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Abstract: Over time, the industrial use of the welding process has grown in significance and is now
one of the primary methods for joining metallic parts. During the welding process, metallurgical
and structural modifications occur close to the welded joint. The thermal stresses and geometric
distortions are undesirable, and they are a challenge to accurately forecast. Laboratory tests were
conducted utilizing the GMAW method on S235JR steel as the base material with the goal of examining
the impact of the welding sequence on angular distortion in butt joints when comparing three
different welding sequences. Equipment that can determine coordinates in the operational space with
metrological accuracy was used to measure distortions. As a result of metrological and statistical
analyses, it was found that the sequence factor is shown to substantially influence the final distortions
and that the symmetrical method results in less distortions followed by a one-step method.

Keywords: welding distortion; welding sequence; steel sheet; welding parameters; butt joint; GMAW

1. Introduction

Welding processes are the most selected joining processes in the manufacturing and
assembling of many components because of their good degree of reliability and high pro-
duction velocity [1]. Another advantage that motivates this preference is the economic fea-
sibility of the various types of welding compared with other manufacturing processes [2,3].
Gas Metal Arc Welding (GMAW) is one of the most applied and preferred techniques in
the industry [4] because of its advantages, namely the capability of all-position welding
and good quality of welds. This welding method is versatile, as it can be used in semi-
automatic and fully automatic modes, in consonance with the requirements of each type of
application [5,6].

Even though there are plenty of advantages in welding processes, one critical problem
is that they can often produce high levels of defects, such as shrinkage and distortions [7].
During the welding process, usually non-uniform expansions and contractions occur
among the weld and the surrounding regions, and these effects cause distortions [8]. One
factor that contributes to the distortions’ appearance is the high temperature of the welded
area and its thermal expansion, which is restricted by the surrounding areas where the
metal is at a lower temperature, causing compressive stress [9], while high values of tensile
stresses are generated in the weld bead [10].

A lot of research has been conducted to overcome these problems and find strategies
to control the appearance of the welded components due to distortions. Distortions often
increase production costs and time, especially when their values outpace the accepted
limits [11]. In order to achieve a minimal occurrence of the distortion effects and residual
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stresses, it is necessary to analyze the parameters used in the welding process and also
the fabrication conditions [12], particularly the material specifications, level of heat input,
stiffener arrangements, joint shapes, welding type and continuity, initial distortions and
welding sequences, and heat treatments before and after the welding [13,14].

The objective of this work was to investigate the influence of three different welding
sequences of the GMAW process on angular distortion in butt-joint welds, performed on
S235 steel plates by metrological assessment.

2. Influence of Welding Parameters on Distortions and Residual Stress Levels

According to D. Radaj [15] and T. Schenk [16], low residual stress levels occur when
deformations are not restricted, and high residual stresses emerge when deformations are
restricted (see Figure 1). However, the level of residual stresses could be higher than yield
stress and, at the limit, it can exceed the ultimate stress [17]. So, in the last years, some
researchers have been studying the optimal parameters to minimize residual stresses [18].
These studies have been conducted using numerical [19] and experimental approaches [20]
to achieve the appropriate balance between the level of residual stresses and the distortion
value [21].
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Figure 1. Relationship between clamping degree and the level of distortion as well as the effect on
residual stresses [22].

The most pronounced type of distortion in butt-welded plates is angular distortion [23];
it happens more frequently than other types of distortions, such as tailing and bending,
and that is the reason why it is considered the most significant type of distortion [24].

The angular distortion is a rotation of the structure around the welding line [16]. When
the transverse shrinkage is not uniform in the thickness direction, the angular distortion
occurs in a butt joint [23,25], so the welded component is distorted in angular directions
around the weld interface, as it is shown in Figure 2 [26].
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The welding parameters must be selected considering the results to be achieved, and
the choice of those parameters can also influence the distortions on the welded component.
Many studies investigated the influences of the welding parameters in such distortions.

According to Vyas et al., if the voltage and the current are increased, bigger distortions
are likely to occur, and the distortions decrease when the welding and feeding velocities
increase [27].

According to Narwadkar A. and Bhosle S, minor distortions are provided with higher
gas flow rates, and they are increased with higher values of voltage and current [28].
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Ramani S. and Velmurugan V. concluded that the angular distortions can be directly
proportional and influenced by the voltage and the torch travel angle. Contrarily, an
opposite effect on distortions can be led with the increase in the length of the electrode and
the feed rate [29].

Deng et al., based on numerical simulations, verified that the heat input has a signifi-
cant influence on the welding distortion. Large heat input is apt to resulting in buckling
distortion in thin-plate panel structures. A reduction in heat input is an effective method of
decreasing buckling propensity [30].

The study conducted by Sakri A. et al. found, through simulations using FEA with
experimental validation, that the angular distortions increased with the rise of the angle of
V-preparation [31].

Long e al. verified in their studies that the largest transverse shrinkage occurs at the
middle section of the length of the plate and it is gradually reduced to the starting and
ending edges of the welding line [32].

A different investigation about the influence on joint gap distortions, number of passes,
and time gap between passes was performed by Kumar P. [33] and Kumar A. [34]. With
the experiments carried out, it was possible to conclude that an increase in joint gap and
number of passes leads to an increase in distortions. On the other hand, the distortions
decrease when the time gap between the passes increases.

The Taguchi method was used by Soni S. and Aggarwal N. in research to investigate
angular distortions. This investigation concluded that the increase in the current, plate
length, and electrode diameter brings an increase in distortions. Concerning the time gap
between the passes, it affects the angular distortions oppositely [11].

3. Materials and Methods
3.1. Welding Materials

In order to obtain greater productivity in the laboratory experimentation and compli-
ance with thermal uniformity at the beginning of each bead, the welds of all samples were
carried out in an intercalated way and, after the end of each bead, the respective specimen
was subjected to uniform cooling in air, without restriction or acceleration. In other words,
the welding sequence was carried out in order to wait for the complete cooling of the speci-
men to start the new subsequent bead. In this way, greater control over standardization
and uniformity between the different sequences was obtained.

The welding equipment used for the experiment was an MIG 453 modular model
machine (Figure 3a). The machine consists of a power source, an electrode feeder, a torch, a
gas cylinder, and cables.
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To perform the welding procedure with precision, numerical control equipment was
used (Figure 3b), which was developed, manufactured, and tested by members of this
work [35]. The equipment can move the torch with three degrees of freedom and activate
the trigger in an automated way through programming in G Code in the Grbl Controller
3.6.1 software.

3.1.1. Base Metal and Filler Metal

The base metal adopted for the experiment was S235JR carbon steel (EN 10025), whose
chemical composition is indicated in Table 1.

Table 1. Chemical composition of S235JR steel.

C Mn Max P Max S Max

0.17–0.22 1.40 0.035 0.035

The metal available for the experiment was a Eurotrod M/SG 2 electrode, identified
as 1434-A G3Si1 by the ISO standard and 5.18 ER 70S-6 by the AWS (American Welding
Society). The electrode is made of steel and coated with copper. The chemical composition
and mechanical properties are shown in Tables 2 and 3, respectively.

Table 2. Chemical composition of the AWS 5.18 ER 70S-6 electrode.

Chemical Element Minimum (%) Maximum (%)

Carbon 0.06 0.14
Silica 0.80 1.00

Manganese 1.40 1.60
Phosphorus 0.025

Sulphur 0.025

Table 3. Mechanical properties of the AWS 5.18 ER 70S-6 electrode.

EUROTROD EN ISO Mechanical Properties

M/SG 2
14341-A: G3 Si 1

Re 420 N/mm2

Rm 520 N/mm2

A5 > 30%
KV > 72 J (−30 ◦C)

Re is the yield stress, Rm is the tensile strength, A is the elongation, and K is the
impact energy.

For the welding procedures, the recommended ranges for the electrode with a diameter
of 0.8 mm indicated in the ESAB catalog (Table 4) according to the classification in the ISO
14341 standard were used.

Table 4. ESAB recommended parameters for the AWS 5.18 ER 70S-6 electrode.

Ø (mm)
Electric

Current (A) W η H
Electrical
Supply U

0.8 80 14 95 0.8–3.0 3.2–13 18–24
Where W is the protection gas (L/min), η is the welded metal (g/100 g electrode (%)), H is the deposition rate (kg
of weld metal/time of the open arch), Electrical Supply needed is given inm/min, and U is the tension (V).

3.1.2. Shielding Gas

The shielding gas used in the experiment, responsible for beneficially influencing the
mechanical properties and preventing contamination of the molten pool by the external
environment, was a mixture of 82% argon and 18% carbon dioxide (ISO 14175-M21-ArC-18).
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3.1.3. Computerized Metrological Equipment

For the analysis of distortions with digital mode, the metrological equipment for
acquiring geometric points from Creaform was used, which is composed of C-Track 780,
HandyPROBE, and MetraSCAN 3D. In Figure 4, it is possible to observe the experimental
set-up for measuring the specimens’ distortions.
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3.2. Experimental Procedures

To carry out the experiment, 12 pairs of S235JR steel sheets with dimensions of
220 × 100 × 3 mm were obtained, and a 30 × 30 mm control grid was created (Figure 5)
with 64 nodes (measurement points) for the analysis of distortions.
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3.2.1. Surface Preparation

The groove shape of the butt joint is the square type. For the preparation of the
surfaces, a band saw was used to cut them to the projected dimensions and, later, the
surfaces were prepared using an angle grinder with an abrasive disc to remove oxidation
and inorganic impurities. Acetone was used to remove oily impurities (Figure 6).

All the samples were prepared following the same procedure and using the same
parameter in order to only investigate the influence of the welding sequences.

3.2.2. Butt-Joint Welding Process

The weld beads were performed in the flat position (1G) with the pulling technique,
and the parameters were selected within the range recommended by ESAB (as indicated in
Table 4). After the fit tests, the welding parameters were selected as indicated in Table 5.
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Table 5. Parameters used in welding of top joints.

Welding Parameters Used Values

Voltage 22.4 V
Travel angle 15◦

Shielding gas flow 14 L/min
Welding speed 0.30 m/min
Feeding speed 4.5 m/min
Electrode extension (Stick-out) 19 mm

Each welding sequence was made in triplicate to guarantee that the experiments
would not be affected by human, material, or machine flaws, improving the precision of
the investigation. The welding sequences performed were divided into three groups:

• SM: Symmetrical method.
• BM: Backward method.
• SP: Single-pass method with one step.

Figure 7 shows the sequences, indicating the sequence and order of each step, the
Figure 7a is the symmetrical method, Figure 7b the backward method, and the Figure 7c
the single pass.

It was observed that the base metal had a few geometrical discontinuities before the
welding process and, because of that, to obtain a higher control of the distortions that were
really caused by the welding process, the measurements were performed before and after
the welding (Figure 8). The distortions which already existed before were considered and
properly compensated for in the analysis.

The order of the methodology used is represented in the flowchart of Figure 9. To
prepare GMAW butt joints previously, it was necessary to cut carbon steel sheets in agree-
ment with the defined dimensions, followed by a cleaning process using a cloth and
solvent (acetone), and then creating a control mesh, drawing orthogonal lines at same
distances. Before performing the welding of sheets, a control measurement which is used
as reference values was implemented; these measurements were taken using the C-Track
780, HandyPROBE, and MetraSCAN 3D system. The welding process was carried out
according to the sequence presented in Figure 7 and using the welding parameters defined
in Table 5. The welded sheets were measured with the same equipment used to measure
references values. So, a methodology using computerized equipment was performed to
measure distortions, making it possible to obtain the coordinates in the operational space
with metrological precision.

As cited by D. Radaj [15] and T. Schenk [16], when deformations are restricted, high
residual stresses arise and, for that reason, the samples were not fixed during the welding
procedures. As a consequence of that, the deformations were not restricted in any time of
the experiments.
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The welding parameters were chosen in order to have a uniform distribution of the
stands and ensure a better structural and visual aspect of the whole weld. Moreover, the
welding was performed in flat position (1G) with the pulling technique.

The equipment used for data acquisition was the C-Track, which measures coordinates
in the space, interconnected with HandyPROBE and MetraSCAN 3D using the softwares
Metrolog X4 and VXelements.
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4. Results and Discussion

First, the results obtained for each of the experimental replicates were compared for
SM, BM, and PM. The parametric t-test method for comparison of means was applied to
each pair of data for each experiment (Table 6). The results show no statistically significant
differences in any of the cases. The same conclusion is drawn when non-parametric tests are
applied (Kruskal–Wallis and Mood’s median test) (Table 7). These tests allow conclusions
to be drawn even when the data do not follow a normal distribution and there is no
homogeneity of variance.

From the parametric and non-parametric comparisons (Tables 6 and 7), it is possible to
conclude that there are no statistically significant differences between the three repetitions
of each experiment (evaluated as a whole). A maximum range (difference for each cell
between each pair of repeated experiments) was also calculated. The mean range for SM
was 0.530 mm, for BM 0.259 mm, and for SP 0.343 mm. For this reason, the averages of
vertical displacements can be used for each experiment (SM, BM, and PM).

The vertical displacement averages obtained from the three samples can be seen in
Figure 10, which represent the three analyzed sequences: (a) the symmetrical method, SM,
(b) backward method, BM, and (c) single-pass method, SP.
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Table 6. Parametric (t-test) comparison of the datasets into groups.

Comparison F-Value p-Value

SM_1-SM_2 0.240 0.878
SM_2-SM_3 0.207 0.207
SM_3-SM_1 0.366 0.546
BM_1-BM_2 0.157 0.693
BM_2-BM_3 0.155 0.695
BM_3-BM_1 0.000 0.999
SP_1-SP_2 0.190 0.890
SP_2-SP_3 0.010 0.980
SP_3-SP_1 0.026 0.872

Where p-value is the statistical measurement used to validate a hypothesis against observed data and F-value is a
value on the F distribution or, in other words, is the ratio of the variation between sample means and the variation
within the samples.
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(c) single-pass method (SP).

Figure 11a,b indicates the sections with the most expressive distortions (sections A and
H and Sections 4 and 5, respectively). Through the comparative graphs of SM × BM × SP, it
was possible to analyze the deformation patterns and the amplitudes of the displacements
led by welding by comparing the sections. The maximum mean vertical displacement was
observed in Section 5 for all welding sequences studied in this work.
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Table 7. p-value for non-parametric tests into groups.

Kruskal–Wallis Median Test

SM 0.193 0.440
BM 0.778 0.779
PM 0.982 0.990
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4 and 5.

To verify whether the differences in displacements between the sequences are statis-
tically significant, a one-way ANOVA was performed with the default significance level
of 95%.

The sum of vertical displacements was performed and became a single variable for
each sample (Table 8). Prior to performing ANOVA, Levene’s test was applied to sample
data to verify the homogeneity of variances. The test resulted in the null hypothesis being
true in order to conclude that the variances are homogeneous and that it is possible to use
the parametric ANOVA test for this data sampling. All the vertical displacements measured
were summed and transformed into only one variable for each sample.

Table 8. Summation of sample distortions in butt-joint welding.

Sequence Σ Displacement (mm)

SM_1 275.99
SM_2 280.32
SM_3 251.98
BM_1 316.20
BM_2 296.22
BM_3 311.57
SP_1 327.63
SP_2 324.18
SP_3 325.90

According to what is indicated in Table 9, the p-value obtained with the ANOVA
was 0.011, showing the null hypothesis as a result (p < 0.05). Therefore, it is concluded
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that there is a significant difference in the final distortion of the samples between the
welding sequences.

Table 9. ANOVA analysis between the sequences of butt-joint welding.

Sum of Squares Mean Squares F p

Between Groups 1205.667 602.834 10.337 0.011
Within Groups 349.892 58.315
Total 1555.559

The sequence averages were also calculated (Figure 12), and it was verified that the
symmetrical method (SM) sequence deformed around 9.8% less than the single-pass (SP)
sequence and 12.0% less than the backward method (BM).
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In order to make multiple comparisons and verify between which sequences would
exist meaningful differences, the Tuckey test was used. According to Table 10, it is possible
to conclude that there are significant differences between the distortions that occurred
when comparing the sequences SS × SR and the sequences SS × SC, obtaining a p-value
of 0.012 and 0.033, respectively. On the other hand, for the interaction between BM × SP,
the Tukey test showed that there are no significant differences between the averages of the
displacements of the sequences, with a p-value equal to 0.625 (p > 0.05).

Table 10. Tukey Test—Multiple comparisons between the sequences.

(I) Sequence (J) Sequence Average
Difference (I-J) P

Inferior
Limit

Superior
Limit

SM
BM −26.901 * 0.012 −43.032 −7.770

SP −211.202 * 0.033 −40.333 −2.071

BM
SM 26.901 * 0.012 7.770 46.032

SP 5.699 0.652 −13.432 24.830

SP
SM 21.202 * 0.033 2.071 40.333

BM −5.699 0.652 −24.830 13.432
* The average difference is significant at the level 0.05.
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5. Conclusions

In order to not only prevent but also control and correct deformations that can occur
in welding processes, it is necessary to study and comprehend which mechanisms and
parameters can have any influence on distortions.

As a result of the experimental and theoretical considerations of this work, it was
possible to conclude that through the statistical tools, namely ANOVA and Tuckey test, it
was verified that there is a significant difference in the distortions between these welding
sequences and that this difference is only for the symmetrical method sequence, SM, when
compared with the backward method (BM) and single pass (SP).

In the welding snares on the 3 mm plates, there was a greater displacement in Sections 4
and 5 of all specimens, these being the regions closest to the shaft where the welds occurred.
For the SS and SR sequences, A5 was the point of greatest displacement (8.01 mm and
9.22 mm, respectively). However, for the SC sequence, the point of the highest displacement
peak was A5 (7.52 mm), with a value of 6.1%, 18.4% lower when compared with the points
of SS and SR, in that order.

In conclusion, the symmetrical method (SM) was the sequence that least distorted
and single pass (SP) was the sequence with the most symmetrical distortions. In average
displacement values, the SM sequence deformed around 9.8% less than the single pass (SP)
and 12% less than the backward method (BM).
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