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Abstract

The impact of dynamic models for applications to LES of compressible flows is assessed in the framework of a numerical

model based on high order discontinuous finite elements. The projections onto lower dimensional subspaces associated

to lower degree basis function are used as LES filter, along the lines proposed in Variational Multiscale templates.

Comparisons with DNS results available in the literature for plane and constricted channel flows at Mach numbers 0.2,

0.7 and 1.5 show clearly that the anisotropic model is able to reproduce well most key features of the flow.

Keywords: Turbulence modeling, Large Eddy Simulation, Discontinuous Galerkin methods, compressible flows,

dynamic models
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High order finite element methods are an extremely ap-

pealing framework to implement LES models of turbulent

flows, due to their potential for reducing the impact of nu-

merical dissipation on most of the spatial scales of interest.

Discontinuous Galerkin (DG) methods have been applied

to LES and DNS by several authors, see e.g. [10], [11],

[13], [36], [51], [55], [56], [58]. DG methods are particu-

larly appealing for realistic CFD applications for a number

of practical and conceptual reasons. At a more practical

level, they allow to implement h and p refinement proce-

dures with great ease and to work on complex and also

non conforming meshes. Even though they imply quite

stringent stability restrictions for explicit time discretiza-
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tions, a number of techniques is available to improve com-

putational efficiency if required, see e.g. [18], [24], [45],

[49], [54]. At a more conceptual level, discontinuous finite

elements provide a natural framework to generalize LES

filters to arbitrary computational meshes. As proposed

in some of the previously quoted papers, the filter opera-

tor that is the key tool in LES can be identified with the

projection operator on a finite dimensional space related

to the discretization. This allows to generalize easily the

LES concept to unstructured meshes and complex geome-

tries. Ideas of this kind have first arisen in the framework

of the Variational Multiscale (VMS) approach, which was

introduced in [26] and applied to Large Eddy Simulation

(LES) of incompressible flows in [27], [28], [29] (see also

the review in [30]). Other multiscale approaches to LES in

the framework of finite element discretizations have been
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proposed e.g. in [31], [32], [34], [44].

This very promising framework, however, seems to have

been only partially exploited so far. In [56], for example,

the LES filter has been realized by face based projection

operators that are different from those for which the VMS

template has been outlined in [13]. Furthermore, to the

best of our knowledge, only simple Smagorinsky closures

have been employed to model the subgrid stresses in the

previously cited VMS approaches. In this paper, we in-

vestigate the potential benefit resulting from the use of

dynamic subgrid scale models in a VMS-DG framework.

We consider both standard isotropic models and the aniso-

tropic dynamic model [2], appropriately extended to the

compressible case. Anisotropic models try to address the

failure of the Boussinesq hypothesis (see e.g. [48] for an

extensive review of this subject) by introducing a tensor

valued subgrid viscosity, thus avoiding alignment of the

stress and velocity strain rate tensors. We implement a

LES model with projection-based filter in the framework

of a high order DG method and we assess the performance

of this more sophisticated subgrid closure with respect to

the simple Smagorinsky closure and to more standard iso-

tropic dynamic models. The comparison is carried out

with respect to the DNS experiment results reported in

[6], [9], [43] and [58]. Both isotropic and anisotropic dy-

namic models show a clear improvement in the prediction

of several key features of the flow with respect to the Sma-

gorinsky closure implemented in the same framework. In

particular, the dynamic models allow to achieve a bet-

ter representation of mean quantities profiles, turbulent

stresses and, more generally, of the total turbulent kinetic

energy.

In section 1, the Navier-Stokes equations for compress-

ible flow are recalled. In section 3, the DG finite element

discretization is reviewed. In section 2, the LES models

employed are described, while in section 4 the results of

our comparisons with DNS data are reported. Some con-

clusions and perspectives for future work are presented in

section 5.

1. Model equations

We consider the compressible Navier–Stokes equations,

which, employing the Einstein notation, can be written in

dimensional form (denoted by the superscript “d”) as

∂tdρ
d + ∂xd

j
(ρdud

j ) = 0 (1a)

∂td(ρdud
i ) + ∂xd

j
(ρdud

i u
d
j ) + ∂xd

i
pd − ∂xd

j
σd
ij

= ρdfd
i (1b)

∂td(ρded) + ∂xd
j
(ρdhdud

j )− ∂xd
j
(ud
i σ

d
ij) + ∂xd

j
qd
j

= ρdfd
j u

d
j , (1c)

where ρd, ud and ed denote density, velocity and spe-

cific total energy, respectively, pd is the pressure, fd is

a prescribed forcing, hd is the specific enthalpy, defined by

ρdhd = ρded +pd, and σd and qd are the diffusive momen-

tum and heat fluxes. Equation (1) must be complemented

with the state equation

pd = ρdRT d, (2)

where T d is the temperature and R is the ideal gas con-

stant. The temperature can then be expressed in terms of

the prognostic variables introducing the specific internal

energy ed
i , so that

ed = ed
i +

1

2
ud
ku

d
k, ed

i = cvT
d, (3)
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where cv is the specific heat at constant volume. Finally,

the model is closed with the constitutive equations for the

diffusive fluxes:

σd
ij = µdSd,dij , qd

i = −µ
dcp
Pr

∂xd
i
T d, (4)

where Sd
ij = ∂xd

j
ud
i + ∂xd

i
ud
j and Sd,dij = Sd

ij −
1

3
Sd
kkδij ,

the specific heat at constant pressure is cp = R + cv, Pr

denotes the Prandtl number, and the dynamic viscosity µd

is assumed to depend only on temperature T d according

to the power law

µd(T d) = µd
0

Ç
T d

T d
0

åα
, (5)

in agreement with Sutherland’s hypothesis (see e.g. [47])

with α = 0.7. The dimensionless form of the problem is

obtained assuming reference quantities ρr, Lr, Vr and Tr,

as well as

tr = Lr
Vr
, pr = ρrRTr, σr = µrVr

Lr
, fr =

V 2
r

Lr
,

er = RTr, qr =
µrcpTr
Pr Lr

, µr = µd
0

(
Tr
Td
0

)α
.

(6)

Defining now

ρd = ρrρ, ud
i = Vrui, T d = TrT,

tr∂td = ∂t, Lr∂xd
i

= ∂i,

pd = prp, σd
ij = σrσij , fd = frf,

ed = ere, qd = qrq, ed
i = erei,

µd = µrµ,

(7)

we obtain

∂tρ+ ∂j(ρuj) = 0 (8a)

∂t(ρui) + ∂j(ρuiuj) +
1

γMa2
∂ip−

1

Re
∂jσij = ρfi (8b)

∂t(ρe) + ∂j(ρhuj)−
γMa2

Re
∂j(uiσij)

+
1

κRePr
∂jqj = γMa2ρfjuj , (8c)

where

Ma =
Vr

(γRTr)
1/2

, Re =
ρrVrLr
µr

(9)

and

ρh = ρe+ p, γ =
cp
cv
, κ =

R

cp
.

Other relevant equations in dimensionless form are the

equation of state

p = ρT, (10)

the definition of the internal energy

e = ei +
γMa2

2
ukuk, ei =

1− κ
κ

T, (11)

the constitutive equations

σij = µSdij , qi = −µ∂iT, (12)

with Sij = ∂jui + ∂iuj and Sdij = Sij −
1

3
Skkδij , and the

temperature dependent viscosity µ(T ) = Tα.

In order to derive the filtered equations for the LES

model, an appropriate filter has to be introduced, which

will be denoted by the operator · and which is assumed to

be characterized by a spatial scale ∆. Using an approach

that recalls the VMS concept, the precise definition of this

operator, as well as of the associated scale, will be built

in the numerical DG discretization. Such a definition will

be given in section 3; here, we mention that ∆ will in

3



general depend on the local element size and therefore has

to be interpreted as a piecewise constant function in space.

As customary in compressible LES, see e.g. [19], in order

to avoid subgrid terms arising in the continuity equation,

we also introduce the Favre filtering operator ·̃, defined

implicitly by the Favre decomposition

ρui = ρũi, ρe = ρẽ. (13)

Similar decompositions are introduced for the internal en-

ergy and the enthalpy

ρei = ρẽi, ρh = ρh̃ = ρẽ+ p,

as well as for the temperature, which, taking into ac-

count (10), yields

ρT = ρT̃ = p. (14)

Equation (11) then implies

ρẽ = ρẽi +
γMa2

2
(ρũkũk + τkk) , ρẽi =

1− κ
κ

ρT̃ , (15)

where, as customary,

τij = ρuiuj − ρũiũj . (16)

Notice that, from (15), τkk represents the filtered turbu-

lent kinetic energy. Finally, neglecting the subgrid scale

contributions, we introduce a filtered counterpart of (12),

namely

σ̃ij = µ(T̃ )S̃dij , q̃i = −µ(T̃ )∂iT̃ , (17)

with S̃ij = ∂j ũi + ∂iũj and S̃dij = S̃ij −
1

3
S̃kkδij . It is

to be remarked that the filter operators in general do not

commute with differential operators. According to a not

uncommon practice in LES modeling [46], we will neglect

this commutation error. We plan to address this issue in

more detail in a future work. An analysis of the terms

resulting from non zero commutators between differential

operators and projection filters analogous to those we will

employ is presented e.g. in [13].

With these definitions, the filtered form of (8) is

∂tρ+ ∂j(ρũj) = 0 (18a)

∂t (ρũi) + ∂j (ρũiũj) +
1

γMa2
∂ip−

1

Re
∂j σ̃ij

= −∂jτij − ∂jεsgs
ij + ρfi (18b)

∂t (ρẽ) + ∂j
Ä
ρh̃ũj

ä
− γMa2

Re
∂j (ũiσ̃ij) +

1

κRePr
∂j q̃j

= −∂j (ρhuj)
sgs

+
γMa2

Re
∂jφ

sgs
j

− 1

κRePr
∂jθ

sgs
j + γMa2ρfj ũj , (18c)

where

εsgs
ij = σij − σ̃ij , (ρhui)

sgs
= ρhui − ρh̃ũi,

φsgs
j = uiσij − ũiσ̃ij , θsgs

i = qi − q̃i.
(19)

Based on the analyses presented e.g. in [40] and [57] and

on the fact that

σij ≈ σ̃ij , qi ≈ q̃i, (20)

the term ∂jφ
sgs
j is considered to be negligible, as well as εsgs

ij

and θsgs
j . To avoid unnecessary complications, and since

this is the case for the numerical results considered in this

work, we assume in (18) that the forcing f is uniform in

space. Concerning the subgrid enthalpy flux, we proceed

as follows. First of all, notice that using (10) and (11), as
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well as their filtered counterparts (14) and (15), we have

ρh =
1

κ
ρT +

γMa2

2
ρukuk,

ρh̃ =
1

κ
ρT̃ +

γMa2

2
(ρũkũk + τkk) .

Introducing now the subgrid heat and turbulent diffusion

fluxes

Qsgs
i = ρuiT − ρũiT̃ = ρ

Ä
ũiT − ũiT̃

ä
(22a)

J sgs
i = ρuiukuk − ρũiũkũk = ρũiukuk − ρũiũkũk (22b)

we have

(ρhui)
sgs

=
1

κ
Qsgs
i +

γMa2

2
(J sgs
i − τkkũi) . (23)

Notice that, introducing the generalized central moments

τ(ui, uj , uk) as in [20], with

τ(ui, uj , uk) =ρũiujuk − ũiτjk − ũjτik − ũkτij

− ρũiũj ũk, (24a)

J sgs
i in (22b) can be rewritten as

J sgs
i = τ(ui, uk, uk) + 2ũkτik + ũiτkk. (25)

Summarizing, given the above approximations and defini-

tions, the filtered equations (18) become

∂tρ+ ∂j(ρũj) = 0 (26a)

∂t (ρũi) + ∂j (ρũiũj) +
1

γMa2
∂ip−

1

Re
∂j σ̃ij

= −∂jτij + ρfi (26b)

∂t (ρẽ) + ∂j
Ä
ρh̃ũj

ä
− γMa2

Re
∂j (ũiσ̃ij) +

1

κRePr
∂j q̃j

= − 1

κ
∂jQ

sgs
j −

γMa2

2
∂j
Ä
J sgs
j − τkkũj

ä
(26c)

+ γMa2ρfj ũj .

2. Subgrid models

We will now introduce the subgrid models used in our

LES experiments. Firstly, we will briefly recall the formu-

lation of the classical Smagorinsky subgrid model, which,

in spite of its limitations (see e.g. the discussion in [46]),

has been applied almost exclusively in the DG-LES models

proposed in the literature so far. Moreover, we will discuss

the isotropic dynamic model [21], [38], and then an aniso-

tropic subgrid model proposed in [2] and here extended to

the compressible case.

2.1. The Smagorinsky model

In a Smagorinsky-type model, the deviatoric part of

the subgrid stress tensor τij in (26) is modelled by a scalar

turbulent viscosity νsgs, yielding

τij −
1

3
τkkδij = − 1

Re
ρνsgsS̃dij , (27a)

νsgs = ReC2
S∆2|S̃|fD, (27b)

where CS = 0.1 is the Smagorinsky constant, |S̃|2 =
1

2
S̃ijS̃ij

and ∆ is the filter scale introduced in section 1. The Van

Driest damping function in (27b) is defined as

fD(y+) = 1− exp
(
−y+/A

)
, (28)

where A is a constant and y+ =
ρru

d
τd

d
wall

µr
, with dd

wall de-

noting the (dimensional) distance from the wall and ud
τ the

(dimensional) friction velocity. The introduction of such a

damping function in (27b) is necessary to reduce the scale

∆ according to the smaller size of turbulent structures

close to the wall and to recover the correct physical trend

for the turbulent viscosity, see for instance the discussion

in [46]; in the following, the value A = 25 is employed. We

also notice that the Reynolds number has been included in

5



the definition of νsgs so that the corresponding dimensional

viscosity can be obtained as νsgs,d = µr
ρr
νsgs.

Concerning the isotropic part of the subgrid stress ten-

sor, some authors [15] have neglected it, considering it

negligible with respect to the pressure contribution. Al-

ternatively, following [60], the isotropic components of the

subgrid stress tensor can be modelled as:

τkk = CIρ∆2|S̃|2. (29)

Along the lines of [14], the subgrid temperature flux (22a)

is assumed to be proportional to the resolved temperature

gradient and is modelled with the eddy viscosity model

Qsgs
i = − Pr

Prsgs
ρνsgs∂iT̃ , (30)

where Prsgs is a subgrid Prandtl number. Notice that the

corresponding dimensional flux is Qsgs,d
i = qrQ

sgs
i .

Finally, concerning J sgs
i in (25), by analogy with RANS

models, the term τ(ui, uj , uk) is neglected (see e.g. [33]),

yielding

J sgs
i ≈ 2ũkτik + ũiτkk. (31)

2.2. The isotropic dynamic model

We consider now the Germano dynamic procedure pro-

posed in [21] to derive a subgrid-scale closure. In this

approach, the constants CS and CI of the Smagorinsky

model are no more chosen a priori for the whole domain,

but are dynamically computed in function of the resolved

field. The deviatoric part of the subgrid stress tensor is

expressed similarly as in (27a)

τij −
1

3
τkkδij = −ρCS∆2|S̃|S̃dij . (32)

The dynamic computation of the coefficient CS relies on

the introduction of a test filter operator ·̂. As for the fil-

ter · introduced in section 1, the precise definition of the

test filter relies on the numerical discretization and will be

given in section 3; here, it will suffice to point out that

the test filter is characterized by a spatial scale “∆ larger

than the spatial scale ∆ associated to ·. The test filter is

also associated to a Favre filter, denoted by ·̆, through the

Favre decomposition

ρ̂φ = ρ̂φ̆, (33)

where φ stands for any of the variables in the equations

introduced in section 1. Applying the test filter to the

momentum equation (8b) and proceeding as in section 1

we arrive at

∂t (ρ̂ŭi) + ∂j (ρ̂ŭiŭj) +
1

γMa2
∂ip̂−

1

Re
∂j σ̂ij

= −∂j (τ̂ij + Lij) (34a)

where

Lij = ρ̂ũiũj − ρ̂˘̃ui ˘̃uj (35)

is the Leonard stress tensor. Assuming now that model (32)

can be used to represent the right-hand-side of (34a) im-

plies

τ̂dij + Ldij = −ρ̂“∆2| ˘̃S|CS
˘̃Sdrs. (36)

Substituting (32) for τdij and applying a least square ap-

proach [38] provides the required expression

CS =
LdijRij
RklRkl

, (37)

where

Rkl =
̂

ρ∆2|S̃|S̃dkl − ρ̂“∆2| ˘̃S| ˘̃Sdkl. (38)

6



Similarly, the dynamic procedure is applied to the isotropic

components of the subgrid stress tensor

τkk = CIρ∆2|S̃|2. (39)

where the CI coefficient is determined by

CI =
Lkk

ρ̂“∆2| ˘̃S|2 − ̂
ρ∆2|S̃|2

(40)

The approach outlined above has some appealing fea-

tures that allow to overcome some difficulties of the Sma-

gorinsky model. Firstly, the use of a damping function is

not necessary any more to obtain correct results in the wall

region [21]. Moreover, while the Smagorinsky model (27)

is dissipative by construction, the dynamic procedure al-

lows backscatter, i.e. a positive work done by the subgrid

stresses on the mean flow. This is indeed a desirable prop-

erty of the model, yet one must ensure that the total dis-

sipation, resulting from both the viscous and the subgrid

stresses, is positive. This amounts to requiring

1

Re
σ̃ijS̃ij − τijS̃ij ≥ 0,

which can be ensured by introducing a limiting coefficient

in (32), so as to obtain

β =


1, τijS̃ij ≤ 0

min

Å
1, 1

Re
σ̃ij S̃ij
τklS̃kl

ã
, τijS̃ij > 0.

(41)

Having defined the subgrid stresses, let us consider now

the subgrid terms in the energy equation, namely Qsgs

and Jsgs. Here, we propose to treat both of them within

the same dynamic framework used for the subgrid stresses.

Concerning the subgrid heat flux, we let

Qsgs
i = −ρ∆2|S̃|CQ∂iT̃ , (42)

where the coefficient CQ can be computed locally by the

dynamic procedure. To this aim, we define the tempera-

ture Leonard flux

LQi = ρ̂ũiT̃ − ρ̂˘̃ui
˘̃
T , (43)

we apply the test filter to the energy equation (8c) and we

observe that, thanks to the similarity hypothesis, model

(42) should be also applied in the resulting equation, so

that “Qsgs
i + LQi = −ρ̂“∆2| ˘̃S|CQ∂i

˘̃
T . (44)

Substituting (42) for “Qsgs
i , applying the least squares me-

thod yields

CQ =
LQi R

Q
i

RQk R
Q
k

, (45)

where

RQi =
̂

ρ∆2|S̃|∂iT̃ − ρ̂“∆2| ˘̃S|∂i
˘̃
T . (46)

Contrary to what is done in the Smagorinsky model, we

do not neglect the term τ(ui, uk, uk) in (25), but instead

adopt a scale similarity model as in [40] where such term

is approximated as a subgrid kinetic energy flux

τ(ui, uk, uk) ≈ ρũiukuk − ρũiũkuk. (47)

Coherently with the other subgrid terms, τ(ui, uk, uk) can

now be modeled as a function of the gradient of the re-

solved kinetic energy, letting

τ(ui, uk, uk) = −ρ∆2|S̃|CJ∂i
Å

1

2
ũkũk

ã
. (48)

Introducing the kinetic energy Leonard flux

LJi = ρ̂ũiũkũk − ρ̂˘̃ui ˘̃uk ˘̃uk (49)

and proceeding exactly as for the previous terms we arrive

7



at

CJ =
LJi RJi
RJkRJk

, (50)

where

RJi =
̂

ρ∆2|S̃|∂i
Å

1

2
ũkũk

ã
− ρ̂“∆2| ˘̃S|∂i

Å
1

2
˘̃uk ˘̃uk

ã
. (51)

To avoid numerical instabilities, all the model coefficients

are assumed to be averaged over each element, while they

are not averaged in time. This provides a local definition

for such coefficients that does not rely on the existence

of any homogeneity direction in space or quasi-stationary

hypothesis in time [46].

2.3. The anisotropic dynamic model

We consider now the dynamic, anisotropic subgrid model

proposed in [2], which is extended here to the compressible

case. This approach has the goal of removing the limita-

tion related to the previously introduced isotropic mod-

els, in particular the alignment of the subgrid flux tensors

with the gradients of the corresponding quantities. The

subgrid tensor alignment is removed by generalizing the

proportionality relations such as (27a) introducing propor-

tionality parameters which are tensors rather than scalar

quantities.

More specifically, the subgrid stress tensor τij is as-

sumed proportional to the strain rate tensor through a

fourth order symmetric tensor as follows

τij = −ρ∆2|S̃|BijrsS̃rs. (52)

To compute dynamically the tensor Bijrs, let us first ob-

serve that a generic, symmetric fourth order tensor can be

represented as

Bijrs =
3∑

α,β=1

Cαβaiαajβarαasβ , (53)

where aij is a rotation tensor (i.e. an orthogonal matrix

with positive determinant) and Cαβ is a second order, sym-

metric tensor; (53) is of course a generalization of the or-

thogonal diagonalization for symmetric second order ten-

sors. This observation allows us to define the following

algorithm:

1. choose a rotation tensor aij

2. compute with the Germano dynamic procedure the

six components of Cαβ

3. define Bijrs using (53), thereby completely determin-

ing the subgrid flux (52).

The anisotropic model does not prescribe how to choose

the tensor aij , which in principle can be any rotation ten-

sor, possibly varying in space and time. The values of the

components Cαβ computed with the dynamic procedure

depend on the chosen tensor, and different choices for aij

result in general in different subgrid fluxes. Many different

choices have been proposed in the past, essentially trying

to identify at each position three directions intrinsically

related to the flow configuration; examples are a vorticity

aligned basis, the eigenvectors of the velocity strain rate,

or the eigenvectors of the Leonard stresses [1], [2], [22]. In

our experience, however, the results of the simulations do

not appear to have a strong dependency on the choice of

aij . In the present work, the components of aij are identi-

fied with those of the canonic Cartesian basis of the three

dimensional space, i.e. aij = δij , essentially because of

the simplicity of this choice and because the results pre-

sented here are obtained for the channel flow problem, for

which the coordinate axes do identify significant directions

for the problem, namely the longitudinal, transversal and

spanwise directions.

As in section 2.2, the dynamic computation of the com-

ponents Cαβ relies on the assumption that the model (52)

8



can be used to represent the right-hand-side of (34a):

τ̂ij + Lij = −ρ̂“∆2| ˘̃S|Bijrs
˘̃Srs. (54)

Now, multiplying (54) by aiαajβ and summing over i, j,

using the orthogonality of the rotation tensor,

aiαajβ (τ̂ij + Lij) = −ρ̂“∆2| ˘̃S|Cαβarαasβ
˘̃Srs,

substituting (52) for τij and solving for Cαβ provide the

required expression

Cαβ =
aiαLijajβ

arαasβ

Å
̂

ρ∆2|S̃|S̃rs − ρ̂“∆2| ˘̃S| ˘̃Srs
ã . (55)

Since in this work we assume aij = δij we immediately

have

Cij =
LijÅ

̂
ρ∆2|S̃|S̃ij − ρ̂“∆2| ˘̃S| ˘̃Sij

ã (56)

and

τij = −ρ∆2|S̃|CijS̃ij . (57)

Notice that, as an exception to the convention generally

used in this paper, no summation over repeated indices is

implied in the above formula. By the approach outlined

above, the deviatoric and isotropic parts of the subgrid

stress tensor are modelled together, without splitting the

two contributions. As in section 2.2, the coefficients Cij are

assumed to be averaged over each element and a limiting

coefficient is introduced to ensure positive total dissipa-

tion.

Concerning the subgrid heat flux, we let

Qsgs
i = −ρ∆2|S̃|BQir∂rT̃ , (58)

where BQir is a symmetric tensor. Assuming that BQir is

diagonal in the reference defined by the rotation tensor a

we have

BQir =
3∑

α=1

CQα aiαarα, (59)

where the three coefficients CQα can be computed locally by

the dynamic procedure. As usual, model (58) should be

also applied to model the right-and-side of the test filtered

energy equation:“Qsgs
i + LQi = −ρ̂“∆2| ˘̃S|BQir∂r

˘̃
T . (60)

Substituting (58) and (59) for “Qsgs
i , multiplying by aiα,

summing over i and solving for Cα yields

CQα =
aiαLQi

arα

Å
̂

ρ∆2|S̃|∂rT̃ − ρ̂“∆2| ˘̃S|∂r
˘̃
T

ã . (61)

The anisotropic dynamic procedure is also applied to model

the subgrid kinetic energy flux

τ(ui, uk, uk) ≈ ρũiukuk − ρũiũkuk. (62)

Coherently with the other subgrid terms, a symmetric ten-

sor BJir is defined

BJir =
3∑

α=1

CJαaiαarα, (63)

letting

τ(ui, uk, uk) = −ρ∆2|S̃|BJir∂r
Å

1

2
ũkũk

ã
. (64)

Proceeding exactly as for the previous terms we arrive at

CJα = aiαLJi /Mα, (65)
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where

Mα = arα

(
̂

ρ∆2|S̃|∂r
Å

1

2
ũkũk

ã
− ρ̂“∆2| ˘̃S|∂r

Å
1

2
˘̃uk ˘̃uk

ã)
.

3. Discretization and filtering

The equations introduced in section 1, including the

subgrid scale models defined in section 2, will be discretized

in space by a discontinous finite element method. The DG

approach employed for the spatial discretization is analo-

gous to that described in [23] and relies on the so called

Local Discontinuous Galerkin (LDG) method, see e.g. [5],

[4], [7], [8], for the approximation of the second order vis-

cous terms. We provide here a concise description of the

method; a more detailed description can be found in [39].

In the LDG method, (26) is rewritten introducing an

auxiliary variable G, so that

∂tU +∇ · Fc(U) = ∇ · Fv(U,G)

− ∇ · Fsgs(U,G) + S (66)

G − ∇ϕ = 0,

where U = [ρ , ρũT , ρẽ]T are the prognostic variables, ϕ =

[ũT , T̃ ]T are the variables whose gradients enter the vis-

cous fluxes (17) as well as the turbulent ones and S rep-

resents the source terms. In (66), the following compact

notation for the fluxes is been used:

Fc =


ρũ

ρũ⊗ ũ + 1
γMa2 pI

ρh̃ũ

 ,

Fv =


0

1
Re σ̃

γMa2

Re ũT σ̃ − 1
κRePr q̃



and

Fsgs =


0

τ

1
κQsgs + γMa2

2 (Jsgs − τkkũ)

 ,

S =


0

ρf

γMa2ρf · ũ

 .
Here, τ , Qsgs and Jsgs are given by (27), (30) and (31),

respectively, for the Smagorinsky model. For the isotro-

pic dynamic model, they are given by (32), including the

limiting coefficient (41), (42) and (25) together with (47),

while for the anisotropic dynamic model they are given by

the corresponding expressions (52), (58) and (62).

The discretization is then obtained by first introduc-

ing a space discretization and then using a time integra-

tor to advance in time the numerical solution. For the

time integration, we consider here the fourth order, five

stages, Strongly Stability Preserving Runge–Kutta me-

thod (SSPRK) proposed in [52]. To define the space dis-

cretization, we first introduce a tessellation Th of Ω into

tetrahedral elements K such that Ω =
⋃
K∈Th K and K ∩

K ′ = ∅ and define the finite element space

Vh =
{
vh ∈ L2(Ω) : vh|K ∈ Pq(K), ∀K ∈ Th

}
, (67)

where q is a nonnegative integer and Pq(K) denotes the

space of polynomial functions of total degree at most q on

K. Notice that, while only conforming meshes have been

employed in this work, any DG formulation also extends

seamlessly to non conforming meshes. Furthermore, al-

though the same polynomial degree q has been employed

here for all elements, degree adaptivity techniques can be

easily implemented in the same framework, see e.g. [53],

[54]. For each element, the outward unit normal on ∂K

10



will be denoted by n∂K . The numerical solution is now de-

fined as (Uh,Gh) ∈ ( (Vh)5 , (Vh)4×3 ) such that, ∀K ∈ Th,

∀vh ∈ Vh, ∀rh ∈ (Vh)3,

d

dt

∫
K

Uhvh dx−
∫
K

F(Uh,Gh) · ∇vh dx (68a)

+

∫
∂K

ÛF(Uh,Gh) · n∂Kvh dσ =

∫
K

Svh dx,

∫
K

Gh · rh dx +

∫
K

ϕh∇ · rh dx (68b)

−
∫
∂K

Ûϕn∂K · rh dσ = 0,

where Uh = [ρh , ρhuh , ρheh]
T

, ϕh = [uh , Th]
T

, F =

Fc − Fv + Fsgs, and ÛF, Ûϕ denote the so-called numeri-

cal fluxes. To understand the role of these fluxes, notice

that (68) can be regarded as a weak formulation of (67)

on the single element K with weakly imposed boundary

conditions ÛF, Ûϕ on ∂K. Hence, the numerical fluxes are

responsible for the coupling among the different elements

in Th. In this work we employ the Rusanov flux for ÛF
and the centered flux for Ûϕ; the detailed definitions can

be found, for instance, in [23]. To complete the definition

of the space discretization, we mention that, on each ele-

ment, the unknowns are expressed in terms of an orthog-

onal polynomial basis, yielding what is commonly called a

modal DG formulation, and that all the integrals are eval-

uated using quadrature formulae from [12] which are exact

for polynomial orders up to 2q. This results in a diagonal

mass matrix in the time derivative term of (68) and sim-

plifies the computation of L2 projections to be introduced

shortly in connection with the LES filters.

Having defined the general structure of the discretized

problem, we turn now to the definition of the filter opera-

tors · and ·̂, introduced in sections 1 and 2.3, respectively,

with the associated Favre decompositions. We proceed

here along the lines proposed e.g. in [10], [11], [13], defin-

ing the filter operators in terms of appropriate L2 projec-

tors. Given a subspace V ⊂ L2(Ω), let ΠV : L2(Ω)→ V be

the associated projector defined by

∫
Ω

ΠVu v dx =

∫
Ω

u v dx, ∀u, v ∈ V,

where the integrals are evaluated with the same quadra-

ture rule used in (68). For v ∈ L2(Ω), the filter · is now

defined by

v = ΠVhv. (69)

Notice that the application of this filter is built in the

discretization process and equivalent to it. Therefore, once

the discretization of equations (66) has been performed,

only · filtered quantities are computed by the model. To

define the test filter, we then introduce

V̂h =
{
vh ∈ L2(Ω) : vh|K ∈ Pq̂(K), ∀K ∈ Th

}
, (70)

where 0 ≤ q̂ < q, and we let, for v ∈ L2(Ω),

v̂ = ΠV̂h
v. (71)

By our previous identification of the · filter and the dis-

cretization, the quantities ρ, ρũ and ρẽ can be identified

with ρh, ρhuh and ρheh, respectively. Therefore, they be-

long to Vh, for which an orthogonal basis is employed by

the numerical method. As a result, the computation of ρ̂h,

ρ̂huh and ρ̂heh is straightforward and reduces to zeroing

the last coefficients in the local expansion. Assuming that

the analytic solution is defined in some infinite dimensio-

nal subspace of L2, heuristically, Vh ⊂ L2 is associated

to the scales which are represented by the model, while

V̂h ⊂ Vh ⊂ L2 is associated to the spatial scales well re-
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solved by the numerical approximation. A similar concept

of believable scales was introduced in [35] in the framework

of a global spectral transform model for numerical weather

prediction.

The Favre filters associated to (69) and (71) are de-

fined by imposing pointwise the conditions (13)-(17) and

(33), respectively. Notice that, as a result, for a generic

quantity ϕ the filtered counterpart ϕ̃ is not, in general,

a polynomial but a rational function. All the remaining

quantities in (35), (55), (43), (61), (49) and (65) where the

test filter appears are computed using (71) and the same

quadrature rule used in (68). We also remark that these

filters do not commute with the differentiation operators.

As previously remarked in section 1, the commutation er-

ror will be neglected here.

Finally, we remark that using (55), (61) and (65), the

dynamic coefficients CS , CI , CQ, CJ , Cαβ , CQα and CJα

can be computed as functions of space. Substituting these

functions directly into the subgrid dynamical models, how-

ever, would result in diffusive terms with (possibly) highly

irregular diffusion coefficients, which would represent a se-

rious obstacle for a high-order numerical discretization.

For this reason, the dynamic coefficients are first aver-

aged over each element and then used in the corresponding

subgrid models. This is similar to what is often done in

the context of dynamic LES models, where the dynamic

coefficients are averaged in space and in time over some

homogeneity direction or some local control volume, see

e.g. [21], [59], [62]. The proposed approach has the

advantage that the average is computed directly on each

element of the computational mesh and does not require

choosing any special averaging direction. In our imple-

mentation, the dynamic coefficients are updated at each

Runge–Kutta stage. An alternative approach where they

are updated only once for each time-step or for each fixed

number of time-steps could be considered, in order to re-

duce the computational cost. Another important point is

choosing the spatial scales ∆ and “∆ associated with the

two filters (69) and (71). This can be done by dividing

the element diameter by the cubic root (or, in two dimen-

sions, the square root) of the number of degrees of freedom

of Pq(K), for ∆, and Pq̂(K), for “∆. As anticipated, this

leads to space scales which are piecewise constant on Th.

A more precise definition is given in section 4, where we

introduce a scaling coefficient which accounts for the mesh

anisotropy.

4. Numerical results

4.1. Plane channel flow simulations

In order to compare the performance of the described

Smagorinsky, isotropic and anisotropic dynamic models,

we have computed a typical LES benchmark for compress-

ible, periodic, plane channel flow at Mach numbers Ma =

0.2, 0.7 and 1.5, respectively. The results obtained are

compared here with the data from the incompressible nu-

merical simulation of Moser et al. (MKM) [43] for Ma =

0.2, with the simulation of Wei and Pollard (WP) [58] for

Ma = 0.7, and finally with the results presented by Cole-

man et al. (CKM) [9] for the supersonic case at Ma = 1.5.

All the computations were performed using the FEMilaro

finite element library [16], a FORTRAN/MPI library which,

exploiting modern FORTRAN features, aims at provid-

ing a flexible environment for the development and testing

of new finite element formulations, and which is publicly

available under GPL license. In this implementation, the

computational cost of the dynamic models was compara-

ble. Indeed, using the same configuration and parallel ma-
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chine, the average wall clock times per time step needed

by the isotropic and anisotropic dynamic models were 26%

and 34% larger, respectively, than that of the Smagorinsky

model.

The computational domain Ωd is a box of dimensions

Ld
x, Ld

y , Ld
z in dimensional units, that is aligned with a ref-

erence frame such that xd represents the streamwise axis,

yd the wall normal and zd the spanwise axis. We also in-

troduce dd = Ldy/2, the half height of the channel. The

reference quantities are chosen as follows ρr = ρd
b, Lr = dd,

Vr = Ud
b , Tr = T d

w, µr = µd
w, where ρd

b and Ud
b are the bulk

density and the target bulk velocity, respectively, and T d
w

is the wall temperature. According to (6), this implies that

µr = µd(T d
w) = µd

w, i.e. the viscosity of the fluid at the

wall.

In dimensionless units we let Lx = 4π, Ly = 2 and

Lz = 2π for all the computations, except the cases with

Ma = 0.2 where we choose Lx = 2π; the resulting domain

is thus Ω = [0 , 4π] × [−1 , 1] × [0 , 2π], or Ω = [0 , 2π] ×

[−1 , 1]× [0 , 2π] for Ma = 0.2. Isothermal, no-slip bound-

ary conditions are imposed for y = ±1, i.e. T = 1 and

u = 0, while periodic conditions are applied in the stream-

wise and spanwise directions. The initial condition is rep-

resented by a laminar Poiseuille profile ux = 3
4 (1−y2), with

ρ = 1 and T = 1. A random perturbation of amplitude

a = 0.1 is added to the initial velocity, while no pertur-

bations are added to ρ and T . The perturbation of the

(i+ 1)-th velocity component is evaluated at each quadra-

ture node by scaling the i-th coordinate of the node to

obtain ξ(0) ∈ (0 , 1), computing 20 iterations of the logistic

map ξ(k+1) = 3.999 ξ(k)(1 − ξ(k)) and projecting the re-

sulting values, which turn out to be uncorrelated in space,

on the local polynomial space; this provides a simple, de-

terministic and portable way to define a random perturba-

tion of the velocity with zero divergence. The value Ud
b is,

by definition, the desired bulk velocity; the flow velocity,

however, is the result of the balance between the exter-

nal forcing and the dissipative terms, so that it can not

be easily fixed a priori. To ensure that the obtained bulk

velocity coincides with the prescribed value, as well as to

preserve the homogeneity of the flow in the directions par-

allel to the wall, a uniform in space body force is included

along the streamwise direction, defined by

fx(t) = − 1

LyLz

ñ
α1 (Q(t)−Q0) + α2

∫ t

0

(Q(s)−Q0) ds

ô
,

where Q(t) =
∫

Ω
ρ(t)ux(t)dx/Lx is the instantaneous flow

rate and Q0 = LyLz is the flow rate corresponding to

the desired bulk velocity. A sufficiently rapid convergence

toward the value Q0 has been observed by taking α1 = 0.1,

α2 = 0.5. The bulk Reynolds and Mach numbers, defined

as

Reb =
ρd

bU
d
b d

d

µd
w

, Mab =
Ud

b√
γRT d

w

,

are imposed a priori, while the wall shear stress τw, the

friction Reynolds number Reτ and the skin friction veloc-

ity uτ , defined as

τw = µw(∂y < u >)w, Reτ =

…
ρwReb

τw
µw

,

uτ =
Reτ
Rebρw

are computed a posteriori for each simulation.

The turbulent regime is then characterized by the wall

shear stress, the skin friction velocity and the friction Reynolds

number

τd
w = µd

w

(
∂yd < ud >

)
w
, ud

τ =

 
τd
w

ρd
w

, Red
τ =

ρd
wu

d
τ

µd
w

,

which can be expressed in terms of the dimensionless vari-
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ables as

τw = (∂y < u >)w , uτ =

 
1

Reb

τw
ρw
, Reτ = Rebρwuτ .

Such quantities are computed a posteriori for each simu-

lation.

The computational mesh employed is obtained by a

structured mesh with Nx = 16 (Nx = 8 for Ma = 0.2),

Ny = 16, Nz = 12 hexahedra in the x, y, z directions,

respectively, each of which is then split into Nt = 6 tetra-

hedral elements. While uniform in the x, z directions, the

hexahedral mesh is not uniform in the y direction, where

the y = const planes are given by

yj = − tanh (ω (1− 2j/Ny))

tanh (ω)
for j = 0, . . . , Ny. (72)

The value of the parameter ω is chosen in order to

ensure a sufficient resolution of the boundary layer, as we

now illustrate. The polynomial degree for Vh is q = 4,

resulting in Nq = 35 degrees of freedom in each element.

Hence, we can define an equivalent grid spacing

∆x,z =
Lx,z

Nx,z 3
√
NtNq

∆yi =
yi − yi−1

3
√
NtNq

,

and, in wall units, ∆+
i = Reτ∆i, for i = x, y, z. Using the

skin friction Reynolds number of the corresponding DNS,

we can now determine ∆y1 = ∆ymin = Re−1
τ ∆+

ymin re-

quiring that several points are located at a distance from

the wall y+ < 5, so that the boundary layer is well re-

solved. This in turn determines ω in (72). Here, we take

ω = 2.0826. The parameters for the three cases considered

here, computed using the skin friction Reynolds number of

the corresponding DNS, are summarized in Table 1, along

with the comparison test cases presented in literature.

The grid filter scales ∆ and “∆ which appear in the mod-

els described in Section 2 are defined as piecewise constant

values on each element, and are denoted by ∆(K) and“∆(K). Such quantities can be estimated as suggested by

[50] for strongly anisotropic meshes. For each tetrahedral

element K, let us first denote by ∆(i)(K) the dimensions

of the hexahedron from which the element was obtained,

for i = x, y, z. Then, for each element K, we define

al =
∆(l)(K)

maxi ∆(i)(K)
ak =

∆(k)(K)

maxi ∆(i)(K)

where l and k are the directions in which the maximum is

not attained, and

f = cosh

…
4

27
[(ln al)2 − ln al ln ak + (ln ak)2] (73a)

∆(K) =

Ç∏3
i=1 ∆(i)(K)

Nq

å1/3

f. (73b)

The test filter scale “∆(K) is defined analogously, consid-

ering that the polynomial degree for V̂h is q̂ = 2, resulting

in N
q̂

= 10 degrees of freedom in each element.

For the Smagorinsky-type model, a test with CI = 0.01

seemed to enhance the dissipative behaviour of the model,

so that all the results presented in the following have been

computed with CI = 0, as in [15] and [37], where the

isotropic contribution is neglected.

After the statistical steady state was reached at time

tst, the simulations were continued for a dimensionless time

tav larger or equal than 90 dimensionless time units, in

order to compute all the relevant statistics and to verify

time invariance of the mean profiles. The statistics were

then computed averaging on the element faces parallel to

the walls, introducing, for a generic quantity ϕ, the space-
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Moser Wei and Coleman Present Present Present
et al. Pollard et al. Ma=0.2 Ma=0.7 Ma=1.5

(MKM) (WP) (CKM) (Ma02) (Ma07) (Ma15)
Mab — 0.7 1.5 0.2 0.7 1.5
Reb 2800 2795 3000 2800 2795 3000
Lx 4π 12 4π 2π 4π 4π

Lz
4
3
π 6 4

3
π 4

3
π 4

3
π 4

3
π

∆+
x 17.7 4.89 19 23 24 29

∆z+ 5.9 4.89 12 10 11 13

∆+
ymin/∆

+
ymax 0.05/4.4 0.19/2.89 0.1/5.9 0.65/7.9 0.67/8.2 0.8/9.5

Table 1: Parameters of the simulations and reference test cases.

time average

< ϕ > (|y|) =
1

2tavLxLz∫ tst+tav

tst

∫ Lx

0

∫ Lz

0

(ϕ(t, x,−|y|, z) + ϕ(t, x, |y|, z)) dz dx dt.

In Table 2, the mean flow quantities at the wall and at

the channel centerline, denoted by the subscripts w and c,

respectively, are compared with the reference DNS results.

The isotropic dynamic model has shown a very unsta-

ble behaviour at Ma = 1.5, so that no results are pre-

sented here for the isotropic dynamic model in this case.

This kind of behaviour is usually handled in the literature

by averaging the model coefficients in time and/or over

homogeneity directions, as suggested in [21]. On the con-

trary, in this paper we have only employed averages over

the local element, with the goal of assessing the perfor-

mance of methods that should be applicable to complex

turbulent flows, in which no homogeneity directions are

easily identifiable. Although the isotropic dynamic model

may possibly achieve stability after proper averaging of

the coefficient, we see this behaviour as an indicator of the

superior robustness of the anisotropic approach.

The wall stress relative errors range between 5÷ 25%,

where the larger values are obtained with the Smagorinsky

model. The Reynolds number Reτ and the skin-friction ve-

locity uτ are affected by the wall shear stress error and by

the fact that the density ρw at the wall is always under-

predicted. On the other hand, at the center of the channel

density values are higher than the reference ones and, co-

herently, temperature values are lower. The mean velocity

at the centerline is always underestimated, except for the

compressible cases computed with the Smagorinsky model.

The overprediction of this quantity by the Smagorinsky

model is probably related to its difficulties in connecting

properly the wall region to the the logarithmic layer. At

Ma = 0.2 and 0.7 the isotropic dynamic model represents

a little better the wall stress and related quantities, but it

performs worse with respect to density and temperature.

In the simulations at Ma = 0.2, the constant density and

temperature conditions of the incompressible MKM DNS

are recovered with an error of the order of 4‰ at most.

The wall shear stress τw is the most sensitive quantity and

is always underestimated. Looking at the mean quantities,

for all the Mach numbers and all indicators considered, the

dynamic models perform globally better than the Smago-

rinsky model in this VMS framework.

In Figure 1, the mean profiles corresponding to the

mean density values reported in Table 2 are displayed.

The excess in the density profiles at the channel center

is related to the temperature values, which are lower than

the DNS ones far from the wall, see Figure 2. The profiles

of these quantities for the Ma = 0.2 are almost constant

and have not been displayed. Figure 3 shows instead the

mean velocity profiles, from which it is evident that the
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τw Reτ uτ/Ub ρw/ρb Uc/Ub ρc/ρb ρc/ρw Tc/Tw
MKM 11.21 178 0.0635 — 1.17 — — —
Anis. dyn. Ma02 10.38 171 0.0608 1.001 1.15 0.999 0.999 1.005
Iso. dyn. Ma02 10.62 172 0.0614 1.001 1.15 0.999 0.998 1.005
Smag. Ma02 9.98 167 0.0596 1.004 1.16 0.999 0.996 1.005
WP 12.38 186 0.0618 1.107 1.16 0.995 0.925 1.086
Anis. dyn. Ma07 10.31 176 0.0588 1.068 1.15 0.996 0.933 1.070
Iso. dyn. Ma07 10.73 178 0.0608 1.060 1.15 0.998 0.942 1.061
Smag. Ma07 9.20 166 0.0555 1.067 1.17 0.996 0.9333 1.070
CKM 12.12 222 0.0545 1.358 1.164 0.982 0.723 1.378
Anis. dyn. Ma15 10.62 202 0.0527 1.280 1.161 0.990 0.776 1.284
Smag. Ma15 9.94 196 0.0505 1.299 1.174 0.985 0.758 1.313

Table 2: Mean flow quantities for all the numerical experiments.
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Figure 1: Mean density profiles at (a) Ma = 0.7 and (b) Ma = 1.5.
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Figure 2: Mean temperature profiles at (a) Ma = 0.7 and (b) Ma = 1.5.
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Figure 3: Mean streamwise velocity profiles at (a) Ma = 0.2, (b) Ma = 0.7 and (c) Ma = 1.5.
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Figure 4: Mean streamwise velocity profiles in wall unit representation at (a) Ma = 0.2, (b) Ma = 0.7 and (c) Ma = 1.5.

dissipative nature of the Smagorinsky model causes an un-

derestimation of the velocity in the buffer region and its

the overprediction in the channel center. To enhance the

difference between the subgrid scale models, in Figure 4 we

report the mean velocity profile in wall unit representation

and following the Van Driest transformation [25]

〈u〉+V D =

∫ 〈u〉+
0

Å 〈ρ〉
ρw

ã1/2

d〈u〉+ (74)

for Ma = 0.7 and 1.5. The results for the two dynamic

models are similar for Ma = 0.2, but at Ma = 0.7 the

isotropic model shows a little better agreement with DNS

than the anisotropic one, which in turn has good agree-

ment at Ma = 1.5.

Figure 5 shows the mean profile of the non-solenoidal

term ∂y < v > in the supersonic case. With the anisotropic

model, the compression is very well reproduced near the

wall, while this is not the case for the Smagorinsky model.

In the buffer region, the dilatation is shifted forward for

both models.

In Figures 6-8, the root mean square values of the re-

solved velocity fluctuations are displayed. In the incom-

pressible limit, Figure 6 for the streamwise turbulence in-

tensity shows that the dissipative nature of the Smago-

rinsky model always leads to an underprediction of the

streamwise turbulence intensity near the wall, and too high

fluctuations in the buffer and central region. We recall that

these quantities represent the resolved contributions only,

so that their overestimation with respect to the DNS value

is an undesired result. On the other hand, the streamwise

fluctuations are always well reproduced by the anisotropic

model and, where it is available, by the isotropic dynamic

one. The fluctuations of the velocity components normal

to the wall (Figure 7) and spanwise (Figure 8) in the wall

region are underestimated by both dynamic models with
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Figure 5: Mean dilatation profiles at Ma = 1.5.
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Figure 6: Root mean square profiles of the streamwise velocity component at (a) Ma = 0.2, (b) Ma = 0.7 and (c) Ma = 1.5.

respect to the DNS values, although we recall that these

are the resolved contribution only.

In Figure 9 results for the total (modelled plus re-

solved) turbulent kinetic energy are displayed. For the

Smagorinsky model, this corresponds to the resolved tur-

bulent kinetic energy, since the isotropic part of the sub-

grid stresses is neglected. It can be observed that also for

this quantity the DNS results are very well reproduced by

the dynamic models.

Since during the simulations a constant mass flow is

imposed, the wall shear stress τw can differ from the ex-

pected DNS value (see Table 2) and relevant differences

also affect the wall normal turbulent shear stress (mod-

eled + resolved) reported in Figure 10. Here, the stress

is rescaled by the corresponding uτ wall friction velocity

obtained in each simulation and, in the cases Ma = 0.7

and Ma = 1.5, weighted by the local density. In spite

of the application of the damping function, the Smagorin-

sky model does not present the correct trend at the wall

and the shear stress is overestimated. This behaviour is

probably the cause of the underprediction of the mean ve-

locity profile in the wall region and of the difficulties in

connecting properly the wall region to the the logarithmic

layer. On the other hand, the dynamic models are in quite

good agreement with the DNS results for simulations at all

Mach numbers.

4.2. Channel flow over periodic hills

To evaluate the performance of the implemented sub-

grid scale models in a more complex setting, in which e.g.

separation and reattachment arise and a less trivial geom-

etry is considered, turbulent channel flow over a periodic

hill has been simulated. First studied in [3], the periodic

hill flow has become an important test case for CFD and
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Figure 7: Root mean square profiles of the wall normal velocity component at (a) Ma = 0.2, (b) Ma = 0.7 and (c) Ma = 1.5.
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Figure 8: Root mean square profiles of the spanwise velocity components at (a) Ma = 0.2, (b) Ma = 0.7 and (c) Ma = 1.5.

in particular for RANS and LES simulations that has been

discussed e.g. in a number of ERCOFTAC workshops. De-

spite the apparently simple geometry, the periodic hill test

case presents some challenging feature, like the massive

flow separation from a curved surface, the high sensitivity

of the reattachment point location to the separation and

the strong acceleration of the flow. Most of the results

in the published literature refer to the incompressible case

[6], [17], while we refer to the compressible simulation re-

sults reported in [61] and we employ the modified geom-

etry defined in [41]. For this test, only the performance

of the dynamic models has been assessed, considering the

generally inferior performance of the simpler Smagorinsky

model in the previous plane channel test case.

The computational domain (Fig. 11(a)) is a periodic

plane channel constricted by a hill of height h about one

third of the total channel height. Domain dimensions are:

Lx = 9.0h for streamwise direction , Lz = 4.5h for span-

wise direction and Ly = 3.036h for the height. The mesh

is composed of two regions, with a conforming matching.

A structured hexahedral mesh, where each hexahedron is

divided into 6 tetrahedra, is used to resolve the bound-

ary layer close to the hill profile, while a fully unstruc-

tured, three-dimensional mesh is used in the bulk region.

A two-dimensional section of the resulting mesh is shown

in Figure 11(b). The total number of elements is 16662.

For the structured, boundary layer mesh, we have Nz = 12

elements in the spanwise direction, which, using basis func-

tions of degree q = 4, leads to a ∆z/h ' 0.062. In order

to accurately describe the hill shape, the streamwise reso-

lution varies from ∆x/h ' 0.062 between the two hills to

∆x/h ' 0.023 at the top of the hill. The mesh is refined in

the normal direction to reach ∆y/h ' 0.0032 at the bot-

tom wall, whereas no mesh refinement has been applied
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Figure 9: Total modelled+resolved turbulent kinetic energy at (a) Ma = 0.2, (b) Ma = 0.7 and (c) Ma = 1.5.
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Figure 10: Total modelled+resolved turbulent wall normal shear stress at (a) Ma = 0.2, (b) Ma = 0.7 and (c) Ma = 1.5. The stress is
normalized by the corresponding uτ wall friction velocity obtained by the simulation.

close to the upper wall.

The no-slip and isothermal wall boundary conditions

are imposed at both upper and lower surfaces. Cyclic

boundary conditions are imposed in the streamwise and

spanwise directions where the flow is assumed to be peri-

odic. As in the channel flow simulation, a varying in time

driving force is applied to keep constant mass flow. The

bulk Reynolds and Mach numbers, defined as

Reb =
ρd

bU
d
b d

d

µd
w

, Mab =
Ud

b√
γRT d

w

, (75)

are imposed a priori, where Ud
b and ρd

b are respectively the

bulk velocity and density evaluated on the crest of the hill,

and Tw and µd
w are the temperature and the viscosity at

the wall. The values we have employed areReb = 2800 and

Mab = 0.2. The results are compared with those obtained

by [6] in an incompressible direct numerical simulation.

A first view of the results is provided in Figure 4.2, in

which the averaged values of the streamwise velocity com-

ponen are displayed along the channel, as computed using

the anisotropic dynamic model. The size and the position

of the flow separation region compare very well with the

DNS results reported in the literature. Furthermore, for

a more detailed assessment, we show profiles of velocities

and turbulent stress averaged over the spanwise direction

and time at four different positions in the flow field, also

shown in Figure 11(b). The time average considered an in-

terval of at least 50 non dimensional time units. The first

profile at x/h = 0.5 is located just after the separation and

through the strong shear layer; the second at x/h = 2, at

the beginning of the flat floor, is inside the main recircu-

lation bubble, while the third one at x/h = 4 is at its end.

Finally, the fourth one at x/h = 6 is located in the reat-

tached flow region. In Figure 13(a) the mean streamwise

velocity profiles, for both the dynamic models, show an
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Figure 11: (a) Periodic hill geometry with Lx = 9.0h, Lz = 4.5h,Ly = 3.036h (b) section in the (x−y) plane of the mesh used for the periodic
hill simulations; the dotted lines at x/h = 0.5, 2, 4, 6 denote the positions of the mean profiles displayed in the following figures.

excellent agreement with DNS results. Some discrepan-

cies are presented in the normal to the wall mean velocity

profiles in Figure 14 where the dynamic isotropic model

performs a little better than the anisotropic one in the

main separation bubble. However, the normal velocity is

very small and the errors are lower than two percent of the

bulk velocity. The total, resolved plus modeled, turbulent

stresses in Figure 15-17 are slightly better reproduced by

the anisotropic model. The spanwise component < u′iu
′
j >

of normal stresses is overestimated by both the dynamic

models in the flat region between the hills. The positions

of the peaks in all the profiles and the shape of the shear

layer are well captured by both dynamic models.

5. Conclusions and future perspectives

We have investigated the potential benefits resulting

from the application of the anisotropic dynamic model [2]

in the context of a high order DG model for compressible

flow LES. This approach contrasts with other attempts at

implementing LES in a DG framework, in which only Sma-

gorinsky closures have been applied so far. Furthermore,

the hierarchical nature of the DG finite element basis was

exploited to implement the LES grid and test filters via

projections on the finite dimensional subspaces that de-

fine the numerical approximation, along the lines of simi-

lar proposals in the VMS framework. A comparison with

the DNS experiment results reported in [9], [43] and [58]

for a plane channel and in [6] for a constricted channel has

been carried out. In the plane channel case, the results

of the comparison show a clear improvement in the pre-

diction of several key features of the flow with respect to

the Smagorinsky closure implemented in the same frame-

work. The proposed approach appears to lead to signifi-

cant improvements both in the low and high Mach number

regimes. In particular, the anisotropic model appears to

be more robust than the isotropic model for high Mach

number regimes, where the isotropic model is unstable is

simple elementwise averaging of the model coefficients is

employed. The results of the constricted channel flow at

low Mach number, on the other hand, displayed much less

sensitivity to the choice of the subgrid model.

On this basis, we plan to investigate further extensions

of this approach to flows in presence of gravity, with the

goal of improving the turbulence models for applications to

environmental stratified flows. Furthermore, the numeri-

cal framework that has been validated by the comparison

reported in this paper will be employed for the assessment

of the proposal presented in [42] for the extension of the

eddy viscosity model to compressible flows.
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Figure 12: Averaged streamwise velocity in the period hill flow test case.

-0,2 0 0,2 0,4 0,6 0,8 1
<u>

0

0,5

1

1,5

2

2,5

3

y

DNS
anis. dyn.
iso. dyn.

(a)

-0,2 0 0,2 0,4 0,6 0,8 1
<u>

0

0,5

1

1,5

2

2,5

3

y

DNS
anis. dyn.
iso. dyn.

(b)

-0,2 0 0,2 0,4 0,6 0,8 1
<u>

0

0,5

1

1,5

2

2,5

3

y

DNS
anis. dyn.
iso. dyn.

(c)

-0,2 0 0,2 0,4 0,6 0,8 1
<u>

0

0,5

1

1,5

2

2,5

3

y

DNS
anis. dyn.
iso. dyn.

(d)

Figure 13: Mean streamwise velocity profiles in the periodic hill flow test case at different locations along the channel; (a): x/h = 0.5; (b):
x/h = 2; (c): x/h = 4; (d): x/h = 6.
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[1] A. Abbà, C. Cercignani, G. Picarella, and L. Valdettaro. A 3d

turbulent boundary layer test for les models. In Computational

Fluid Dynamics 2000, 2001.
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Figure 14: Mean normal velocity profiles in the periodic hill flow test case at different locations along the channel;; (a): x/h = 0.5; (b):
x/h = 2; (c): x/h = 4; (d): x/h = 6.
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Figure 15: Streamwise component of normal total (resolved + modeled) turbulent stresses profiles in the periodic hill flow test case at different
locations along the channel; (a): x/h = 0.5; (b): x/h = 2; (c): x/h = 4; (d): x/h = 6.
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Figure 16: Normal total (resolved + modeled) turbulent stresses profiles in the periodic hill flow test case at different locations along the
channel; (a): x/h = 0.5; (b): x/h = 2; (c): x/h = 4; (d): x/h = 6.
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Figure 17: Shear total (resolved + modeled) turbulent stresses profiles in the periodic hill flow test case at different locations along the
channel; (a): x/h = 0.5; (b): x/h = 2; (c): x/h = 4; (d): x/h = 6.
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[17] J. Fröhlich, C.P. Mellen, W. Rodi, L.Temmerman, and M.A.

Leschziner. Highly resolved large-eddy simulation of separated

flow in a channel with streamwise periodic constrictions. JFM,

526:19–66, 2005.

[18] F. Garcia, L. Bonaventura, M. Net, and J. Sánchez. Exponential

versus IMEX high-order time integrators for thermal convection

in rotating spherical shells. Journal of Computational Physics,

264:41–54, 2014.

[19] E. Garnier, N. Adams, and P. Sagaut. Large Eddy Simulation

for Compressible Flows. Springer Verlag, 2009.

[20] M. Germano. Turbulence: the filtering approach. Journal of

Fluid Mechanics, 238:325–336, 1992.

[21] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A Dy-

namic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids,

3(7):1760–1765, 1991.
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mulations of the Navier-Stokes equations: application to non-

hydrostatic atmospheric modeling. SIAM Journal of Scientific

Computing, 32:3394–3425, 2010.

[25] P.G. Huang and G.N. Coleman. Van driest transformation and

compressible wall-bounded turbulent flows. AIAA J., 32:2110–

2113, 1994.

[26] T.J.R. Hughes, G.R. Feijoo, L. Mazzei, and J.B. Quincy. The

variational multiscale method-a paradigm for computational

mechanics. Computer Methods in Applied Mechanics and En-

gineering, 166:3–24, 1998.

[27] T.J.R. Hughes, L. Mazzei, and K. Jansen. Large Eddy Simu-

lation and the variational multiscale method. Computing and

Visualization in Science, 3:47–59, 2000.

[28] T.J.R. Hughes, L. Mazzei, A.A. Oberai, and A.A. Wray. The

multiscale formulation of large eddy simulation: Decay of ho-

mogeneous isotropic turbulence. Physics of Fluids, 13:505–512,

2001.

[29] T.J.R. Hughes, A.A. Oberai, and L. Mazzei. Large eddy sim-

ulation of turbulent channel flows by the variational multiscale

method. Physics of Fluids, 13:1784–1799, 2001.

[30] T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Multiscale and

stabilized methods. Wiley, 2004.

[31] V. John and A. Kindl. Numerical studies of finite element Varia-

tional Multiscale Methods for turbulent flow simulations. Com-

puter Methods in Applied Mechanics and Engineering, 199:841–

852, 2010.

[32] V. John and M. Roland. Simulations of the turbulent channel

flow at Reτ = 180 with projection-based finite element Varia-

tional Multiscale Methods. International Journal of Numerical

Methods in Fluids, 55:407–429, 2007.

24



[33] D. Knight, G. Zhou, N. Okong’o, and V.Shukla. Compress-

ible large eddy simulation using unstructured grids. Technical

Report 98-0535, American Institute of Aeronautics and Astro-

nautics, 1998.

[34] B. Koobus and C. Farhat. A variational multiscale method for

the large eddy simulation of compressible turbulent flows on un-

structured meshes—-application to vortex shedding. Computer

Methods in Applied Mechanics and Engineering, 193:1367–

1383, 2004.

[35] J. Lander and B.J. Hoskins. Believable scales and parameteriza-

tions in a spectral transform model. Monthly Weather Review,

125:292–303, 1997.

[36] B. Landmann, M. Kessler, S. Wagner, and E. Krämer. A par-
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