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Abstract: This paper studies the problem of characterizing the 4D (space cross time) region
of the airspace that will be occupied by a space debris during an uncontrolled reentry, with
the final goal of supporting the air traffic controllers in re-routing the air traffic when such an
event occurs. The problem is formulated in terms of a chance-constrained optimization program,
which is solved via a simulation-based method. The approach is comparatively evaluated against
the so-called covariance propagation method recently proposed in the literature, emphasizing
how some of the limitations of the latter method are overcome.

1. INTRODUCTION

Since the beginning of the space era the number of satel-
lites grew significantly and so did the number of them
which ceased their operations and now are orbiting around
Earth without the possibility to be controlled from ground
stations. Together with upper stage rocket bodies, and
fragments generated by collisions with meteoroids or other
artificial satellites, they constitute the so-called space de-
bris population.
When a debris orbit decays, mainly due to atmospheric
friction, it can reenter the atmosphere and pose risk to
public safety, striking people and properties on the ground.
During a controlled reentry, the spatial debris is maneu-
vered so as to make it reenter the Earth atmosphere
avoiding high density fly zones and strike the ground in the
ocean or over an uninhabited area. During an uncontrolled
reentry, instead, the debris cannot be maneuvered and,
hence, may cause serious risk for the population on the
ground as well as for the air traffic. Studies in the literature
on uncontrolled reentries have been focusing almost exclu-
sively on the possible impact in terms of casualties on the
population on the ground, see e.g. Pardini and Anselmo
[2013], Anselmo and Pardini [2013], Pardini and Anselmo
[2005], Frank et al. [2005], Weaver et al. [2011]. As a matter
of fact, despite of the high aircraft vulnerability (in the
case of an aircraft flying at a speed of 700 kilometers per
hour even an impact with a small debris, hypothetically
at rest in the air, can cause a severe damage, Pardini
and Anselmo [2013]), only a few contributions have been
focusing on the impact on air traffic, see Patera [2008] and
Ailor and Wilde [2008].

Up today, accurate and reliable models to describe uncon-
trolled space debris reentry are not available, due to the
complexity of the phenomenon. When a satellite ceases
its operation, it typically continues to orbit around the
Earth until the atmospheric drag reduces its speed making
it lower its semi-major axis. Typical speed of an orbiting
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satellite is about 7 km/s and, as it enters the Earth at-
mosphere, it encounters a steadily increasing aerodynamic
load that causes a sequence of failures thus generating
multiple fragments, Ailor and Wilde [2008]. Though this
fragmentation is far from instantaneous, we refer to it as
breakup instant, meaning the instant when the reentering
body experiences a major breakup (i.e. the first massive
breakup) . In Weaver et al. [2011], Frank et al. [2005] it is
shown that all fragments evolve with a ballistic trajectory,
only subject to gravity and aerodynamic forces.

Observations have shown that the major breakup event
happens at an altitude of about 78 km Ailor and Wilde
[2008] with an uncertainty range from ±10 km to ±20 km,
Weaver et al. [2011], Frank et al. [2005], Pardini and
Anselmo [2005]. So, fragments generated from this first
breakup are distributed over a range of altitudes, thus
increasing the spread of debris footprint along the direc-
tion of motion. Following Ailor and Wilde [2008], which
suggests that the spread of debris footprint caused by
breakup altitude uncertainty can be reduced if the object
is observed during the major breakup, we focus only on
fragment dispersion after the breakup phase.

Besides the complex nature of the breakup process, even
post-breakup trajectories of fragments are subject to
strong uncertainties. In particular, the aerodynamic drag
acting on a fragment depends on the ballistic coefficient,
which is uncertain, and on the atmospheric density, that is
affected by modeling errors (Saunders et al. [2009], Pardini
and Anselmo [2013]). Local wind is pointed out as a source
of uncertainty in FAA [2011], Ailor and Wilde [2008], due
to its effect on the debris trajectories after the breakup
process, when the debris enters the low atmosphere. The
horizontal component of the velocity vector is in fact
typically dominated by the wind that can cause a cross-
track dispersion of the debris, Ailor and Wilde [2008],
the impact being higher on those fragments with a lower
ballistic coefficient, FAA [2011].
All this motivated the adoption of a probabilistic approach
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in Weaver et al. [2011], Frank et al. [2005] and in this paper
as well.

Our goal is to propose a novel method for determining the
debris footprint, i.e., the minimum size 4D (space cross
time) region of the airspace where all debris trajectories
except a set of predefined probability ε ∈ (0, 1) can be
confined. More specifically, we introduce a simulation-
based approach where the problem of the ε-footprint
computation is formulated as a chance-constrained opti-
mization problem and then solved through a randomized
method, which reduces to generating a certain number of
realizations of the reentry trajectory and imposing that
these realizations belong to the footprint. The obtained
ε-footprint can be used by air traffic controllers to define
no-fly zones and redefine the aircraft flight plans so as to
guarantee that they do not enter such zones. Note that the
larger is a no-fly zone the more difficult is finding a feasible
solution to the re-routing problem: ε can then play the role
of a tuning parameter so as to compromise between the
admissible risk level and the size of the no-fly zone: 0 risk
but a large no-fly zone if ε = 0, and maximum risk but a
zero volume no-fly zone if ε = 1.
The proposed simulation-based method is compared with
the analytic covariance propagation method recently pro-
posed in Reyhanoglu and Alvarado [2013].

The paper unfold as follows. In Section 2 we focus on a
model for single-fragment trajectory prediction after the
entrance in the Earth atmosphere. Based on this model,
we characterize the 4D debris footprint and describe the
proposed simulation-based method for its computation in
Section 3. After briefly recalling the covariance propaga-
tion method in Section 4.1, we compare the two methods in
Section 4.2. Finally, in Section 5, we draw some conclusions
and suggest some interesting directions of future research.

2. MODEL DESCRIPTION

For the debris model we adopt the three-degrees of freedom
model of a falling object over a rotating planet recently
proposed in Reyhanoglu and Alvarado [2013].

Let x = [x, y, z] ′ represent the position of the falling
fragment with respect to a topocentric horizon coordinate
system at the breakup instant. The frame, from now on
called ENZ (East-North-Zenith), is centered at (ϑ0, ϕ0)
on the Earth surface (initial longitude: ϑ0; initial latitude:
ϕ0), the xy plane is the local horizon (i.e. the plane tangent
to the Earth at the origin), the x-axis points eastward, the
y-axis points northward and the z-axis is directed towards
the zenith. In this way, fragment reentry after breakup has
x0 = [0, 0, z0]

′ as initial position, with z0 representing the
altitude of breakup.
With reference to the ENZ frame, the equations of motion
describing the debris trajectory are given by:

ẋ = v (1)

v̇ = −ad − ge3 − 2ω × v − ω × [ω × (x+Ree3)] + ξ

where v = [vx, vy, vz]
′ is the velocity, ad is the atmospheric

drag deceleration, ω = [0, ωe cos (ϕ0) , ωe sin (ϕ0)]
′ is the

angular velocity vector of the ENZ frame (Earth rotation
rate: ωe = 7.2921×10−5 rad/s) and e3 = [0, 0, 1] ′.
Constant Re represents the Earth mean radius (Re =

6.3728×106 m), whereas according to the inverse square
gravity model, the gravitational acceleration is given by

g = gg

(
Re

Re + z

)2

,

where gg = 9.81 m/s2 is the gravitational acceleration on
the ground. The atmospheric drag deceleration ad acting
on the fragment can be expressed as

ad =
1

2

ρ (z)

β
vrvr, (2)

where ρ (z) is the atmosphere density as a function of the
altitude, vr = v − w is the debris speed relative to the
wind velocity w, and vr = ‖vr‖ is the magnitude of vr.
Parameter β represents the ballistic coefficient and is given
by β = m

CdA
, where m is the mass of the debris, A its cross-

sectional area, and Cd the aerodynamics coefficient.
Finally, ξ is a random acceleration vector that accounts
for modeling errors and disturbances.

3. PROBABILISTIC FOOTPRINT COMPUTATION:
A SIMULATION-BASED METHOD

In this section, we present a randomized approach to
determine the footprint of a debris fragment, which rests
on the multiple simulations of its reentry trajectory.
The debris dispersion at a certain time instant t will be
confined within an ellipsoidal set

Eε (A, c) = {x ∈ �3 : (x− c) ′A (x− c) ≤ 1},
finitely parameterized through vector c and matrix A
respectively representing the center of the ellipsoid and the
positive definite symmetric matrix defining its shape. The
problem of computing the ellipsoid Eε (A, c) with minimum
volume that contains all possible debris trajectories except
for a set of probability at most ε can be formalized in terms
of the following chance-constrained optimization problem:

min
A,c

√
detA−1 (3)

subject to: A = A′ � 0

P {δ ∈ Δ : xδ(t) ∈ Eε (A, c)} ≥ 1− ε,

where xδ(t) denotes the position of the debris at time t,
when the uncertainty affecting the debris reentry trajec-
tory is δ. The uncertainty vector δ can account for vari-
ous sources of uncertainties (parameters, initial condition,
disturbances) as discussed in the introduction, and takes
values in some uncertainty set Δ according to a probability
distribution P. Sensible choices for P are suggested in
Weaver et al. [2011], Frank et al. [2005].
If we let (A�, c�) be the solution to (3), then

E�
ε = {x ∈ �3 : (x− c�) ′A� (x− c�) ≤ 1}

is the minimum volume ellipsoid that represents the 3D
footprint associated with the violation parameter ε.

Chance-constrained optimization problems like (3) are
known to be difficult to solve, Prèkopa [1995, 2003], except
for specific cases like when the involved probability distri-
bution is Gaussian. We next show how to approximately
solve problem (3) via a randomized method, called the sce-
nario approach, Calafiore and Campi [2005, 2006], Campi
and Garatti [2008], Campi et al. [2009], Campi and Garatti
[2011], which reduces the chance-constrained optimization
problem to an optimization problem with standard (i.e.,



non probabilistic) constraints, while providing guarantees
on the chance-constrained feasibility of the obtained solu-
tion.

To this purpose we first reformulate problem (3) as

min
A,c

log detA−1 (4)

subject to: A = A′ � 0

P {δ ∈ Δ : xδ(t) ∈ Eε (A, c)} ≥ 1− ε,

where the cost log detA−1 to be minimized is convex as a
function of A, Boyd [2004]. Convexity of both the cost and
the set appearing under the probability P in the chance-
constraint is in fact needed for providing theoretical guar-
antees on the quality of the scenario solution.

The main concept of the scenario approach is that solv-
ability of the optimization problem (4) can be achieved by
extracting a finite number N of realizations of the uncer-
tainty vector δ and replacing the constraint in probability
with the N constraints associated with the extracted δ’s
uncertainty instances.

This leads to the following convex optimization problem
with a finite number of constraints:

min
A,c

log detA−1 (5)

subject to: A = A′ � 0

xδ(i)(t) ∈ Eε (A, c) , i = 1, 2, . . . , N,

where δ(i), i = 1, . . . , N are extracted independently from
Δ according to the distribution P.

As opposed to (4), (5) is a convex optimization problem
with a finite number of constraints and can be addressed
by computing first the convex hull of all data points
xt

(
δ(i)

)
, and then applying Khachiyan’s algorithm to find

the minimum volume ellipsoid containing the convex hull,
Todd and Yildirim [2007], Sun and Freund [2004].

The fact that the scenario solution is feasible also for the
original problem is guaranteed by the following theorem,
whose proof is given in Campi and Garatti [2008].

Theorem 1. Select a “violation parameter” ε ∈ (0, 1) and
a “confidence parameter” η ∈ (0, 1). If N is such that

d∑
i=0

(
N

i

)
εi (1− ε)

N−i ≤ η (6)

where d denotes the number of optimization variables in
(5), then, with probability no smaller than 1 − η, the
solution (A�

N , c�N ) to the scenario optimization problem
(5) satisfies

P {δ ∈ Δ : xδ(t) ∈ Eε (A�
N , c�N )} ≥ 1− ε.

�

Note that the result on the feasibility of the scenario
solution holds with a certain confidence 1 − η. This is
because the scenario solution depends on the extracted
uncertainty instances and it may then happen that a bad
multi-sample (e.g., all δ(i)’s equal) is extracted and the
feasibility property does not hold. However, this becomes
more and more unlikely as N increases and the probability
η of this unfortunate event can be set as small as 10−10

(i.e., zero in practice) without growing too much the

sample size N . Indeed, the explicit bound for N satisfying
(6)

N ≥ d+ 1 + ln(1/η) +
√

2(d+ 1) ln(1/η)

ε
derived in Alamo et al. [2010] shows that the dependence
on η is logarithmic.

Though extremely powerful, this randomized approach
may lead to conservative results, i.e., to a solution with an
actual violation that is much smaller than ε. This is quite
intuitive: it is possible that a few“outliers”causing a signif-
icant increment of the cost function are extracted among
the δ’s uncertainty instances. To avoid this problem, it
would be useful to have a simple procedure for discarding
such extractions without affecting the guarantees provided
by Theorem 1. In Campi and Garatti [2011], a variant of
the scenario method that includes constraint removal is
proposed and feasibility of the obtained solution is proven.
The associated scenario program is as follows

min
A,c

log detA−1 (7)

subject to: A = A′ � 0

xδ(i)(t) ∈ Eε (A, c) , i ∈ {1, 2, . . . , N} \ Ir,
where Ir = {i1, . . . , ik} ⊂ {1, 2, . . . , N} is the set of indices
of the uncertainty instances that are removed so as to
improve the cost (i.e. reduce the volume of the ellipsoid).

Theorem 2. Select a “violation parameter” ε ∈ (0, 1),
a “confidence parameter” η ∈ (0, 1) and an “empirical
violation parameter” α ∈ [0, ε). If N is such that(
αN�+ d


αN�
) �αN�+d∑

i=0

(
N

i

)
εi (1− ε)

N−i ≤ η, (8)

where d denotes the number of optimization variables
in (5), then, if we set k = 
αN�, with probability no
smaller than 1−η, the solution (A�

N,k, c
�
N,k) to the scenario

optimization problem with constraint removal (7) satisfies

P {
δ ∈ Δ : xδ(t) ∈ Eε

(
A�

N,k, c
�
N,k

)} ≥ 1− ε.

�

Remark 1. (Choosing an empirical violation parameter α).
The empirical violation probability α is an user-chosen
parameter through which the level of approximation of
the randomized solution can be tuned. As a matter of
fact, though the feasibility of the randomized solution is
guaranteed for every α ∈ [0, ε), the closer is α to the
desired violation probability ε, the better the randomized
solution approximates the actual solution to the chance-
constrained problem. At the same time, however, N grows
to infinity as O( 1

ε−α ) when α → ε, Campi and Garatti

[2011], so that one should account for the available com-
putational resources when choosing α.

The optimal removal procedure is computationally imprac-
ticable, but since Theorem 2 holds irrespectively of the
algorithm used to remove the constraints, one can head
for suboptimal approaches like removing one by one the
constraint that leads to the largest improvement in the cost
(greedy removal) or subsequently removing the whole set
of active constraints (block removal), i.e., those constraints
such that

(xδ(i)(t)− c) ′A (xδ(i)(t)− c) = 1.



for the current (A, c) solution.
Algorithm 1 implements this latter removal rule for 3D

footprint calculation. The shorthand x
(i)
t is adopted for

xδ(i)(t) for ease of notation.

Algorithm 1 3D randomized footprint
1: INPUT ε AND α AND η

2: SET N AND k according to Theorem 2

3: FOR i := 1 TO N

4: SET x
(i)
t := solution to (1) at time t when the

uncertainty is equal to the value δ(i) extracted at

random from Δ according to P
END FOR

5: SET {A�
N,0, c

�
N,0} := solution to (5)

6: SET V := ∅ AND p := 0;

% V is the set of indexes of violated constraints

% p is the cardinality of V

7: WHILE p < k

8: SET m := number of active constraints

9: IF m > k − p

10: SET R := set of k−p indexes, randomly selected

among the indexes of the active constraints

11: ELSE

12: SET R := set of active constraints indexes

END IF

% R is the set of indexes of the constraints to be

removed

13: SET Ir := R ∪ V

14: SET {A�
N,k, c

�
N,k} := solution to (7)

15: SET V := indexes of the constraints violated by

{A�
N,k, c

�
N,k} AND p := |V |;

END WHILE

16: RETURN {A�
N,k, c

�
N,k}.

4D extension

In order to extend the characterization of the debris
dispersion to 4D, we need to account also for time and
introduce an ellipsoidal set parameterized by center and
shape matrix (c(t), A(t)) that are functions of time t
in the reference time horizon [ti, tf ]. The resulting 4D
chance-constrained problem will be far more challenging to
solve than its 3D counterpart, given that the optimization
variables ((c)(t), A(t)), t ∈ [ti, tf ], are infinite dimensional.

The solution we opted for is to discretize time and asso-
ciate to each sample time instant an ellipsoid. The sum of
the volumes of all ellipsoids is then minimized subject to
the constraint that a fraction of probability at least 1− ε
of the debris trajectories belongs to the ellipsoids.

Let tj , j = 1, . . . , ns, be the sampled time instants along
the reference time horizon [ti, tf ], and Aj and cj the
parameters of the ellipsoid associated with time tj . Then,
we have

min
(Aj ,cj),
j=1,...,ns

ns∑
k=1

log detA−1
j (9)

subject to: Aj = AT
j � 0, j = 1, . . . , ns

P {δ ∈ Δ : xδ(tj) ∈ Eε (Aj , cj) , ∀j} ≥ 1− ε,

a chance-constrained optimization problem which can be
solved via scenario approach with constraint removal. The
resulting algorithm is similar to Algorithm 1, see Falsone
and Noce [2013] for more details.

4. COMPARATIVE ANALYSIS

4.1 Covariance propagation method

The covariance propagation method proposed in Rey-
hanoglu and Alvarado [2013] for determining the 4D foot-
print rests on the linearization of (1) around the nominal
trajectory and on the description of the resulting per-
turbation as a Gauss-Markov process. Dispersion around
the nominal trajectory can then be quantified through
the ellipsoids representing the level curves of the Gaus-
sian probability density function characterizing the Gauss-
Markov process.

Set s = [x′,v′]′. Then, (1) can be rewritten in the compact
form

ṡ = f (s) +Bξ,

where B = [03×3 I3×3]′. Now, define the perturbation vector
z as

z = s− sn,

where sn is the nominal trajectory obtained by neglecting
ξ and the other sources of uncertainty affecting the system
evolution. If we assume that the wind velocity vector w
entering (1) through the atmospheric drag deceleration (2)
depends on the position only (i.e., w = w (x)), then, the
linearized equations governing z are given by

ż = A (t) z +Bξ, (10)

with A (t) = ∂f
∂s

∣∣∣
sn(t)

.

Suppose that the disturbance vector ξ is a white Gaussian
noise with mean and covariance given by

E [ξ (t)] = ξ (t) , E
[(
ξ (t)− ξ (t)

) (
ξ (t)− ξ (t)

) ′] = Ξ (t) ,

and it is independent of the initial condition z() at time
ti = 0. If z(0) is Gaussian z(0) ∼ N (z0, Z0), then, (10)
describes a continuous time Gauss-Markov process with
mean and covariance matrix

z (t) = E [z (t)] , Z (t) = E [(z (t)− z (t)) (z (t)− z (t)) ′] ,
that satisfy the following equations:

ż = A (t) z +Bξ (t)
(11)

Ż = A (t)Z + ZA (t) +BΞ (t)B′

initialized with z (0) = z0 and Z (0) = Z0.

The debris position at time t can then be described as
a Gaussian random variable with mean and covariance
matrix

x (t) = C(z (t) + sn (t)), X (t) = CZ (t)C ′

where C = [I3×3 03×3].

As a consequence, the 3D ellipsoid containing a fraction
1−ε of the debris trajectories at time t can be determined



as an appropriate level set of the Gaussian distribution of
x (t), i.e.,

Eε(t) := {x ∈ �3 : [x− x (t)] ′X−1(t) [x− x (t)] ≤ r2ε},
where rε is the Mahalanobis distance between x and x
and can be computed as the 1 − ε quantile of the χ2

distribution with 3 degrees of freedom: P (
V ≤ r2ε

)
= 1−ε

with V ∼ χ2 (3).

The 4D footprint can then be obtained by varying t
within the reference time horizon [ti, tf ] and considering
the corresponding ellipsoidal set Eε(t), t ∈ [ti, tf ].

Remark 2. (approximation errors in the CP method). It is
worth noticing that there are two sources of approximation
in the evaluation of the 4D footprint according to the out-
lined procedure: 1) the footprint is constructed based on a
linearized model of the system and 2), even if the linearized
model were the actual system, there is no guarantee that
a fraction of probability 1 − ε of the trajectories passes
through all the ellipsoidal sets Eε(t), t ∈ [ti, tf ]. �

4.2 Numerical example

In order to compare the Simulation-Based (SB) method
proposed in Section 3 with the Covariance Propagation
(CP) method, we suppose that the only source of uncer-
tainty is the initial state s(0) at time ti = 0 and consider
the disturbance vector ξ (t) in (1) negligible, as in the
simulation results presented in Reyhanoglu and Alvarado
[2013].

Results reported in this section refer to the case when the
initial state s(0) is given by

s(0) = sn(0) + z(0),

where the nominal initial state is sn(0) = [xn(0)
′,vn(0)

′] ′,
with

xn(0) =
[
0, 0, 7.8×104

] ′ m
vn(0) =

[
7.0989×103, 0,−123.9

] ′ m/s,

and the perturbation to the nominal initial state z(0) is
Gaussian with mean z0 = 0 and covariance matrix

Z0 =

[
03×3 03×3
03×3 V0

]
,

where V0 = diag(σ2
vx
, σ2

vy
, σ2

vz
), with σ2

vx
= σ2

vy
=

2500 m2/s2 and σ2
vz

= 5300 m2/s2.

The time instants {tj}j=1,...,ns
for the 4D footprint cal-

culation are determined by considering ns = 10 equally
spaced samples of the nominal trajectory sn(t), t ∈ [ti, tf ],
along the z axis (i.e. the altitude in the ENZ reference
frame). Different values for the violation parameter ε and
for the empirical violation α are considered, whereas the
confidence parameter η is set equal to η = 10−5 in all sim-
ulations. The value for N satisfying the bound in Theorem
2 depend on the considered (ε, α, η), the maximal N being
N = 10780.

Table 1 summarizes the results obtained with the SB
method and the CP method for a set of values of ε. The
value for α used in the SB method is specified in the second
column. In all simulations we maintain fixed N = 10780
and remove k = 
αN� constraints.
The comparison between the SB method and CP method

is in terms of i) volume of the corresponding 4D footprints
(reported in km3 in the last two columns of Table 1) and
ii) actual violation ε̂ computed via Monte Carlo simulation
by generating a further set of N simulated trajectories and
evaluating the fraction of them that exits the 4D footprint.

ε α ε̂SB
N ε̂CP

N V SB V CP

0.500 0.350 0.3505 0.5933 452.47 235.10

0.400 0.260 0.2602 0.5083 625.91 326.69

0.300 0.170 0.1705 0.4261 907.73 453.24

0.200 0.100 0.1003 0.3366 1304.18 646.03

0.100 0.035 0.0353 0.2370 2208.56 1009.74

0.050 0.010 0.0103 0.1724 3552.52 1411.29

0.025 0.002 0.0020 0.1328 5494.42 1846.50

0.020 0.001 0.0012 0.1224 6845.50 1993.27

0.015 0 <5·10−5 0.1109 9182.69 2187.03
Table 1. Comparative analysis.

Note that if we look at each single row of Table 1,
the 4D footprint volume V SB obtained with the SB
method is larger than volume V CP obtained with the CP
method. However, the violation ε̂CP of the CP method
always exceeds the desired ε value (possibly due to the
approximations errors involved in the method, see Remark
2), whereas the violation ε̂SB of the SB method is always
smaller, so that if we compare the volume of the 4D
footprints having the same violation (i.e., ε̂CP � ε̂SB),
the SB method outperforms the CP one. For instance, if
we consider the third and sixth rows, ε̂SB = 0.1705 and
V SB = 907.73 (third row) and ε̂CP = 0.1724 � ε̂SB and
V CP = 1411.29 � V SB (sixth row).

As for the SB method, it is worth noticing that actual
violation ε̂SB

N is very close to the chosen empirical violation
α, which affects the size of the 4D footprint. This is
better pointed out in Figure 1, whose plots refer to the
same ε = 0.1 but different α’s: α = 0 for the plot on
the left and α = 0.035 for the plot on the right. The
debris nominal trajectory is depicted in blue with a solid
line, whereas the other simulated trajectories used for the
footprint construction are dotted, reporting their samples
at the time instants {tj}j=1,...,ns

. In the plot on the right,
some of the simulated trajectories do not belong to the 4D
footprint and are represented through red dots. These are
the trajectories that correspond to those constraints that
have been removed.

Besides its improved performance with respect to the CP
method, the SB method is also applicable to a more general
setting, where further sources of uncertainties (like that
on the ballistic coefficient or the local wind) are present
besides that on the initial velocity.

5. CONCLUSIONS

In this work, we studied the problem of estimating the
area of the airspace posed at risk by a reentering space
debris. We proposed a novel simulation-based method to
determine the probabilistic footprint of a single debris
fragment, and showed that it outperforms the covariance
propagation method recently proposed in the literature.
One of the key feature of the introduced simulation-
based approach to footprint estimation is that it allows to



Fig. 1. 4D footprint: simulation-based approach with ε = 0.1. Left: α = 0. Right: α = 0.035

account for various sources of uncertainty. An interesting
direction of research is to consider the breakup event as
the starting point for the simulation of a debris cloud.
By generating more fragments all together and computing
the overall footprint, one can characterize the region of the
airspace affected by the debris cloud in toto.
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