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Abstract:  

Collocation has been widely applied in geodesy for estimating the gravity field of the Earth both 

locally and globally. Particularly, this is the standard geodetic method used to combine all the 

available data to get an integrated estimate of any functional of the anomalous potential T. The 

key point of the method is the definition of proper covariance functions of the data. Covariance 

function models have been proposed by many authors together with the related software. In this 

paper a new method for finding suitable covariance models has been devised. The covariance 

fitting problem is reduced to an optimization problem in Linear Programming and solved by 

using the Simplex Method. The procedure has been implemented in a FORTRAN95 software 

and has been tested on simulated and real data sets. These first tests proved that the proposed 

method is a reliable tool for estimating proper covariance function models to be used in the 

collocation procedure. 

Keywords: Local Disturbing Potential, Data Integration, Collocation, Covariance Functions, 

Linear Programming, Simplex Method 

 

Resumo:  

A técnica de Colocação tem sido bastante aplicada em Geodésia para estimação do campo da 

gravidade da Terra em ambos os aspectos, isto é, localmente e globalmente. Particularmente, este 

é o método geodésico padrão usado para combinar todos os dados disponíveis para se obter uma 

estimativa integrada de qualquer anomalia potencial T. A principal característica do método é a 

definição da função covariância dos dados. Diversas funções covariância tem sido propostas na 

literatura, juntamente, com o software relacionado. Neste trabalho, um novo método para 
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determinar funções covariância é proposto. O problema de ajustamento da covariância é 

reduzido para um problema de otimização em programação linear e solucionado pelo método 

conhecido como Simplex. O método proposto foi implementado em linguagem de programação 

FORTRAN95 e foi testado com dados simulados e reais. Os resultados obtidos mostraram que o 

método proposto é uma potente ferramenta para estimação de modelos da função covariância e 

pode ser empregado em técnicas de Colocação.    

Palavras-chave:  Potencial de Distúrbio Local; Integração de Dados; Colocação; Função 

Covariânica; Programação Linear; Método Simplex. 

 

 

1. Introduction 

 

 

One of the standard procedures for local gravity field modelling is based on the combination of 

the Remove-Restore technique (RR) (Sansò, 2013a) and Collocation method (Sansò, 2013b). 

The RR principle is one of the most well-known strategies used for regional and local gravity 

field determination. It is based on the assumption that gravity signals can be divided into long, 

medium and short wavelength components. The long wavelength component can be properly 

accounted for by Global Geopotential Models (GGM) that are estimated using satellite derived 

observations and ground based gravity data (Pavlis et al., 2012). Removing the effect of a GGM 

corresponds to a high-pass filtering of the data. In this reduction step, the gravity signals due to 

the mean crust, the upper mantle and the long wavelength topographic signal are removed from 

the observed values.  

After reduction for a global model, in addition to medium frequencies, high frequency 

components are still present in the residual data. They are essentially due to the high frequency 

features of the topography which cannot be suitably described by global models (Forsberg, 

1994). This residual topographic signal is then removed from the observed data by computing 

the so called Residual Terrain Correction (RTC) (Forsberg, 1994). The residual data obtained by 

applying both the reduction for the global model and the related RTC contain only the 

intermediate wavelengths to be used for local gravity field modelling. They usually have a mean 

value close to zero and a standard deviation that is remarkably smaller than the standard 

deviation of the unreduced data. Collocation can be suitably applied to these reduced data to get 

estimates of the local features of the gravity field (Tscherning, 2004). The final estimate is then 

obtained by restoring the geopotential model and RTC effects which are added to this local 

residual component in order to obtain the final full power estimate. 

As mentioned, Collocation is applied to get the estimate of the residual local component of the 

gravity signal. Collocation is a statistical-mathematical theory applied to gravity field modelling 

problems (Heiskanen and Moritz, 1967; Moritz, 1980; Sansò, 2013b). It is based on the 

assumption that the gravity observations can be considered as a realization of a weakly stationary 

and ergodic stochastic process (Moritz, 1980, pp. 279-285). This theory has become more and 

more important because it allows combining different kinds of gravity field observables in order 

to obtain a better estimate of any linear functional of the anomalous potential T(P). With the 

great amount of heterogeneous data nowadays available, this approach has been fully accepted as 

the standard methodology for integrated gravity field modelling. The key point in Collocation is 

the concept of spatial correlation which is described by the covariance function of the 

observations. Being all the observed geodetic quantities (as g, N or Trr) linear(ized) functionals 
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of the anomalous gravity potential (T), it can be also proved (Moritz, 1980, pp. 86-87) that their 

covariance functions can be propagated one to each other by applying the proper linear operators 

to the well-known analytical model of covariance of the anomalous potential T(P).  

In local geodetic applications, this model (Knudsen, 1987) is given by 
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where R is the radius of the Bjerhammar sphere,  Pr  and Qr  are the geocentric radii of points P 

and Q,
2
n  are the degree variances, 

2
ne  are the error degree variances,  is a scale factor, nP  are 

the Legendre polynomials and PQ  is the spherical distance between P and Q. 

Such covariance model is the sum of two parts. The first comes from the commission error of the 

global model removed from observations. It is given in terms of the sum of the error degree 

variances 
2
ne  up to the maximum degree of computation of the global model subtracted in the 

remove phase. 
2
ne  are computed as the sum of the variances of the estimated spherical harmonic 

model coefficients,  nmC2  and  nmS2  (Pavlis et al., 2012): 
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So, error degree variances depend on the global model used and the coefficient  in (1) allows 

weighting their influence. The second part is related to the residual part of the signal. Suitable 

models for  Tn
2  in (1) were proposed by Tscherning and Rapp (Tscherning and Rapp, 1974; 

Tscherning, 2004) 
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where A and B are model constants to be estimated. As stated, using covariance propagation, 

these covariance models of the anomalous potential T can be used to get models for any 

functional of T. By tuning the model constants (i.e. A, , R and B), these model functions can be 

used to properly fit the empirical covariances of the available data. 

In turn, the empirical covariance function of the observed data can be estimated using the 

formula (Mussio, 1984): 
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where m is the number of li observations and n is the number of jl  observations at spherical 

distance ij  from li so that  

  ,...,kkkk ij 1     ,1    (5) 

for a suitable   value.  
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If homogeneous data are considered, formula (4) gives the empirical estimate of the auto-

covariance of these data. In case l and l’ are different functionals of T (e.g. g and N), (4) is the 

empirical estimate of the cross-covariance between l and l’. 

Once the covariance functions of the observed data are properly modeled, Collocation formula 

can be applied to get the estimate of any functional of the anomalous potential T. As it is well 

known, the general formula of Least Squares Collocation (LSC) giving the estimate is (Moritz, 

1980, pp. 84-87; Sansò, 2013): 
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where iL  is the observed linear(ized) functional of T in Pi, 
jTiTji CLL  is the covariance matrix of 

observations, 
2
  is the variance of the observation noise , LP is the estimated linear functional 

of T in P and I is the identity matrix. 

This is the usual procedure for covariance function modelling and collocation estimate 

computation. As it is evident, the covariance structure of the data plays a fundamental role in 

getting the solution in equation (6). Thus, the correct modelling of the covariance functions is a 

critical point in computing a reliable estimate. 

The proposed models are sometimes unable to properly fit the empirical covariances, particularly 

when different functionals are considered. In a previously proposed approach (Tselfes, 2008; 

Barzaghi et al., 2009) regularized least squares adjustment have been applied for integrated 

covariance function modelling which, however, can lead to negative  Tn
2  values that must be 

rejected. Hence, this procedure must be iterated to get a final set of suitable  Tn
2 . In the next 

section, a new covariance modelling procedure solving this problem will be described. 
 

 

 

2. A new procedure for covariance modelling based on Linear 

Programming  

 

 

In order to overcome some limits of the method presented in Barzaghi et al. (2009), a covariance 

fitting method based on linear programming is proposed.  

Considering a system of linear inequalities of the following form (see also Figure 1): 
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there are several sets of values  nxxx ,..., 21  that are solutions to (7). Finding one of particular 

interest is an optimization process (Press et al., 1989). When this solution is the one minimizing 

(or maximizing) a given linear combination of the variables (called objective function)  

min...2211  nnxcxcxc  (8) 

subject to constraints expressed as (7), the optimization process is called Linear Programming 

(LP) (Chvatal et al., 1983). 

 

 

Figure 1:  Graphical sketch of a system of linear inequalities in two dimensions. P is a possible 

solution. 

 

Each of the inequalities of (7) cuts the hyperspace  nxxx ,..., 21  into two parts. So, it is possible 

to identify the region containing all the sets of values  nxxx ,..., 21  
satisfying all the inequalities. 

Outside this region, at least one of the constraints is not satisfied. This region, called feasible 

region, contains all the possible solution (feasible solutions) expressed in the constraints system 

(Figure 2). One of them is the optimal solution that solve the LP problem. Fundamental theorems 

of linear programming prove that, if a solution does exist, it occurs on one of the vertex of the 

feasible region. 
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Figure 2:  Example of two-dimensional feasible region of constraints 

 

For applications involving a large number of constraints or variables, numerical methods must be 

applied. One of them is the Simplex Method (Ficken, 1961). It provides a systematic way of 

examining the vertices of the feasible region to determine the optimal value of the objective 

function. The simplex method consists in elementary row operations on a particular matrix 

corresponding to the LP problem called tableau. The initial version of the tableau changes its 

form through iterative optimality checks. This operation is called pivoting. To form the improved 

solution, Gauss-Jordan elimination is applied with the pivot (crossing pivot row and column) to 

the column pivot. After improving the solution, the simplex algorithm starts a new iteration 

checking for further improvements. The tableau changes at each iteration and the conditions of 

optimality or unfeasibility of the solution to the proposed LP problem stop the algorithm. Based 

on fundamental theorem of linear programming, simplex method is able to verify the existence 

of at least one solution to the proposed LP problem. If this exists, the algorithm is also able to 

find the best numerical solution in a finite amount of time. 

Using this principle, a new covariance fitting procedure based on the simplex method and the 

analytical covariance function model (1) has been devised. It applies simplex method for 

estimating some suitable parameters of the model covariance function (1) in order to fit 

simultaneously the empirical covariances of all the available data. One possible way of doing so 

using the simplex method is to assume as a model covariance for the anomalous potential T a 

slightly modified version of (1), i.e. 
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where 
2~

ne , are the error degree variances of the model used for reducing the data in the remove 

step and 
2~
n  are some guess values for the degree variances. 

2~
n  can be computed by using again 

the applied geopotential model (in case Nred  Nmax) or by describing them according to some 

general rule, e.g. the Kaula’s rule (Kaula, 2000). The fitting procedure is then implemented 

through the following conditions that allow estimating suitable values for  and  

min   (10) 
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where     i
emp

TLTL
C 

'
 and     iTLTL

C 
'

 are, respectively, the empirical and the model covariances 

related to the L(T) and L’(T) functionals. 

Thus, we minimize the discrepancy between the model covariance and the empirical covariance 

values through some tolerance levels    
 TLTLC '  and    

 TLTLC '  (Figure 3). 

 

 

Figure 3:  Constraints applied on model covariance function (in red) 

 

The conditions (11) can be applied for all the given empirical (auto and cross) covariance 

functions, i.e. for all the observed functionals L(T) that are available in the area under 

investigation. With these constraints on the estimated covariance functions, simplex method is 

forced to find a unique suitable set of estimated  and  values for all the given empirical 

covariances (Figure 4). 

 

 

Figure 4:  Multiple constraints on model covariance functions 
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This covariance fitting methodology is numerically implemented through an iterative procedure. 

While objective condition (10) is fixed, conditions (11) are tuned in order to get the best possible 

fit with empirical covariance values. Referring to the feasible region, this procedure identifies an 

initial large feasible region (soft constraints, poor fit) and reduces this hyperspace until the vertex 

of optimality solution practically coincide one to each other (strongest constraints, best fit). In 

Figure 5, this process is sketched. 

 

 

Figure 5:  Impact of iterative constraints adjustment on the feasible region 

 

Thus in this procedure, simplex method has been applied in a quite different way with respect to 

standard applications of linear programming. While in the usual application of simplex algorithm 

the focus is on the objective function and the constraints are fixed, the devised procedure is 

applied in a reverse way. As a matter of facts, the focus of the method is less on the objective 

function than on suitable constraints allowing the best possible agreement between model 

covariance functions and empirical values.  

 

 

3. Some tests based on simulated and real data 

 

 

Covariance function estimate and modelling with simplex method has been implemented through 

a FORTRAN95 software, named SIMPLEXCOV, based on the concepts explained before. This 

procedure is basically composed by three steps (De Gaetani, 2012): 

1. analysis of input data for assessment of the best sampling of empirical covariance functions; 

2. computation of empirical auto- and cross- covariances; 

3. iterative computation of the best fit model of auto- and cross-covariance functions with the 

simplex method. 

The third step is composed by two nested loops. In the external loop a set of suitable constraints 

on empirical covariance functions are defined. Based on these constraints, in the internal loop 

many optimization problems are generated and solved by the simplex method. In each of them, 

the starting 
2~

ne derived from a global model are step by step shifted and a simplex algorithm 

solution is searched for. If more than one set of error degree/degree variances is able to satisfy 

the constraints, an improved fit can be obtained modifying the constraints in the external loop 

and so on. On the contrary, if all the LP problems have no feasible solution in the internal loop, 

constraints are softened in the external loop. The final solution corresponds to a unique 
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combination of shifted error degree variances 
2~

ne ,  and  values that allow to obtain the best 

possible fit between empirical covariances and the model covariance functions. 

The scheme of the implemented procedure is sketched in Figure 6. 

 

 

Figure 6:  Iterative covariance function modelling process with the simplex method 

 

The proposed fitting procedure has been initially tested with simulated data in the North-Western 

part of Italy, in the area  4940  ;  145   (Figure 7).  

In this test, 24328 points quite homogeneously distributed in that 9°×9° area have been 

considered. Data distribution is obtained by selecting real data positions belonging to the Italian 

gravity database (Barzaghi et al., 2007). The final database has a mean density of 3’. 

Free air gravity anomalies FAg  and geoid undulations N on these points have been synthetized 

by the EGM2008 global model up to degree 2190 (Pavlis et al., 2012).  

 

 

Figure 7:  The distribution of the simulation points 



Gaetani, C. et al.                                                                                                                                                         351 

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 22, no2, p.342-357, abr - jun, 2016. 

 

 

Then, the data have been reduced for the long wavelength component removing the same global 

model EGM2008, synthesized up to degree 1500 (which allows a suitable reduction of the low-

frequency component of the data given the mean 3’ data density). Statistics of the “observed” 

and reduced data are summarized in Table 1. 

 

Table 1:  Statistics of simulated and reduced data (E: average, : standard deviation) 

 E σ max min 

obsg  [mGal] 11.151 50.680 232.790 -156.341 

resg [mGal] -0.843 11.203 74.646 -94.160 

obsN [m] 47.779 2.942 55.921 39.294 

resN [m] -0.003 0.041 0.276 -0.332 

 

Empirical covariance functions of both functionals are computed and suitable model covariance 

functions are estimated so to represent at best the spatial correlation given by the empirical 

values. In a first computation, the empirical covariance values of residual gravity and geoid have 

been fitted separately adopting the new procedure. In this test, the error degree variances 
2~

ne  

(with n up to 1500) and the degree-variances 
2~
n  (with 1501 ≤ n ≤ 2190) were derived from the 

EGM2008 model. 

The results are plotted in Fig. 8 and 9, where it is possible to see that the agreement between 

model and empirical covariance values is remarkable: considering the differences between model 

and empirical values, for resg the average and the standard deviation are respectively 1.1-10 

m2/s4 and 1.2-10 m2/s4,while they are 1.4-5 m2 and 1.5-5 m2 for resN . 

 

 

Figure 8:  Model auto-covariance obtained by fitting the empirical function of resg  
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Figure 9:  Model auto-covariance obtained by fitting the empirical function of resN  

 

In Figure 10, the comparison between the original EGM2008 error degree/degree variances and 

the final scaled obtained solution is shown. As can be seen, in order to properly fit the empirical 

values, larger degree variances must be considered for the higher degrees. On the other hand, the 

error degree variances have to be zero because the removed model is the same of that used for 

data simulation, so the commission error is null. 

 

 

Figure 10:  In green, the adapted error degree variances (up to n = 1500) and the adapted degree 

variances (1501 ≤ n ≤ 2190) obtained from the simplex method. In red, the starting EGM2008 

error degree/degree variances 
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Moreover, with the proposed method it is possible to estimate the optimal solution considering 

simultaneously both the functionals. The simplex method has been then applied to both empirical 

covariances in order to get a set of scaled error degree/degree variances allowing a common 

improved fit. Thus, both empirical auto-covariances of residual undulation and residual gravity 

anomalies have been considered in the fitting procedure. The results are nearly identical to those 

previously obtained. By using the estimated parameters in the model covariances one can also 

define the model cross-covariance between resg  and resN . The differences between this cross-

covariance model and the empirical cross-covariance values have average -3.6-8 m2/s2 and 

standard deviation 5.6-7 m2/s2 (see Figure 11). Thus, despite the fact that the empirical cross-

covariance values were not included in the fitting procedure, the obtained cross-covariance 

model properly interpolates the corresponding empirical function proving the numerical stability 

of the devised method1.  

 

 

Figure 11:  The empirical cross-covariance 
emp

resNresg
C
  and the model cross-covariance 

resNresg
C
 obtained by simultaneously fitting the empirical covariance functions of resN  and 

resg  

 

In the same points where simulated data were generated, real observations of free-air gravity 

anomalies have been then considered. The simplex method has been applied to them in order to 

check for the new approach with real data too.  

The adopted procedure is the classical remove technique (Forsberg, 1994). The free-air 

anomalies have been reduced for the long wavelength component in the same way of the 

simulated data, i.e. removing the global model EGM2008 up to degree 1500, while for the short 

wavelengths the residual terrain correction (RTC) has been performed considering the detailed 

DTM (pixel size: 3”3”) already used for evaluating the Italian geoid model Italgeo05 (Barzaghi 

et al, 2007; Borghi et al., 2007). The reference altimetry grid for the RTC computation has been 

                                                 
1 However, it must be underlined that the procedure can be run also considering the empirical 

cross-covariance values. 
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obtained filtering the DTM with a moving average window sized 5’5’. The size of the moving 

window has been chosen according to the statistical properties of the residuals (minimization of 

their root mean squared error). The RTC, both for gravity and height anomaly, has been 

evaluated up to 120 km from each computation point. The program used in this computation is 

TC from the GRAVSOFT package (Tscherning, 2004). Statistics of the observed and reduced 

data are summarized in Table 2. 

 

Table 2:  Statistics of observed and reduced free-air gravity anomalies 

 E σ max min 

obsg [mGal] 0.105 47.618 212.511 -162.22 

resg [mGal] -0.236 9.210 94.649 -97.310 

 

Then the simplex method has been applied to them. Again, as done in the simulations, the error 

degree variances 
2~

ne  (with n up to 1500) and the degree-variances 
2~
n  (with 1501 ≤ n ≤ 2190) 

have been derived from the EGM2008 model. 

Despite the noise present in real data that drives to a poorer fitting with respect to the simulation, 

it is possible to see (Figure 12) that the agreement between empirical and covariance function is 

still good, especially considering the main correlation length: average of differences between 

model and empirical values is 1.5-10 m2/s4 and the standard deviation 2.2-10 m2/s4 (comparable to 

the accuracy achieved in the simulation). 

 

 

Figure 12:  Model autocovariance obtained by fitting the empirical function of resg  

 

To be thorough, in Figure 13 the adapted degree variances obtained using the reduced free-air 

gravity anomalies are represented. 
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Figure 13:  In green, the adapted error degree variances (up to degree 1500) and degree 

variances (from degree 1501) obtained from the simplex method. In red, the EGM2008 

degree/error degree variances 

 

 

4. Conclusions 

 

 

The new methodology for covariance modelling based on Linear Programming and Simplex 

Method proved to be flexible and able to properly reproduce all the main features of the given 

empirical covariances. The simulated and real data tests in the NW part of Italy based on gravity 

anomaly and geoid undulation data led to proper covariance models. 

The simulated test was based on the EGM2008 global geopotential model. Either gravity and 

geoid undulation values were computed from the model in the frequency band 1501 ≤ n ≤ 2190 

over a set of points selected by the Italian gravity database. The fitting procedure of the empirical 

covariances of these simulated data gave good results according to the statistics of the residuals 

between model and empirical values. At first, the empirical auto-covariances of the simulated 

residual gravity and geoid undulation values were fitted separately with the respective model 

covariances. The final coherence between the model covariance functions and the empirical 

covariance estimates is suitable since the most relevant features of the empirical values are 

properly fitted by the model covariances. 

The same valuable results were obtained when model estimates were derived by jointly using the 

available empirical auto-covariance estimates, 
emp

resNresN
C  and emp

resgresg
C


. 

Real gravity data were then used having the same distribution of the simulated ones. They were 

reduced for the long-wavelength components using EGM2008 to degree 1500, as done in the 

simulated test. In this case, RTC effect was also estimated and subtracted from the data. As for 

the simulated test, the empirical function of residual gravity was properly fitted by the model 

covariance obtained by applying the new proposed procedure. 
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Thus, the new method for covariance fitting based on Linear Programming and Simplex Method 

is effective and gives estimated model covariances which allow a suitable fitting to the empirical 

values. Therefore, this procedure can be considered as a valuable tool in further developments 

and applications of collocation. 

 

 

 

REFERENCES 

Barzaghi, Riccardo, Alessandra Borghi, Daniela Carrion, and Giovanna Sona. “Refining the 

estimate of the Italian quasi-geoid.” Bollettino di Geodesia e Scienze Affini, 66, 3, (2007): 145-

160. 

Barzaghi, Riccardo, Nikolaos Tselfes, Ilias N. Tziavos, and George S. Vergos. “Geoid and high-

resolution sea surface topography modelling in the Mediterranean from gravimetry, altimetry 

and GOCE data: evaluation by simulation.” Journal of Geodesy, 83, 8 (2009): 751-772. 

Borghi, Alessandra, Daniela Carrion, and Giovanna Sona. “Validation and fusion of different 

databases in preparation of high-resolution geoid determination.” Geophysical Journal 

International, 171,2 (2007): 539-549. 

Chvatal, Vaclav. Linear Programming. San Francisco and London: W. H. Freeman, 1983. 

De Gaetani, Carlo I. “Covariance models for geodetic applications of collocation.” PhD thesis, 

Politecnico di Milano, 2012. 

Forsberg, Rene. “Terrain effect in geoid computations.” In International School of the 

Determination and Use of the Geoid Lecture Notes, Milano: IGeS, 1994: 159-181. 

Ficken, Frederick A. The simplex method of linear programming. New York: Holt, Rinehart and 

Winston, 1961. 

Heiskanen, Weikko A., and Helmut Moritz. Physical Geodesy. San Francisco: W. H. Freeman, 

1967. 

Kaula, William M. Theory of satellite geodesy. New York: Dover, 2000. 

Knudsen, Per. “Estimation and modelling of the local empirical covariance function using 

gravity and satellite altimeter data.” Bulletin Geodesique, 61, 2 (1987): 145-160. 

Moritz, Helmut. Advanced Physical Geodesy. Karlsruhe: Wichmann, 1980. 

Mussio, Luigi. “Il metodo della collocazione minimi quadrati e le sue applicazioni per l’analisi 

statistica dei risultati delle compensazioni.” In Ricerche di Geodesia Topografia e 

Fotogrammetria, 4, Milano: CLUP, 1984: 305-338. 

Pavlis, Nikolaos K., Simon A. Holmes, Steve C. Kenyon, and John K. Factor. “The development 

and evaluation of the Earth Gravitational Model 2008 (EGM2008).” Journal of Geophysical 

Research, 117 (2012): B04406(1-38). 

Press, William H., Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. Numerical 

Recipes: The Art of Scientific Computing. Cambridge University Press, 1989. 

Sansò, Fernando. “Observables of Physical Geodesy and Their Analytical Representation.” In: 

Geoid Determination, Theory and Methods, Sansò and Sideris Eds, Heidelberg: Springer, 2013a: 

73-110. 



Gaetani, C. et al.                                                                                                                                                         357 

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 22, no2, p.342-357, abr - jun, 2016. 

 

Sansò, Fernando. “The Local Modelling of the Gravity Field by Collocation.” In: Geoid 

Determination, Theory and Methods, Sansò and Sideris Eds, Heidelberg: Springer, 2013b: 203-

258. 

Tscherning, Carl C., and Richard H. Rapp. “Closed Covariance Expressions for Gravity 

Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree-

Variance Models.” Reports of the Department of Geodetic Science, 208, The Ohio State 

University, 1974. 

Tscherning, Carl C. “Geoid determination by 3D least squares collocation.” In International 

School of the Determination and Use of the Geoid Lecture Notes, Milano: IGeS, 2008: 193-210. 

Tselfes, Nikolaos. “Global and local geoid modelling with GOCE data and collocation.” PhD 

thesis, Politecnico di Milano, 2008. 

 

Submetido em Setembro de 2015. 

Aceito em Setembro de 2015. 

 


