year [18,23]. The decision to exclude the period between
November and April was made due to the vegetative cycle of the species itself, which
together with precipitation, and the consequent water-flow increase in winter and spring
months, causes an almost immediate decrease in the amount of water hyacinth present in
the analyzed sites. This is clearly evidenced in Gerardo and Lima [28], where part of the
central water channel was analyzed, with a Sentinel-2 time-series that covered 2017 to 2021.
The autumn corresponds to the senescence period and the gradual disappearance of water
hyacinth [27]. Moreover, Janssens et al. [22] reported that the coverage of water hyacinth
negatively correlates with rainfall and humidity increase.

When analyzing the multi-temporal monitoring results (Table 3, Figures 5 and 7),
it can be said that the growth of the infestation was progressive throughout 2018. This
tendency worsened in 2019, where maximum values were registered in all analyzed months,
except for May. In 2020, the lowest values were verified for the months of May and July,
the coverage increased in August, but a slow growth was verified in September (+6%
infestation, from 24% to 30%). The 2021 period, on the other hand, presented an expected
trend in the first three months, with a sharp growth from July to August from 19% to 34%.
However, unlike preceding years, an insignificant growth was observed in the subsequent
months (September and October). The behavior observed in 2018 and mainly in 2019
may be related to the lack of combating the invasive species and the possibility of having
favorable weather conditions for water hyacinth dispersion. The cover percentage in 2021
demonstrates that the imposed removal/mitigation actions on the study area had an effect,
as the growth stagnated between August and October. Perhaps in 2020 the same type of
operations had been carried out between August and September (see difference in Figure 5).
The higher occupation in the central water channel (Table 3, Figures 6 and A1) can be
justified with the water-flow movement being from east to west, passing through the
central channel and deriving in the same place where the west channel flows. The lower
incidence of water hyacinth in 2021 was most likely related to the installation of retention
structures and water-hyacinth-removal operations carried out in the field, showing a greater
surface without infestation in the central channel (Figure 6) compared to previous years.
Other authors also observed a decline period in water hyacinth between years, potentially
due to the implemented control measures [20]. Moreover, different spatial distributions
and coverage area were reported in various analyzed rivers and wetlands [19] or river parts
presenting a higher peak in one of the monitored years [22,27], with a potential factor for
this occurrence being drier climatic conditions.

The results reported in this study not only demonstrate that water hyacinth extent
influences the NDVI value of the water bodies but also that NDVI is a suitable tool for its
temporal monitoring. Nevertheless, the developed GIS application can also be used for
vegetation segmentation in other contexts, such as forestry and agriculture. There are other
approaches relying on machine learning for the detection of water hyacinth [19,22,25], but
those require feature extraction and training stages, despite being possible to be directly
applied in QGIS using plugins [9,32]. Moreover, machine learning classifiers can still
provide false positives if water channels are not used to mask the results. Thus, the
approach employed in this study is a rapid way to perform water hyacinth detection. NDVI
thresholding proved to demonstrate good results with less complexity and at relatively
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lower computational costs, and it can also be implemented in different remote-sensing
platforms and used in combination with ground-level sensors [17].

5. Conclusions

The content presented in this study summarizes part of the research work carried out
for the detection and monitoring of water hyacinth in part of the Mondego River basin.
A methodology was proposed to automatize most processes for water hyacinth detection
using multispectral satellite data with 10 m spatial resolution. The image-processing
techniques enabled us to filter out NDVI values that did not correspond to vegetation or
were not within the region of interest, by using polygons to limit the classification only to
aquatic bed zones.

If a fully automatic approach is intended, steps for automatically obtaining water
bodies must be considered. One of the possibilities is to generate such masks through
image processing techniques at low- or non-existence periods of water hyacinth incidence
(winter or early spring). However, if the use of Sentinel-2 MSI data are considered, due
to the nature of its spatial resolution and the reduced width of the water bodies, this
type of approach can be inefficient, causing incorrect segmentation. The methodology is
implemented in the form of a QGIS application. Therefore, a completely free approach is
provided for monitoring water hyacinth presence in any area of the globe using Sentinel-2
MSI data or by using high-spatial-resolution UAV-based data. Thus, entities responsible for
water hyacinth monitoring and control can use the proposed methodology in a fast and
intuitive manner, helping to support decision making in mitigating/controlling invasive
aquatic species.

As a future work, water hyacinth samples may be collected to correlate with the
remotely sensed data to enable us to study the viability of directly estimating its biomass
through vegetation indices from remotely sensed multispectral data. The continuous
monitoring of the study area should continue to be performed to assess whether the results
observed in 2021 are repeated or even decline, in order to assess the effectiveness of the
applied mitigation measures.
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Appendix A

Figure A1 presents the generated water hyacinth distribution maps in the monitored
months (when data are available) between 2018 and 2021.
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