1	Short communication
2	Revisiting Tracer Liu-Silva-Macedo model for binary
3	diffusion coefficient using the largest database of
4	liquid and supercritical systems
5	
6	Bruno Zêzere, Inês Portugal, José R. B. Gomes and Carlos M. Silva*
7	CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-
8	193 Aveiro, Portugal
9	* Corresponding author: carlos.manuel@ua.pt
10	
11	Abstract
12	This work compiles the largest database of tracer diffusion coefficients (D_{12})
13	containing 6180 experimental points from 331 non-polar and weakly polar liquid and
14	supercritical systems. Then, the Tracer Liu-Silva-Macedo (TLSM) model and its 1-
15	parameter correlations (TLSM $_d$ and TLSM $_{en}$) are evaluated using this database, taking
16	into account the importance of phenomenological and reliable equations for D_{12}
17	estimation. The TLSM model achieves good results with absolute average relative
18	deviations (AARD) of 16.84 $\%$ while TLSMd and TLSMen show better performance with
19	AARD of 4.53 % and 4.55 %, respectively. All properties and parameters needed for D_{12}
20	estimation are compiled in Appendix. For comparison, the models of Wilke-Chang and

Reddy-Doraiswamy, and the correlations of Magalhães *et al.* (LJ-1) and DymondHildebrand-Batschinsky (DHB) are also assessed.

23 Keywords: Tracer diffusion coefficients; Modeling; Prediction; Correlation;
 24 Supercritical fluids; Liquids

25

26 1. Introduction

27 Transport properties, such as viscosity and diffusion coefficient, are essential for 28 the design of equipment and processes involving fluid flow and mass transfer 29 phenomena such as extraction, chromatographic separations and multiphasic reactors [1]. This short communication focuses the diffusion coefficient at infinite dilution, D_{12} , 30 31 also known as tracer diffusion coefficient. This property is also the basis for the accurate 32 estimation of concentration-dependent diffusivities and the calculation of 33 multicomponent systems, where the Maxwell-Stefan approach is a milestone theory in 34 the area [2,3] in combination with mixing rules like the one proposed by Vignes [4].

35 The experimental measurement of D_{12} is usually challenging and expensive, 36 mainly in comparison with equilibrium data, which determines the current scarcity of 37 accurate diffusion data. The pure estimation of D_{12} by complementary methods like 38 molecular dynamics (MD) simulations [5] is an alternative, though experimental data is 39 always required to establish/refine the intrinsic MD parameters, calibrate intermolecular 40 potentials, and finally validate the obtained values. Hence the importance of semi-41 empirical and theoretical/phenomenological expressions for the rigorous calculation of 42 diffusion coefficients is of paramount importance. One may cite: the hydrodynamic 43 predicting equations of Wilke-Chang [6], Scheibel [7], Reddy-Doraiswamy [8], LusisRatcliff [9], Tyn-Calus [10], Hayduk and Minhas [11], and Lai-Tan [12]; the predicting
models of Catchpole-King [13], Zhu *et al.* [14] and Vaz *et al.* [15]; the 2-parameter freevolume correlation of Dymond-Hildebrand-Batschinsky (DHB) [1,16,17]; the 1- and 2parameter correlations of Magalhães *et al.* [18–21]; and the free-volume hybrid models
of Liu and coworkers [1,22] (with 0 and 1 parameter), which rely on the Lennard-Jones
(LJ) model previously developed for self-diffusion coefficients [1,23,24].

50 Liu et al. [22] published the Tracer Liu-Silva-Macedo (TLSM) predictive model for 51 D_{12} , based on the seminal LJ fluid model, alongside two 1-parameter correlations 52 (TLSMd and TLSMen), evaluated with 1033 data points spanning 77 liquid and 53 supercritical systems. The TLSM predictive model achieved average absolute relative 54 deviation (AARD) of 14.77 % while the 1-parameter correlations, TLSMa and TLSMen, 55 achieved AARD = 6.57 % and 6.50 %, respectively. Later, Magalhães et al. [25] revisited 56 the TLSM model and TLSM_d correlation using a larger database composed of 5279 57 experimental points from 296 binary systems, including liquid and supercritical systems 58 and also compressed gas systems. The global AARD values achieved were 15.71 % and 59 3.89 % for TLSM and TLSM_d, respectively.

60 This short communication has two main objectives: (i) Update the D_{12} database, 61 since 72 non-polar liquid and supercritical systems (1323 experimental points) have been 62 reported in last years. In the whole, it includes currently 6180 experimental points 63 spanning 331 binary systems, which makes it the largest D_{12} database published so far. 64 (ii) Revisit the TLSM model and the two derived 1-parameter correlations taking into 65 account they are phenomenological and reliable equations for the calculation of tracer 66 diffusion coefficients. The TLSM, TLSMd and TLSMen global results are reported along

67 with the results for each individual system and the Lennard-Jones diameter (σ_{LJ}) and 68 energy (ε_{LJ}/k_B) for each pure compound (see Appendix).

69

70 2. Models

The predictive TLSM model and the two 1-parameter correlations were assessed with the updated database. For comparison, the Wilke-Chang [6] and Reddy-Doraiswamy [8] predictive models and the correlations of Magalhães *et al.* [20] (LJ-1) and Dymond-Hildebrand-Batschinsky [1,16,17] (DHB) were also tested. These models and correlations are briefly presented in the following.

76

77 Predictive TLSM model

78 The predictive TLSM model is described by Equation (1):

79
$$D_{12} = \frac{21.16}{\rho_{n,1} \sigma_{eff,12}^2} \left(\frac{1000 R_g T}{M_{12}}\right)^{1/2} \exp\left(-\frac{0.75 \rho_1^*}{1.2588 - \rho_1^*} - \frac{0.27862}{T_{12}^*}\right)$$
(1)

80 where subscripts 1 and 2 indicate the solvent and solute, respectively; *T* is the absolute 81 temperature (K), R_g is the universal gas constant (8.3144 J mol⁻¹ K⁻¹), and $\rho_{n,1}$ is the 82 number density of the solvent ($\rho_{n,1} = \rho_1 N_{av}/M_1$, where ρ_1 is the density (g cm⁻³), M_1 the 83 molecular mass (g mol⁻¹) and N_{av} the Avogadro number); M_{12} , T_{12}^* and ρ_1^* are the 84 system's reduced molar mass, temperature and number density defined by Equations 85 (2) – (4); and $\sigma_{eff,i}$ is the effective hard sphere diameter calculated by Equation (5).

86
$$M_{12} = 2 \frac{M_1 M_2}{M_1 + M_2}$$
(2)

87
$$T_{12}^{*} = \frac{T}{(\varepsilon_{\text{LJ},12}/k_{\text{B}})}$$
(3)

88
$$\rho_1^* = \rho_{n,1} \sigma_{\text{eff},1}^3$$
 (4)

89
$$\sigma_{\text{eff,i}} = \sigma_{\text{LI,i}} \times 2^{1/6} \left(1 + \sqrt{1.3229 \ T_i^*} \right)^{-1/6}, i = 1, 12$$
(5)

91 The binary LJ parameters – the diameter ($\sigma_{LJ,12}$) and energy ($\varepsilon_{LJ,12}/k_B$) – are 92 calculated from the single ones by the combining rules:

93
$$\sigma_{\sqcup,12} = \frac{\sigma_{\sqcup,1} + \sigma_{\sqcup,2}}{2}$$
(6)

94
$$\frac{\varepsilon_{LJ,12}}{k_{B}} = \frac{\sqrt{\frac{\varepsilon_{LJ,12}}{k_{B}}\sigma_{LJ,1}^{3} \times \frac{\varepsilon_{LJ,2}}{k_{B}}\sigma_{LJ,2}^{3}}}{\sigma_{LJ,12}^{3}}$$
(7)

where $k_{\rm B}$ is the Boltzmann constant (1.380649×10⁻²³ J·K⁻¹). Finally, whenever the LJ parameters of any compound are unknown, one can estimate them as function of their critical constants (temperature, $T_{\rm c'}$ pressure, $P_{\rm c'}$ and molar volume, $V_{\rm c}$) by Equations (8) and (9):

99
$$\frac{\varepsilon_{\text{L},i}}{k_{\text{B}}}(\text{K}) = 0.774 \ T_{\text{c},i} \text{, where } i = 1,2 \tag{8}$$

100
$$\sigma_{\sqcup,i}^{3}(\text{\AA}^{3}) = 0.17791 + 11.779 \frac{T_{c,i}}{P_{c,i}} - 0.049029 \left(\frac{T_{c,i}}{P_{c,i}}\right)^{2}$$
, for $\frac{T_{c,i}}{P_{c,i}} \le 100$ (9.a)

101
$$\sigma_{\sqcup,i}(\text{\AA}) = 0.809 \ V_{c,i}^{1/3}, \text{ for } \frac{T_{c,i}}{P_{c,i}} > 100$$
 (9.b)

102

103 TLSM_d and TLSM_{en} correlations containing 1 parameter

104 The TLSM_d 1-parameter correlation introduces a binary interaction constant $(k_{12,d})$ in

105 the LJ diameter combining rule. Therefore, Equations (6) and (7) are replaced by:

106
$$\sigma_{\rm LJ,12} = \left(1 - k_{12,\rm d}\right) \frac{\sigma_{\rm LJ,1} + \sigma_{\rm LJ,2}}{2} \tag{10}$$

107
$$\frac{\varepsilon_{\sqcup,12}}{k_{\rm B}} = 8 \frac{\sqrt{\frac{\varepsilon_{\sqcup,1}}{k_{\rm B}} \sigma_{\sqcup,1}^3 \times \frac{\varepsilon_{\sqcup,2}}{k_{\rm B}} \sigma_{\sqcup,2}^3}}{\left(\sigma_{\sqcup,1} + \sigma_{\sqcup,2}\right)^3} \tag{11}$$

108 The TLSM_{en} 1-parameter correlation introduces the binary interaction constant 109 $(k_{12,en})$ in the LJ energy combining rule. Hence Equation (6) remains the same while 110 Equation (7) is replaced by:

111
$$\frac{\varepsilon_{\text{L},12}}{k_{\text{B}}} = \left(1 - k_{12,\text{en}}\right) \frac{\sqrt{\frac{\varepsilon_{\text{L},1}}{k_{\text{B}}} \sigma_{\text{L},1}^3 \times \frac{\varepsilon_{\text{L},2}}{k_{\text{B}}} \sigma_{\text{L},2}^3}}{\left(\sigma_{\text{L},12}\right)^3}$$
(12)

112

113 Wilke-Chang model

114 The Wilke-Chang equation is described as:

115
$$D_{12} = \frac{7.4 \times 10^{-8} (\phi M_1)^{1/2} T}{\mu_1 (v_{\rm bp,2}^{\rm TC})^{0.6}}$$
(13)

116 where ϕ is the association factor of the solvent (1.0 for non-associating solvents) and $V_{bp,2}^{TC}$ 117 the solvent molar volume at normal boiling point, which is estimated in this work by the 118 Tyn-Calus relation:

5

119
$$V_{\rm bp,i}^{\rm TC} = 0.285 \times V_{\rm c,i}^{1.048}$$
 (14)

120

121 *Reddy-Doraiswamy model*

122 The model is mathematically given by:

123
$$D_{12} = \beta \frac{T\sqrt{M_1}}{\mu_1 \left(v_{\rm bp,1}^{\rm TC} v_{\rm bp,2}^{\rm TC} \right)^{1/3}}$$
(15)

124 where
$$\beta$$
 takes the value of 10×10^{-8} if $V_{bp,1}^{TC}/V_{bp,2}^{TC} \le 1.5$ or 8.5×10^{-8} if $V_{bp,1}^{TC}/V_{bp,2}^{TC} > 1.5$.

125 Similarly, to the Wilke-Chang equation, the solvent and solute molar volumes at normal

126 boiling point are estimated by the Tyn-Calus relation (Equation 14).

129 The LJ-1 correlation of Magalhães *et al.* [20] for D_{12} of real systems is described by the:

130
$$D_{12} = \frac{k_{\rm B}T}{8/3\,\rho_{\rm n,1}\sigma_{\rm eff,12}^2(\pi M_{12}k_{\rm B}T/N_{\rm av})^{1/2}[g(\sigma_{\rm eff,12})/F_{12}+0.4/T_{12}^{*1.5}]} \tag{16}$$

131

where M_{12} is the reduced molar mass of the system calculated by Equation (2), $g(\sigma_{12,eff})$ 132 133 is the pair radial distribution function at contact calculated as proposed by Mansoori et 134 al. [26], F_{12} is the correction factor of the hard sphere system calculated as proposed by 135 Magalhães *et al.* [20]. As before, $\sigma_{eff,12}$ is the effective hard sphere diameter but it this 136 calculated by the expression of Ben-Amotz and Herschbach (BAH) according to the 137 Boltzmann criterion [1,27,28]. For simplicity these auxiliary equations are omitted, but 138 can be retrieved from reference [20]. Finally, the adjustable parameter is introduced in 139 the LJ diameter combining rule as shown in Equation (10) for the TLSM_d model.

140

141 Dymond–Hildebrand–Batschinski (DHB) 2-parameter correlation

142 The free volume correlation of Dymond–Hildebrand–Batschinski (DHB) is given by:

143 $D_{12} = B_{\rm DHB} \sqrt{T} (V_1 - V_{\rm D})$ (17)

144 where V_1 is the solvent molar volume (cm³mol⁻¹), and V_D (cm³mol⁻¹) and B_{DHB} 145 (cm⁻¹mol s⁻¹K^{-1/2}) are adjustable parameters of the model. V_D is the minimum volume 146 required for diffusion and B_{DHB} is a characteristic constant of the solute-solvent pair. 147

148 **3. Database**

Data used in this work was updated and extended from the database initially
published by Magalhães *et al.* [25], being composed of 331 binary systems totalling 6180

151 experimental points, correspondig to 958 diffusivities for 141 liquids systems and 5222 152 diffusivities for 190 supercritical systems. Table A1 (Appendix) lists all systems studied, 153 the sources of data, and the ranges of solvent reduce temperature, T_r , pressure, P_r , and 154 density, ρ_r .

Whenever not reported by the original articles, the solvent densities and viscosities were taken from the NIST database [29] or calculated by appropriate equations from Yaws [30] and Przezdziecki and Sridhar [10]. For the particular case of supercritical carbon dioxide (SC-CO₂), densities and viscosities were estimated by the correlations of Pitzer and Schreiber [31] and Altunin and Sakhabetdinov [32], respectively.

160

161 **4. Results**

162 The results obtained by the predictive TLSM model and its 1-parameter 163 correlations are summarized in Table 1 along with the results for the models and 164 correlations adopted for comparison. Model performance was evaluated in terms of the 165 average absolute relative deviation (AARD) and average relative deviation (ARD) 166 defined by:

167
$$AARD(\%) = \frac{100}{NDP} \sum_{i=1}^{NDP} \left| \frac{D_{12,i}^{calc} - D_{12,i}^{exp}}{D_{12,i}^{exp}} \right|$$
(18)

168
$$\operatorname{ARD}(\%) = \frac{100}{\text{NDP}} \sum_{i=1}^{\text{NDP}} \frac{D_{12,i}^{\text{calc}} - D_{12,i}^{\text{exp}}}{D_{12,i}^{\text{exp}}}$$
(19)

169

where NDP refers to the number of experimental points, and superscripts "calc" and "exp" stand for calculated and experimental, respectively. The optimization of all parameters in the case of correlations was always accomplished using AARD as objective function. Properties and information of all pure components that are necessary for the calculations are compiled in Table A2 (Appendix), namely: name, chemical formula, CAS number, molecular weight, critical temperature, critical pressure, critical volume, and Lennard-Jones force constants (diameter and energy). The detailed results obtained for TLSM, TLSMd and TLSMen models (*i.e.*, AARD, $k_{12,d}$ and $k_{12,en}$ values) for each individual system are presented in Table A3 (Appendix).

179

180 **Table 1** – AARD (%) values achieved by the tested models for the diffusion coefficient database (supercritical

181	systems, liquid systems and global averages).

	TLSM	TLSM _d	TLSM _{en}	Wilke-Chang ⁺	Reddy-Doraiswamy ⁺	LJ-1	DHB [#]
No. of parameters	0	1	1	0	0	1	2
Supercritical (NDP=5222)	16.92	4.25	4.29	14.29	74.67	4.39	4.19
Liquid (NDP=958)	16.44	6.08	6.01	22.91	22.07	7.28	4.42
Global (NDP=6180)	16.84	4.53	4.55	15.64	66.43	4.84	4.23

¹ Only 6118 out of the 6180 experimental points of database were used, due to the lack of necessary properties for
 the calculation.

185

Comparing the AARD results for the predictive TLSM model and its derived 1 parameter correlations, TLSMd and TLSMen, the excellent performance of the latter is

¹⁸⁴ [#]Only 6176 out of the 6180 experimental points of database were used, because 2 systems only contain 2 diffusivities.

noticeable. To illustrate the improvement achieved by the addition of only one binary interaction parameter, it is shown in Figures 1 and 2 a comparison between TLSM and TLSM_d models for supercritical and liquid systems, respectively, which emphasizes the good and almost unbiased points distribution along ideal expect lines in both cases: D_{12}^{calc} $vs. D_{12}^{exp}$ plot, where the expected line is the diagonal, and relative deviation (*i.e.*, nonabsolute deviation, *RD*) *versus* D_{12}^{exp} plot, for which the target line is y = 0. Similar plots are obtained for TLSM_{en}, reason why have been omitted.

195 In the case of supercritical solvents, when Figures 1a and 1b are compared it is 196 clear that TLSM_d offers a much better distribution of its calculated results along the 197 diagonal, which is coherent with the observed AARD decrease from 16.92 % to 4.25 % 198 (see Table 1). Furthermore, from Figures 1c and 1d it is evident the improvement 199 achieved by TLSM_d in terms of relative deviation taking into account that its average 200 (ARD) jumps from -14.35 % to 0.80 %. Regarding liquid systems, similar conclusions can 201 be drawn based on Figure 2 and Table 1, though the ARD value of TLSM is already very 202 low (-0.27 %) and increases a little in the case of TLSMd (ARD = -1.58 %). It is worth noting this occurs because the objective function adopted to fit parameter $k_{12,d}$ is AARD 203 204 instead of ARD. Nonetheless, the gain in terms of AARD is notorious, as it decreases 205 from 16.44 % (TLSM) to 6.08 % (TLSMd).

The results achieved by the predictive models (see Table 1) evidences the poor behavior of the Reddy-Doraiswamy equation with an overall AARD of 66.43 %, in particular for the supercritical fluid systems where AARD = 74.67 %. The well-known Wilke-Chang model shows an overall good performance (AARD = 15.64 %), slightly better than the TLSM model (AARD = 16.84 %). However, when comparing separately 211 the liquid and supercritical systems it can be seen that the D_{12} for liquids seems to be 212 better translated by the TLSM model with an AARD 6.47 % lower than the one achieved 213 by the Wilke-Chang equation. Regarding the supercritical systems the opposite is 214 verified, with the TLSM model exhibiting and AARD value 2.63 % higher than the Wilke-215 Chang equation. Noteworthy, the AARD results achieved by the TLSM model are more 216 coherent between the supercritical and liquid systems than the Wilke-Chang equation -217 a difference of only 0.48 % is observed for the former and a difference of 8.63 % is 218 observed for the latter. Regarding the 1-parameter correlations TLSMd and TLSMen, the 219 results achieved for both are similar with global AARD values of 4.53 % and 4.55 %, 220 respectively. These results are very close to those achieved by the DHB equation (AARD 221 = 4.23 %) and the 1-parameter LJ-1 correlation (AARD = 4.84 %) even though the DHB 222 model embodies two adjustable parameters. It should also be noted that, in the case of 223 liquid systems, the DHB correlation shows a better performance than the remaining 224 correlations albeit their overall good performance (AARD < 7.28 %).

Figure 1 – Results achieved by TLSM and TLSM_d models for supercritical systems: (a) calculated *versus* experimental diffusion coefficients ($D_{12}^{calc} vs. D_{12}^{exp}$) of TLSM; (b) $D_{12}^{calc} vs. D_{12}^{exp}$ of TLSM_d; (c) relative deviation *vs.* D_{12}^{exp} for TLSM; (d) relative deviation *vs.* D_{12}^{exp} for TLSM_d. In subplots (c) and (d) the horizontal dashed line (---) represents the average relative deviation (ARD).

230

Figure 2 – Results achieved by TLSM and TLSM_d models for liquid systems: (a) calculated *versus* experimental diffusion coefficients ($D_{12}^{calc} vs. D_{12}^{exp}$) of TLSM; (b) $D_{12}^{calc} vs. D_{12}^{exp}$ of TLSM_d; (c) relative deviation (RD) *vs.* D_{12}^{exp} for TLSM; (d) relative deviation *vs.* D_{12}^{exp} for TLSM_d. In subplots (c) and (d) the horizontal dashed line (---) represents the average relative deviation (ARD).

236 **5.** Conclusions

In this work it is compiled the largest database of tracer diffusion coefficients, containing 6180 experimental points spanning 331 non-polar liquid and supercritical systems. Additionally, the Tracer Liu-Silva-Macedo (TLSM) model and its 1-parameter 240 correlations (TLSMd and TLSMen) were reassessed using this enlarged database. The 241 predictive TLSM model exhibits good results (global AARD of 16.84 %) being slightly 242 worse than the Wilke-Chang model and significantly better than the Reddy-243 Doraiswamy model. Nevertheless, the TLSM model is the best option to estimate D_{12} in 244 liquid systems (AARD = 16.44 %) and it is the most trustworthy model for D_{12} prediction, 245 since it exhibits an equivalent performance for both liquid and supercritical fluids (16.44 246 % and 16.92 %). Regarding the TLSMd and TLSMen 1-parameter correlations, the global 247 AARD values are low (4.53 % and 4.55 %, respectively) and very similar to those 248 achieved by Magalhães et al. (LJ-1) (AARD = 4.84 %; 1-parameter) and Dymond-249 Hildebrand-Batschinsky (DHB) (AARD = 4.23 %; 2-parameters). In Appendix are 250 collected all properties and parameters needed for the calculation of D_{12} .

251

252 Acknowledgments

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. Bruno Zêzere thanks FCT for the PhD grant SFRH/BD/137751/2018.

257

258 Nomenclature

ARD	Average relative deviation
AARD	Average absolute relative deviation
B _{DHB}	Characteristic constant of the solute-solvent pair from the DHB correlation
<i>D</i> ₁₂	Tracer diffusion coefficient

DHB	Dymond-Hildebrand-Batchinski
<i>F</i> ₁₂	Correction factor of the hard sphere system
$g(\sigma_{12,\rm eff})$	Pair radial distribution function at contact
LJ	Lennard-Jones
LJ-1	D_{12} correlation by Magalhães <i>et al.</i> [20]
<i>M</i> ₁₂	Reduced molecular weight
M _i	Molecular weight of the component <i>i</i>
N _{av}	Avogadro number
NDP	Number of data points
<i>k</i> _{12,d}	Binary interaction constant of the TLSMd correlation
k _{12,en}	Binary interaction constant of the TLSMen correlation
$k_{ m B}$	Boltzmann constant (1.380649×10 ⁻²³ J·K ⁻¹)
P _c	Critical pressure
R _g	Universal gas constant (8.3144 J mol ^{-1} K ^{-1})
Т	Absolute temperature
T _c	Critical temperature
T_{i}^{*}	Reduced temperature
TLSM	Tracer Liu-Silva-Macedo
TLSMd	Tracer Liu-Silva-Macedo 1-parameter correlation (diameter)
TLSMen	Tracer Liu-Silva-Macedo 1-parameter correlation (energy)
TC	Molar volume at normal boiling temperature estimated by the Tyn-Calus
V _{bp,i}	relation
V _c	Critical molar volume

- $V_{\rm D}$ Minimum volume required for diffusion from the DHB correlation
- V_1 Solvent molar volume

Greek letters

β	Constant from the Reddy-Doraiswamy model
$\varepsilon_{\mathrm{LJ,i}}/k_{\mathrm{B}}$	Lennard Jones energy of the component i
μ_1	Solvent viscosity
$ ho_1$	Solvent density
$ ho_{ m n,1}$	Solvent number density
$ ho_1^*$	Reduced number density of the solvent
$\sigma_{ m LJ,i}$	Lennard Jones diameter of component i
$\sigma_{ m eff,i}$	Effective hard sphere diameter of component i
ϕ	Association factor

Subscripts

1	Solvent
2	Solute
12	Solute-solvent pair
С	Critical property
r	Reduced property (using critical constants)

Superscripts

calc	Calculated

exp	Experimental
*	Reduced property (using LJ constants)

260 Appendix

261	Fable A1 – Systems studied, reduce temperature, T_r , pressure, P_r , and density, ρ_r , in relation to solvent. Source of the diffusion data.	

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
carbon dioxide	acetone	213	0.997-1.096	1.076-5.435	0.772-2.076	[33–37]
	acridine	6	1.013-1.079	2.337-3.734	1.515-1.956	[38]
	adamantanone	8	1.031	1.355-2.033	1.330-1.662	[39]
	allylbenzene	15	1.030-1.096	2.033-4.743	1.295-1.997	[40]
	aluminum acetylacetonate	84	1.013-1.096	1.057-5.420	0.707-2.074	[41]
	aniline	15	1.030-1.096	2.033-4.743	1.296-1.910	[42]
	anisole	15	1.029-1.095	2.033-4.743	1.296-1.997	[43]
	anthracene	22	1.029-1.095	14.499-47.425	0.768-1.995	[44]
	arachidonic acid (AA)	75	1.013-1.128	1.287-4.131	1.188-1.989	[45]
	AA ethyl ester	48	1.013-1.112	1.141-4.058	1.068-1.816	[46]

Solvent	Solute	NDP	$T_{\rm r}$	Pr	$ ho_{ m r}$	Source
	behenic acid ethyl ester	17	1.013-1.046	1.310-2.852	1.280-1.814	[47]
	benzene	249	0.997-1.096	1.084-4.743	0.595-1.996	[34,48–55]
	benzoic acid	35	0.964-1.079	0.962-4.065	1.146-1.956	[13,38,56,57]
	benzyl acetate	15	1.030-1.096	2.033-4.743	1.295-1.997	[58]
	benzylacetone	15	1.030-1.096	2.033-4.743	1.295-1.997	[59]
	biphenyl	24	0.964-1.063	0.962-2.317	1.148-1.946	[57]
	2-bromoanisole	15	1.030-1.096	2.033-4.743	1.295-1.997	[40]
	bromobenzene	21	1.029-1.095	2.033-4.743	1.296-1.997	[60,61]
	2-butanone	40	1.013-1.079	1.129-4.679	1.243-2.029	[35,61,62]
	N-(4-methoxybenzylidene)-4-n-butylaniline	5	1.031	1.626-2.168	1.527-1.694	[39]
	<i>n</i> -butylbenzene	15	1.029-1.095	2.033-4.743	1.295-1.997	[63]
	sec-butylbenzene	15	1.029-1.095	2.033-4.743	1.295-1.997	[64]
	tert-butylbenzene	15	1.029-1.095	2.033-4.743	1.296-1.997	[65]

Solvent	Solute	NDP	$T_{\rm r}$	P _r	$ ho_{ m r}$	Source
	butyric acid ethyl ester	16	1.013-1.046	1.310-2.852	1.280-1.814	[66,67]
	caffeine	25	1.013-1.096	1.088-2.285	0.920-1.723	[68–70]
	capric acid ethyl ester	16	1.013-1.046	1.310-2.852	1.280-1.814	[66,67]
	caprylic acid ethyl ester	16	1.013-1.046	1.310-2.852	1.280-1.814	[66,67]
	β-carotene	90	1.013-1.096	1.236-4.111	1.335-1.987	[71–73]
	L-carvone	27	1.013-1.112	2.033-4.065	1.389-1.984	[74,75]
	chlorobenzene	21	1.029-1.095	2.033-4.743	1.296-1.997	[60,61]
	chromium(III) acetylacetonate	104	1.013-1.128	1.098-5.420	0.859-2.076	[76,77]
	chrysene	4	0.997-1.096	2.168-3.591	1.707-1.878	[34]
	citral	15	1.030-1.096	1.626-2.710	0.953-1.799	[78]
	cobalt(III) acetylacetonate	38	1.030-1.096	1.314-5.420	1.288-2.041	[79]
	copper(II) trifluoroacetylacetonate	12	1.013-1.046	1.466-2.243	1.284-1.759	[80]
	15-crown-5	29	1.013-1.030	1.188-4.070	0.900-1.943	[81]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
	dibenzo-24-crown-8	28	1.013-1.030	2.034-4.743	1.666-2.024	[81]
	cycloheptanone	8	1.033-1.033	1.355-2.439	1.297-1.738	[82]
	cyclononanone	8	1.033-1.033	1.355-2.439	1.297-1.738	[82]
	cyclopentanone	8	1.033-1.033	1.355-2.439	1.297-1.738	[82]
	<i>n</i> -decane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	dibenzyl ether	15	1.030-1.096	2.033-4.743	1.295-1.997	[58]
	1,2-dichlorobenzene	15	1.029-1.095	2.033-4.743	1.296-1.997	[65]
	1,3-dichlorobenzene	4	1.030	2.033-3.252	1.667-1.863	[74]
	<i>p</i> -dichlorobenzene	13	0.980-1.046	1.252-2.317	1.148-1.867	[57]
	diethyl ether	17	1.030-1.096	1.084-2.168	0.418-1.704	[61,62,84]
	1,2-diethylbenzene	15	1.030-1.096	2.033-4.743	1.295-1.997	[85]
	1,4-diethylbenzene	15	1.030-1.096	2.033-4.743	1.295-1.997	[85]
	diisopropyl ether	15	1.030-1.096	1.084-2.168	0.418-1.704	[84]

Solvent	Solute	NDP	$T_{\rm r}$	P _r	$ ho_{ m r}$	Source
	2,3-dimethylaniline	15	1.029-1.095	2.033-4.743	1.296-1.997	[86]
	2,6-dimethylaniline	15	1.029-1.095	2.033-4.743	1.296-1.997	[86]
	1,1'-dimethylferrocene	68	1.013-1.063	1.114-5.436	0.828-2.077	[87]
	2,3-dimethylnaphthalene	3	1.013-1.013	1.341-2.629	1.513-1.837	[88]
	2,6-dimethylnaphthalene	6	1.013-1.013	1.233-2.642	1.427-1.839	[88,89]
	2,7-dimethylnaphthalene	6	1.013-1.013	1.450-2.710	1.571-1.848	[88,89]
	2,4-dimethylphenol	15	1.029-1.095	2.033-4.743	1.296-1.997	[43]
	diolein	9	1.030	1.355-3.389	1.341-1.878	[90]
	disperse blue 14	47	1.019-1.052	2.710-4.607	1.758-1.980	[91]
	disperse orange 11	65	1.013-1.079	2.710-5.420	1.689-2.041	[91]
	1,3-divinylbenzene	15	1.030-1.096	2.033-4.743	1.295-1.997	[40]
	docosahexaenoic acid (DHA)	63	1.013-1.128	1.256-4.083	1.219-1.985	[92]
	DHA ethyl ester	65	1.013-1.112	1.141-4.058	1.069-1.816	[46,47]

Solvent	Solute	NDP	T _r	Pr	$ ho_{ m r}$	Source
	DHA methyl ester	17	1.013-1.046	1.310-2.852	1.280-1.814	[47]
	<i>n</i> -dodecane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	eicosapentaenoic acid (EPA)	55	1.013-1.128	1.176-4.085	1.157-1.951	[92]
	EPA ethyl ester	48	1.013-1.112	1.141-4.058	1.068-1.816	[46]
	EPA methyl ester	17	1.013-1.046	1.310-2.852	1.280-1.814	[47]
	ethanol	24	1.030	1.287-3.388	1.236-1.878	[56]
	ethyl acetate	16	1.013-1.079	1.024-2.168	0.456-1.723	[62,68]
	ethyl benzoate	15	1.030-1.096	2.033-4.743	1.295-1.997	[59]
	ethylbenzene	15	1.030-1.096	2.033-4.743	1.295-1.997	[50]
	2-ethyltoluene	15	1.029-1.095	2.033-4.743	1.296-1.910	[93]
	3-ethyltoluene	15	1.029-1.095	2.033-4.743	1.296-1.910	[93]
	4-ethyltoluene	15	1.029-1.095	2.033-4.743	1.296-1.910	[93]
	eugenol	15	1.030-1.096	2.033-4.743	1.295-1.997	[59]

Solvent	Solute	NDP	$T_{\rm r}$	Pr	$ ho_{ m r}$	Source
	ferrocene	107	1.013-1.096	1.087-5.466	0.600-2.077	[87,94]
	2-fluoroanisole	15	1.030-1.096	2.033-4.743	1.295-1.997	[40]
	fluorobenzene	15	1.029-1.095	2.033-4.743	1.296-1.910	[60]
	3-fluorophenol	4	1.030	2.033-3.252	1.667-1.863	[74]
	geraniol	4	1.030	2.033-3.252	1.667-1.863	[74]
	<i>n</i> -heptane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	2-heptanone	11	1.034-1.034	1.423-2.439	1.364-1.734	[39]
	4-heptanone	9	1.031	1.355-2.168	1.330-1.694	[39]
	hexachlorobenzene	14	1.013-1.079	1.310-3.352	0.870-1.922	[95]
	1-hexadecene	11	1.030-1.227	1.355-4.065	0.913-1.943	[96]
	1,1,1,5,5,5-hexafluoroacetylacetone	15	1.013-1.046	1.411-3.008	1.210-1.870	[80]
	<i>n</i> -hexane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	ibuprofen	99	1.013-1.161	1.152-5.420	0.927-2.074	[97]

Solvent	Solute	NDP	$T_{\rm r}$	P _r	$ ho_{ m r}$	Source
	iodobenzene	20	1.029-1.095	2.033-4.743	1.296-1.997	[60,61]
	isobutylbenzene	15	1.029-1.095	2.033-4.743	1.295-1.997	[64]
	D-limonene	15	1.030-1.096	1.626-2.710	0.953-1.799	[78]
	linalool	15	1.030-1.096	1.626-2.710	0.953-1.799	[48]
	linoleic acid	71	1.013-1.128	1.152-4.106	1.188-1.987	[45]
	linoleic acid methyl ester	20	1.013-1.079	1.897-4.553	1.577-1.982	[98,99]
	α -linolenic acid	56	1.013-1.128	1.152-4.084	1.163-1.984	[92]
	γ-linolenic acid	142	1.013-1.128	1.176-4.133	0.976-1.948	[100]
	γ-linolenic acid ethyl ester	41	1.030-1.128	1.138-2.169	0.716-1.697	[100]
	γ-linolenic acid methyl ester	52	1.030-1.128	1.099-4.553	0.622-1.982	[98,100]
	L-menthone	23	1.013-1.112	2.033-4.065	1.389-1.984	[75]
	methanol	10	1.030	1.287-2.846	1.236-1.812	[56]
	2-methylanisole	15	1.029-1.095	2.033-4.743	1.296-1.997	[86]

Solvent	Solute	NDP	T _r	Pr	$ ho_{ m r}$	Source
	4-methylanisole	15	1.029-1.095	2.033-4.743	1.296-1.997	[86]
	3-methylbutylbenzene	15	1.029-1.095	2.033-4.743	1.295-1.997	[64]
	1-methylnaphthalene	11	1.030-1.227	1.355-4.065	0.913-1.943	[96]
	monoolein	11	1.030	1.356-3.388	1.343-1.878	[90]
	myristic acid ethyl ester	16	1.013-1.046	1.310-2.852	1.280-1.814	[66,67]
	myristoleic acid	42	1.030-1.128	1.247-4.065	0.977-1.878	[101]
	myristoleic acid methyl ester	81	1.030-1.128	1.084-3.388	0.481-1.878	[101,102]
	naphthalene	114	0.948-1.096	0.911-13.550	0.470-2.374	[34,70,88,94,103]
	1-naphthol	11	1.013-1.046	1.436-2.195	1.131-1.745	[44]
	2-naphthol	16	1.013-1.079	1.341-2.060	0.702-1.718	[44]
	2-nitroanisole	15	1.029-1.095	2.033-4.743	1.296-1.997	[65]
	nitrobenzene	23	1.029-1.095	2.033-4.743	1.296-1.997	[43,61]
	3-nitrotoluene	15	1.029-1.095	2.033-4.743	1.296-1.997	[86]

Solvent	Solute	NDP	<i>T</i> _r	Pr	$ ho_{ m r}$	Source
	<i>n</i> -nonane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	2-nonanone	10	1.034-1.034	1.355-2.033	1.282-1.646	[39]
	5-nonanone	12	1.034-1.034	1.355-2.439	1.282-1.734	[39]
	<i>n</i> -octane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	oleic acid	19	1.030	1.282-4.079	1.225-1.944	[90]
	oleic acid ethyl ester	5	1.030	1.165-1.491	0.805-1.459	[90]
	oleic acid methyl ester	21	1.029-1.030	1.084-2.168	0.594-1.700	[90,98,104]
	palladium(II) acetylacetonate	125	1.013-1.128	1.152-5.420	1.202-2.076	[79]
	palmitic acid ethyl ester	17	1.013-1.046	1.310-2.852	1.280-1.814	[105]
	<i>n</i> -pentane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	2-pentanone	23	1.013-1.034	1.203-3.963	1.184-1.934	[35]
	3-pentanone	46	1.013-1.079	1.172-4.684	1.261-2.029	[35,82]
	2,4-dimethyl-3-pentanone	8	1.033-1.033	1.355-2.439	1.297-1.738	[39]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
	2,2,4,4-tetramethyl-3-pentanone	9	1.031	1.355-2.168	1.330-1.694	[82]
	<i>n</i> -pentylbenzene	31	1.013-1.309	2.033-4.743	1.296-2.034	[63]
	phenanthrene	25	0.997-1.096	1.308-3.734	1.082-1.956	[34,38,95]
	phenol	109	1.013-1.079	1.089-4.103	0.757-1.987	[36,68,72,73]
	phenylacetic acid	16	1.013-1.046	1.310-2.852	1.280-1.814	[106]
	phenylacetylene	15	1.030-1.096	2.033-4.743	1.295-1.997	[85]
	phenylbutazone	78	1.013-1.128	1.152-5.420	0.951-2.074	[107]
	1-phenyldodecane	15	1.029-1.095	2.033-4.743	1.295-1.997	[63]
	1-phenylethanol	15	1.030-1.096	2.033-4.743	1.296-1.998	[108]
	2-phenylethanol	15	1.030-1.096	2.033-4.743	1.296-1.998	[108]
	2-phenylethyl acetate	15	1.030-1.096	2.033-4.743	1.295-1.997	[58]
	1-phenylhexane	15	1.029-1.095	2.033-4.743	1.295-1.997	[63]
	phenylmethanol	15	1.030-1.096	2.033-4.743	1.296-1.998	[108]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
	1-phenyloctane	15	1.029-1.095	2.033-4.743	1.295-1.997	[63]
	3-phenylpropyl acetate	15	1.030-1.096	2.033-4.743	1.295-1.997	[58]
	α-pinene	30	1.030-1.096	1.626-3.726	0.953-1.912	[109,110]
	β-pinene	15	1.030-1.096	1.626-2.710	0.953-1.799	[109]
	platinum(II) acetylacetonate	62	1.013-1.128	1.153-5.420	0.954-2.076	[111]
	1-propanol	17	1.030	1.287-2.168	1.236-1.697	[56]
	2-phenyl-1-propanol	15	1.030-1.096	2.033-4.743	1.296-1.998	[108]
	2-propanol	18	1.030	1.287-2.304	1.236-1.725	[56]
	3-phenyl-1-propanol	15	1.030-1.096	2.033-4.743	1.296-1.998	[108]
	<i>i</i> -propylbenzene	36	1.030-1.096	1.762-4.743	1.082-1.996	[34,50,62,112]
	<i>n</i> -propylbenzene	60	1.013-1.096	1.152-4.743	0.764-1.997	[49,50,62,112]
	pyrene	21	0.997-1.096	1.558-47.425	0.832-1.989	[34,44]
	squalene	5	1.034-1.034	1.762-2.439	1.562-1.734	[39]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
	stearic acid	4	1.031	1.762-2.168	1.581-1.693	[39]
	stearic acid ethyl ester	17	1.013-1.046	1.310-2.852	1.280-1.814	[47]
	styrene	15	1.030-1.096	2.033-4.743	1.296-1.910	[42]
	<i>n</i> -tetradecane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	tetrahydrofuran	15	1.030-1.096	1.084-2.168	0.418-1.704	[84]
	thenoyltrifluoroacetone	15	1.013-1.046	1.430-3.037	1.210-1.887	[80]
	α -tocopherol	82	1.013-1.096	1.153-4.107	1.311-1.987	[71–73]
	toluene	41	1.007-1.096	1.018-4.743	0.457-1.997	[50,53,68]
	triarachidonin	27	1.030	1.348-4.098	1.333-1.945	[113]
	trierucin	101	1.013-1.063	1.119-4.073	1.204-1.984	[113]
	trifluoroacetylacetone	15	1.013-1.046	1.449-2.924	1.237-1.873	[80]
	1,3,5-trimethylbenzene	34	0.997-1.096	1.287-4.743	1.240-1.996	[34,42,49,61]
	trinervonin	38	1.013-1.063	1.220-4.072	1.268-1.984	[113]

Solvent	Solute	NDP	T _r	Pr	$ ho_{ m r}$	Source
	triolein	14	0.980-1.030	1.237-3.401	1.101-2.015	[13,113]
	ubiquinone CoQ10	80	1.013-1.096	1.153-4.095	1.311-1.984	[73,114]
	<i>n</i> -undecane	5	0.984-1.013	1.220-1.423	1.559-1.745	[83]
	6-undecanone	13	1.034-1.034	1.355-2.439	1.282-1.734	[39]
	vanillin	15	1.013-1.046	1.396-2.852	1.280-1.814	[106]
	vitamin K1	17	1.030	1.355-4.065	1.342-1.943	[81,102]
	vitamin K3	22	1.030	1.214-4.068	1.018-1.943	[73,99,102]
	water	24	0.931-1.013	1.789-4.038	1.695-2.176	[115]
	5- <i>tert</i> -butyl- <i>m</i> -xylene	31	1.013-1.309	2.033-4.743	1.292-2.033	[85]
	<i>m</i> -xylene	12	1.030-1.227	1.355-4.065	0.403-1.943	[96]
	<i>p</i> -xylene	7	1.030-1.063	2.033-3.388	1.496-1.878	[61,62]
cyclohexane	acetone	4	0.548-0.602	3.931	2.767-2.862	[116]
	argon	7	0.539-0.751	-	2.386-2.833	[117]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
	benzene	12	0.539-0.945	3.931; sat.p ^a	1.757-2.862	[116,118]
	carbon tetrachloride	7	0.539-0.751	-	2.386-2.833	[117]
	1,1'-dimethylferrocene	5	0.566-0.584	0.047-4.673	2.780-2.841	[119]
	ethane	5	0.507-0.656	-	2.595-2.906	[120]
	ethylene	5	0.507-0.656	-	2.595-2.906	[120]
	ethylferrocene	6	0.566-0.584	0.042-4.673	2.780-2.841	[119]
	ferrocene	5	0.566-0.584	0.047-4.673	2.780-2.841	[119]
	krypton	6	0.566-0.751	-	2.386-2.781	[117]
	methane	6	0.566-0.751	-	2.386-2.781	[117]
	naphthalene	12	0.539-0.945	3.931; sat.p ^a	1.757-2.862	[116,118]
	phenanthrene	8	0.539-0.945	sat.pª	1.757-2.833	[118]
	tetrabutyltin	7	0.539-0.751	-	2.386-2.833	[117]
	tetraethyltin	7	0.539-0.751	-	2.386-2.833	[117]

Solvent	Solute	NDP	T _r	Pr	$ ho_{ m r}$	Source
	tetramethyltin	7	0.539-0.751	-	2.386-2.833	[117]
	tetrapropyltin	6	0.539-0.751	-	2.386-2.833	[117]
	toluene	12	0.539-0.945	3.931; sat.p°	1.757-2.862	[116,118]
	1,3,5-trimethylbenzene	12	0.539-0.945	3.931; sat.p ^a	1.757-2.862	[116,121]
	xenon	7	0.539-0.751	-	2.386-2.833	[117]
	<i>m</i> -xylene	4	0.548-0.602	3.931	2.767-2.862	[116]
	<i>p</i> -xylene	8	0.539-0.945	sat.p ^a	1.757-2.833	[118]
<i>n</i> -decane	argon	3	0.482-0.701	0.047	2.614-3.079	[122]
	carbon tetrachloride	3	0.482-0.604	0.047	2.829-3.079	[122]
	12-crown-4	4	0.483-0.604	0.047	2.829-3.079	[123]
	15-crow <u>n</u> -5	4	0.483-0.604	0.047	2.829-3.079	[123]
	18-crown-6	4	0.483-0.604	0.047	2.829-3.079	[123]
	dicyclohexano-18-crown-6	4	0.483-0.604	0.047	2.829-3.079	[123]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
	dicyclohexano-24-crown-8	4	0.483-0.604	0.047	2.829-3.079	[123]
	krypton	3	0.482-0.701	0.047	2.614-3.079	[122]
	tetrabutyltin	4	0.482-0.701	0.047	2.614-3.079	[122]
	tetraethyltin	4	0.482-0.701	0.047	2.614-3.079	[122]
	tetramethyltin	4	0.482-0.701	0.047	2.614-3.079	[122]
	tetrapropyltin	4	0.482-0.701	0.047	2.614-3.079	[122]
	s-trioxane	4	0.483-0.604	0.047	2.829-3.079	[123]
	xenon	8	0.458-0.701	0.047	2.614-3.128	[122,124]
2;3-dimethylbutane	benzene	11	1.046-1.096	1.710-5.080	1.432-1.908	[125]
	naphthalene	9	1.046-1.096	1.710-5.080	1.432-1.908	[125]
	phenanthrene	11	1.046-1.096	1.710-5.080	1.432-1.908	[125]
	toluene	10	1.046-1.096	2.005-5.080	1.432-1.908	[125]
<i>n</i> -dodecane	acetone	5	0.461-0.521	8.791	3.040-3.153	[116]

Solvent	Solute	NDP	<i>T</i> _r	P _r	$ ho_{ m r}$	Source
	benzene	4	0.461-0.506	8.791	3.068-3.153	[116]
	carbon dioxide	9	0.462-0.862	0.765-1.898	2.165-3.107	[126]
	carbon monoxide	9	0.462-0.862	0.765-1.898	2.165-3.107	[126]
	<i>n</i> -decane	5	0.462-0.860	0.776-0.796	2.190-3.107	[127]
	<i>n</i> -hexadecane	5	0.462-0.860	0.776-0.796	2.190-3.107	[127]
	linoleic acid methyl ester	4	0.461-0.506	8.791	3.068-3.153	[116]
	naphthalene	5	0.461-0.521	8.791	3.040-3.153	[116]
	<i>n</i> -octane	9	0.462-0.860	0.776-1.890	2.190-3.107	[127]
	<i>n</i> -tetradecane	5	0.462-0.860	0.776-0.796	2.190-3.107	[127]
	toluene	4	0.461-0.506	8.791	3.068-3.153	[116]
	1,3,5-trimethylbenzene	4	0.461-0.506	8.791	3.068-3.153	[116]
	vitamin K3	4	0.461-0.506	8.791	3.068-3.152	[116]
	<i>m</i> -xylene	4	0.461-0.506	8.791	3.068-3.153	[116]

Solvent	Solute	NDP	<i>T</i> _r	P _r	$ ho_{ m r}$	Source
<i>n</i> -eicosane	carbon dioxide	5	0.488-0.696	1.226	2.685-3.153	[128]
	carbon monoxide	5	0.488-0.696	1.226	2.685-3.153	[128]
	<i>n</i> -dodecane	5	0.489-0.696	1.226	2.685-3.153	[128]
	<i>n</i> -hexadecane	5	0.489-0.696	1.226	2.685-3.153	[128]
	<i>n</i> -octane	5	0.489-0.696	1.226	2.685-3.153	[128]
ethane	1-octene	6	0.970-1.055	1.449-2.295	1.521-1.968	[129]
	1-tetradecene	9	0.960-1.055	1.414-2.295	1.519-1.992	[129]
<i>n</i> -heptane	benzene	11	0.561-0.617	0.036	2.800-2.911	[130,131]
	<i>n</i> -decane	6	0.552-0.883	0.036-1.270	2.182-2.930	[127,132]
	<i>n</i> -dodecane	6	0.552-0.883	0.036-1.296	2.182-2.941	[127,132]
	ethylbenzene	4	0.561-0.617	0.036	2.800-2.911	[131]
	<i>n</i> -hexadecane	9	0.552-0.883	0.036-1.270	2.125-2.930	[127,133]
	<i>n</i> -hexane	11	0.524-0.616	0.036	2.800-2.985	[134–136]
Solvent	Solute	NDP	$T_{\rm r}$	P _r	$ ho_{ m r}$	Source
----------------------	------------------------	-----	-------------	----------------	--------------	---------------
	<i>n</i> -octane	13	0.542-0.883	0.036-1.270	2.182-2.949	[127,134,137]
	<i>n</i> -tetradecane	6	0.552-0.883	0.036-1.296	2.182-2.941	[127,132]
	toluene	4	0.561-0.617	0.036	2.800-2.911	[131]
	1,3,5-trimethylbenzene	4	0.561-0.617	0.036	2.800-2.911	[131]
	2,2,4-trimethylpentane	4	0.570-0.598	0.036	2.838-2.893	[137]
	<i>o</i> -xylene	4	0.561-0.617	0.036	2.800-2.911	[131]
	<i>p</i> -xylene	4	0.561-0.617	0.036	2.800-2.911	[131]
<i>n</i> -hexadecane	carbon dioxide	10	0.448-0.781	0.991-2.454	2.305-3.103	[126]
	carbon monoxide	10	0.448-0.781	0.991-2.454	2.305-3.103	[126]
	<i>n</i> -decane	5	0.448-0.781	1.004-1.021	2.361-3.092	[138]
	<i>n</i> -dodecane	5	0.448-0.781	1.004-1.021	2.361-3.092	[138]
	<i>n</i> -octane	10	0.448-0.781	1.004-2.486	2.361-3.095	[138]
	<i>n</i> -tetradecane	5	0.448-0.781	1.004-1.021	2.361-3.092	[138]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
<i>n</i> -hexane	acetone	5	0.597-0.657	5.316-8.306	2.766-2.873	[116]
	acetonitrile	7	0.588-0.588	0.034-128.106	2.820-3.477	[139]
	benzene	48	0.420-1.070	b	1.352-3.458	[116,120,121,139–143]
	carbon disulfide	10	0.588-0.588	0.034-127.575	2.820-3.476	[139]
	carbon tetrabromide	8	0.587-0.587	0.033-116.279	2.825-3.457	[144]
	o-difluorobenzene	7	0.420-0.657	0.033	2.676-3.144	[143]
	<i>p</i> -difluorobenzene	7	0.420-0.657	0.033	2.676-3.144	[143]
	9,10-dimethylanthracene	8	0.587-0.587	0.033-116.279	2.825-3.457	[144]
	1,1'-dimethylferrocene	4	0.617	0.056-6.319	2.759-2.850	[119]
	ethylferrocene	4	0.617	0.053-6.316	2.759-2.850	[119]
	ferrocene	4	0.617	0.056-6.319	2.759-2.850	[119];
	<i>n</i> -heptane	11	0.558-0.784	0.033	2.705-2.883	[134–136,145]
	hexafluorobenzene	7	0.420-0.657	0.033	2.676-3.144	[143]

Solvent	Solute	NDP	T _r	Pr	$ ho_{ m r}$	Source
	indole	2	0.617	5.316-8.306	2.833-2.871	[116]
	linoleic acid methyl ester	2	0.617	5.316-8.306	2.833-2.871	[116]
	naphthalene	21	0.587-1.070	с	1.352-2.871	[116,121,139,140]
	octafluorotoluene	7	0.420-0.657	0.033	2.676-3.144	[143]
	<i>n</i> -octane	7	0.581-0.646	0.033	2.705-2.837	[134,145]
	pentafluorobenzene	7	0.420-0.657	0.033	2.676-3.144	[143]
	phenanthrene	15	0.657-1.070	sat.p ^b ; P _r >1	1.352-2.678	[121]
	pyrene	8	0.587-0.587	0.033-116.279	2.825-3.457	[140,144]
	1,2,3,5-tetrafluorobenzene	7	0.420-0.657	0.033	2.676-3.144	[143]
	1,2,4,5-tetrafluorobenzene	7	0.420-0.657	0.033	2.676-3.144	[143]
	toluene	32	0.587-1.070	d	1.352-3.468	[116,121,146,147]
	1,2,4-trifluorobenzene	7	0.420-0.657	0.033	2.676-3.144	[143]
	1,3,5-trimethylbenzene	20	0.597-1.070	С	1.352-2.871	[116,121]

Solvent	Solute	NDP	<i>T</i> _r	P _r	$ ho_{ m r}$	Source
	vitamin K3	5	0.617	5.316-8.306	2.837-2.873	[99,116]
	<i>m</i> -xylene	5	0.597-0.657	5.316-8.306	2.766-2.873	[116]
	<i>p</i> -xylene	17	0.617-1.070	С	1.352-2.871	[116,121]
<i>n</i> -octane	argon	4	0.524-0.709	0.040	2.594-3.008	[122]
	benzene	8	0.533-0.586	0.040	2.884-2.990	[131,148]
	carbon tetrachloride	4	0.524-0.656	0.040	2.738-3.008	[122]
	ethylbenzene	8	0.533-0.586	0.040	2.884-2.990	[131,148]
	<i>n</i> -heptane	7	0.515-0.603	0.040	2.849-3.025	[134,149];
	<i>n</i> -hexane	6	0.519-0.585	0.040	2.885-3.018	[134]
	krypton	4	0.524-0.709	0.040	2.594-3.008	[122]
	methane	4	0.524-0.709	0.040	2.594-3.008	[122]
	tetrabutyltin	4	0.524-0.761	0.040	2.498-3.008	[122]
	tetraethyltin	5	0.524-0.761	0.040	2.498-3.008	[122]

Solvent	Solute	NDP	$T_{\rm r}$	Pr	$ ho_{ m r}$	Source
	tetramethyltin	4	0.524-0.761	0.040	2.498-3.008	[122]
	tetrapropyltin	4	0.524-0.761	0.040	2.498-3.008	[122]
	toluene	8	0.533-0.586	0.040	2.884-2.990	[131,148]
	1,3,5-trimethylbenzene	8	0.533-0.586	0.040	2.884-2.990	[131,148]
	xenon	8	0.498-0.709	0.040	2.594-3.059	[122,124]
	o-xylene	8	0.533-0.586	0.040	2.884-2.990	[131,148]
	<i>p</i> -xylene	8	0.533-0.586	0.040	2.884-2.990	[131,148]
propane	1-octene	8	0.802-0.913	1.308-2.198	2.030-2.373	[129]
	1-tetradecene	8	0.791-0.912	2.092-2.165	2.103-2.396	[129]
sulfur hexafluoride	benzene	9	1.029-1.029	0.931-3.816	0.408-1.903	[150]
	benzoic acid	6	1.030-1.061	1.729-3.191	1.247-1.904	[105]
	carbon tetrachloride	7	1.029-1.029	0.021-1.920	0.408-1.903	[150]
	naphthalene	5	0.998-1.030	1.729-3.191	1.507-2.025	[105]

Solvent	Solute	NDP	T _r	Pr	$ ho_{ m r}$	Source
	toluene	11	1.029-1.029	0.931-3.816	0.408-1.903	[150]
	1,3,5-trimethylbenzene	10	1.029-1.029	1.117-3.816	0.680-1.903	[150]
	<i>p</i> -xylene	52	0.889-1.061	0.798-3.989	0.408-2.243	[150]
<i>n</i> -tetradecane	acridine	8	0.481-0.683	0.069	2.666-3.079	[151]
	argon	4	0.430-0.620	0.069	2.803-3.171	[122]
	benzothiophene	7	0.481-0.654	0.069	2.731-3.079	[151]
	carbon tetrachloride	4	0.430-0.540	0.069	2.967-3.171	[122]
	dibenzothiophene	8	0.481-0.668	0.069	2.699-3.079	[151]
	krypton	4	0.430-0.620	0.069	2.803-3.171	[122]
	methane	4	0.430-0.620	0.069	2.803-3.171	[122]
	naphthalene	7	0.452-0.654	0.069	2.731-3.132	[151]
	tetrabutyltin	4	0.430-0.620	0.069	2.803-3.171	[122]
	tetraethyltin	4	0.430-0.620	0.069	2.803-3.171	[122]

Solvent	Solute	NDP	T _r	P _r	$ ho_{ m r}$	Source
	tetramethyltin	4	0.430-0.620	0.069	2.803-3.171	[122]
	tetrapropyltin	4	0.430-0.620	0.069	2.803-3.171	[122]
	xenon	8	0.409-0.620	0.069	2.803-3.209	[122,124]
2,2,4-trimethylpentane	benzene	4	0.558-0.613	0.039	2.135-2.216	[148]
	1,3,5-trimethylbenzene	4	0.558-0.613	0.039	2.135-2.216	[148]
	ethylbenzene	4	0.558-0.613	0.039	2.135-2.216	[148]
	toluene	4	0.558-0.613	0.039	2.135-2.216	[148]
	o-xylene	4	0.558-0.613	0.039	2.135-2.216	[148]
	<i>p</i> -xylene	4	0.558-0.613	0.039	2.135-2.216	[148]

^a sat.p.: saturation pressure; ^b P_r from 0.034 to 122.69 and at saturation pressure; ^c P_r=0.498 and 0.532, at saturation pressure and other points at P_r>1; ^d P_r from 0.034 to 124.58 and

saturation pressure.

Table A2 – Pure component data, compound name, chemical formula, CAS number, molecular weight, *M*, critical temperature, *T*_c, pressure, *P*_c,

265	and volume, V _c , Lennard-Jones diameter	r, $\sigma_{\rm LJ}$, and energy, $\varepsilon_{\rm LJ}/k_{\rm B}$.

Name	Formula	CAS	М	T_{c}	Pc	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Tormula	CHO	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
acetone	C ₃ H ₆ O	67-64-1	58.08	508.10ª	47.00ª	209.00ª	4.67012 ^p	332.97 ^p
acetonitrile	C ₂ H ₃ N	75-05-8	41.05	545.50ª	48.30ª	173.00ª	4.02424 ^p	652.53 ^p
acridine	C13H9N	260-94-6	179.22	905.00 ^b	36.40 ^b	543.00 ^b	6.40475 ^p	700.47 ^p
adamantanone	$C_{10}H_{14}O$	700-58-3	150.22	759.15 ^c	31.55°	368.22 ^c	6.34300 ^p	587.58 ^p
allylbenzene	C9H10	300-57-2	118.18	639.86 ^d	33.50 ^d	419.80 ^d	5.91809 ^p	495.25 ^p
aluminum acetylacetonate	Al(C5H7O2)3	13963-57-0	324.31	437.66 ^c	19.57°	881.69 ^c	6.20646 ^p	338.75 ^p
aniline	C ₆ H ₇ N	62-53-3	93.13	699.00ª	53.10ª	274.00ª	5.27450 ^p	541.03 ^p
anisole	C7H8O	100-66-3	108.14	641.65 ¹	41.75 ¹	337.00 ¹	5.53560 ^p	496.64 ^p
anthracene	$C_{14}H_{10}$	120-12-7	178.23	873.00 ¹	29.00 ¹	554.00 ¹	6.77034 ^p	675.70p
arachidonic acid (AA)	C20H32O2	506-32-1	304.47	1013.42 ^e	12.74 ^e	1093.20 ^e	8.55861 ^p	784.39 ^p

N			М	$T_{\rm c}$	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
AA ethyl ester	C22H36O2	1808-26-0	332.53	960.63 ^f	11.31 ^f	1195.26 ^f	8.64877 ^p	743.53 ^p
argon	Ar	7440-37-1	39.95	150.80ª	48.70ª	74.90ª	3.40744 ^p	123.55 ^p
behenic acid ethyl ester	$C_{24}H_{48}O_2$	5908-87-2	368.64	984.94 ^f	9.15 ^f	1394.66 ^f	9.03867 ^p	762.34 ^p
benzene	C_6H_6	71-43-2	78.11	562.20ª	48.90ª	259.00ª	5.19165 ^p	308.43 ^p
benzoic acid	C7H6O2	65-85-0	122.12	752.00ª	45.60ª	341.00ª	5.65763 ^p	582.05 ^p
benzothiophene	C_8H_6S	95-15-8	134.2	764.00 ^g	47.60 ^g	379.00 ^g	5.61049 ^p	591.34 ^p
benzyl acetate	$C_9H_{10}O_2$	140-11-4	150.18	699.00 ¹	31.80 ¹	449.00 ¹	6.17454 ^p	541.03 ^p
benzylacetone	$C_{10}H_{12}O$	2550-26-7	148.2	722.51 ^d	31.20 ^d	500.50 ^d	6.27139 ^p	559.22 ^p
biphenyl	$C_{12}H_{10}$	92-52-4	154.21	789.00ª	38.50ª	502.00ª	6.04576 ^p	610.69 ^p
2-bromoanisole	C7H7BrO	578-57-4	187.04	737.58 ^d	40.04 ^d	378.05 ^d	5.85312 ^p	570.89 ^p
bromobenzene	C_6H_5Br	108-86-1	157.01	670.00ª	45.20ª	324.00ª	5.47376 ^p	518.58 ^p
2-butanone	C_4H_8O	78-93-3	72.11	536.80ª	42.10 ^a	267.00ª	5.22195 ^p	415.48 ^p

Nama	Formula	CAS	М	$T_{\rm c}$	Pc	Vc	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula		g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
N-(4-methoxybenzylidene)-4- <i>n</i> -butylaniline	C18H21NO	26227-73-6	267.37	962.06 ^c	21.33 ^c	592.93°	7.55769 ^p	744.64 ^p
<i>n</i> -butylbenzene	$C_{10}H_{14}$	104-51-8	134.22	660.50ª	28.90ª	497.00ª	6.24687 ^p	511.23 ^p
sec-butylbenzene	$C_{10}H_{14}$	135-98-8	134.22	672.06 ^h	29.50 ^h	478.37 ^h	6.24091 ^p	520.17 ^p
<i>tert</i> -butylbenzene	$C_{10}H_{14}$	98-06-6	134.22	660.00ª	29 .60 ¹	492.00 ¹	6.20099 ^p	510.84 ^p
butyric acid ethyl ester	$C_6H_{12}O_2$	105-54-4	116.20	579.00 ⁱ	31.40 ⁱ	400.00^{i}	5.85491 ^p	448.15 ^p
caffeine	$C_8H_{10}N_4O_2$	58-08-2	194.20	855.60 ⁱ	41.50 ⁱ	488.00^{i}	6.05672 ^p	662.23 ^p
capric acid ethyl ester	$C_{12}H_{24}O_2$	110-38-3	200.00	699.30 ⁱ	17.88 ⁱ	733.50 ⁱ	7.28024 ^p	541.26 ^p
caprylic acid ethyl ester	$C_{10}H_{20}O_2$	106-32-1	172.30	655.70 ⁱ	21.18 ⁱ	621.50 ⁱ	6.82453 ^p	507.51 ^p
carbon dioxide	CO ₂	124-38-9	44.01	304.10ª	73.80ª	93.90ª	3.26192 ^p	500.71 ^p
carbon disulfide	CS ₂	75-15-0	76.13	552.00ª	79. 00ª	160.00ª	4.29901 ^p	376.51 ^p
carbon monoxide	СО	630-08-0	28.01	132.90ª	35.00ª	93.20ª	3.53562 ^p	102.86 ^p
carbon tetrabromide	CBr ₄	558-13-4	331.63	724.91 ¹	96.31 ¹	328.50 ¹	4.41501 ^p	561.08 ^p

N	F 1	C 1 C	М	$T_{\rm c}$	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
carbon tetrachloride	CCl ₄	56-23-5	153.82	556.40 ^a	45.60ª	275.90ª	5.29240 ^p	418.84 ^p
β-carotene	C40H56	7235-40-7	536.88	1450.76 ^e	6.90 ^e	1934.95 ^e	10.08103 ^p	1122.89 ^p
L-carvone	$C_{10}H_{14}O$	6485-40-1	150.22	709.40 ^j	26.30 ^j	504.65 ^j	6.55942 ^p	549.08 ^p
chlorobenzene	C ₆ H ₅ Cl	108-90-7	112.56	632.40ª	45.20ª	308.00ª	5.56838 ^p	207.50 ^p
chromium(III) acetylacetonate	Cr(acac) ₃	21679-31-2	349.32	858.85 ^c	18.92 ^c	627.04 ^c	5.71650 ^r	845.60 ^r
chrysene	C18H12	218-01-9	228.29	979.00 ¹	23.90 ¹	690.00 ¹	7.37056 ^p	757.75 ^p
citral	C10H16O	5392-40-5	152.24	692.70 ^e	23.15 ^e	591.00 ^e	6.75868 ^p	536.15 ^p
cobalt(III) acetylacetonate	$C_{15}H_{21}CoO_6$	21679-46-9	356.26	573.48°	2.52°	640.95°	6.73800 ^s	499.75 ^s
copper(II) trifluoroacetylacetonate	$C_{10}H_8CuF_6O_4$	14324-82-4	369.70	412.85°	20.63°	441.13 ^c	6.00245 ^p	319.55 ^p
12-crown-4	$C_8H_{16}O_4$	294-93-9	176.21	780.66 ^e	33.59 ^e	444.75 ^e	6.27811 ^p	604.23 ^p
15-crown-5	$C_{10}H_{20}O_5$	33100-27-5	220.27	876.80 ^e	28.72 ^e	548.75 ^e	6.79750 ^p	678.64 ^p
18-crown-6	$C_{12}H_{24}O_{6}$	17455-13-9	264.32	970.51 ^e	24.95 ^e	652.75 ^e	7.26959p	751.17 ^p

Name	Earmanla	CAS	М	T_{c}	P _c	Vc	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CA5	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
dibenzo-24-crown-8	C24H32O8	14174-09-5	448.51	1396.77 ^e	15.80 ^e	1174.35 ^e	8.69916 ^p	1081.10 ^p
dicyclohexano-18-crown-6	C20H36O6	16069-36-6	372.5	1177.47 ^e	16.24 ^e	1002.75 ^e	8.41774 ^p	911.36 ^p
dicyclohexano-24-crown-8	$C_{24}H_{44}O_8$	17455-23-1	460.61	1357.66 ^e	13.48 ^e	1210.75 ^e	8.62250 ^p	1050.83 ^p
cycloheptanone	C7H12O	502-42-1	112.17	671.19 ^c	36.86 ^c	297.87°	5.83262 ^p	519.50 ^p
cyclohexane	C6H12	110-82-7	84.16	553.50ª	40.70ª	308.00ª	5.73075 ^p	224.87 ^p
cyclononanone	C9H16O	3350-30-9	140.22	702.10 ^c	31.47°	380.74°	6.20229 ^p	543.42 ^p
cyclopentanone	C_5H_8O	120-92-3	84.12	626.00 ¹	58.50 ¹	258.00 ¹	4.94075 ^p	484.52 ^p
<i>n</i> -decane	C10H22	124-18-5	142.29	617.70ª	21.20ª	603.00ª	6.71395 ^p	434.86 ^p
docosahexaenoic acid (DHA)	C22H32O2	6217-54-5	328.49	833.67 ^e	12.03 ^e	1164.30 ^e	8.34392 ^p	645.26 ^p
DHA ethyl ester	C24H36O2	84494-72-4	356.55	828.45 ^e	10.52 ^e	1276.40 ^e	8.54432 ^p	641.22 ^p
DHA methyl ester	C23H34O2	2566-90-7	342.52	844.78 ^e	11.07 ^e	1220.85 ^e	8.49793 ^p	653.86 ^p
dibenzothiophene	$C_{12}H_8S$	132-65-0	184.26	897.00 ^g	38.60 ^g	512.00 ^g	6.27791 ^p	694.28 ^p

Name	E	CAC	М	$T_{\rm c}$	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
dibenzyl ether	C14H14O	103-50-4	198.26	777.00 ¹	25.60 ¹	608.00 ¹	6.78621 ^p	601.40 ^p
1,2-dichlorobenzene	$C_{6}H_{4}Cl_{2}$	95-50-1	147	729.00ª	41.00ª	360.00ª	5.79009 ^p	564.25 ^p
1,3-dichlorobenzene	$C_6H_4Cl_2$	541-73-1	147	683.95 ¹	40.70 ¹	351.00 ¹	5.69056 ^p	529.38 ^p
<i>p</i> -dichlorobenzene	$C_{6}H_{4}Cl_{2}$	106-46-7	147	684.75 ¹	40.70 ¹	351.00 ¹	5.69261 ^p	530.00 ^p
diethyl ether	$C_4H_{10}O$	60-29-7	74.12	466.70ª	36.40ª	280.00ª	5.23105 ^p	361.23 ^p
1,2-diethylbenzene	$C_{10}H_{14}$	135-01-3	134.22	668.00 ¹	28.80 ¹	502.00 ¹	6.27438 ^p	517.03 ^p
1,4-diethylbenzene	$C_{10}H_{14}$	105-05-5	134.22	657.96 ¹	28.03 ¹	497.00 ¹	6.29672 ^p	509.26 ^p
o-difluorobenzene	$C_6H_4F_2$	367-11-3	114.09	554.46 ¹	40.67 ¹	299.50 ¹	5.33270 ^p	429.15 ^p
<i>p</i> -difluorobenzene	$C_6H_4F_2$	540-36-3	114.09	556.00 ¹	44.00 ¹	299.50 ¹	5.20720 ^p	430.34 ^p
diisopropyl ether	$C_6H_{14}O$	108-20-3	102.18	500.30ª	28.80ª	386.00ª	5.74891 ^p	387.23 ^p
2,3-dimethylaniline	$C_8H_{11}N$	87-59-2	121.18	717.00 ^d	36.30 ^d	400.38 ^d	5.97871 ^p	554.96 ^p
2,6-dimethylaniline	C8H11N	87-62-7	121.18	722.00 ^m	42.00 ^d	400.38 ^d	5.73044 ^p	558.83 ^p

Name	El.	CAC	М	T_{c}	$P_{\rm c}$	Vc	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
9,10-dimethylanthracene	C16H14	781-43-1	206.29	899.22 ^e	26.27 ^e	724.55 ^e	7.01984 ^p	696.00 ^p
2,3-dimethylbutane	$C_{6}H_{14}$	79-29-8	86.18	500.00ª	31.30ª	358.00ª	5.60227 ^p	387.00 ^p
1,1-dimethylferrocene	C12H14Fe	1291-47-0	214.09	514.45°	27.41°	400.64°	5.88660 ^p	398.18 ^p
2,3-dimethylnaphthalene	C12H12	581-40-8	156.23	777.78 ¹	30.061	521.50 ¹	6.48023 ^p	602.00 ^p
2,6-dimethylnaphthalene	C12H12	581-42-0	156.23	777.00 ¹	31.70 ¹	520.00 ¹	6.37790 ^p	601.40 ^p
2,7-dimethylnaphthalene	C12H12	582-16-1	156.23	778.00 ¹	31.70 ¹	520.00 ¹	6.38032 ^p	602.17 ^p
2,4-dimethylphenol	$C_8H_{10}O$	105-67-9	122.17	707.60ª	44.00 ¹	390.00 ¹	5.61388 ^p	547.68 ^p
diolein	C39H72O5	2465-32-9	621.99	1025.00 ^b	7.92 ^b	2150.00 ^b	10.44146 ^p	793.35 ^p
disperse blue 14	$C_{16}H_{14}N_2O_2$	2475-44-7	266	1137.33 ^k	27.18 ^k	765.50 ^k	7.41187 ^p	880.29p
disperse orange 11	$C_{15}H_{11}NO_2$	82-28-0	237.25	1103.62 ^k	31.17 ^k	670.00 ^k	7.08580 ^p	854.20 ^p
1,3-divinylbenzene	$C_{10}H_{10}$	108-57-6	130.19	692.00 ¹	31.20 ¹	440.00 ¹	6.19117 ^p	535.61 ^p
<i>n</i> -dodecane	C12H26	112-40-3	170.34	658.20ª	18.20ª	713.00ª	7.00451 ^p	672.90 ^p

Name	Eormaula	CAS	М	T_{c}	Pc	Vc	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
<i>n</i> -eicosane	C20H42	112-95-8	282.56	767.00 ^a	11.10 ¹	1190.00 ¹	8.33954 ^p	593.66 ^p
eicosapentaenoic acid (EPA)	$C_{20}H_{30}O_2$	10417-94-4	302.46	1020.90 ^f	13.47 ^f	1059.15 ^f	8.48687 ^p	790.18 ^p
EPA ethyl ester	$C_{22}H_{34}O_2$	84494-70-2	330.51	968.16 ^f	11.67 ^f	1173.16 ^f	8.61744 ^p	749.36 ^p
EPA methyl ester	C21H32O2	2734-47-6	316.48	890.55 ^f	11.90 ^f	1187.03 ^f	8.46741 ^p	689.29 ^p
ethane	C_2H_6	74-84-0	30.07	305.40ª	48.80ª	148.30ª	4.17587 ^p	213.99 ^p
ethanol	C_2H_6O	64-17-5	46.07	513.90ª	61.40ª	167.10ª	4.23738 ^p	1291.41 ^p
ethyl acetate	$C_4H_8O_2$	141-78-6	88.11	523.20ª	38.30ª	286.00ª	5.33606 ^p	404.96 ^p
ethyl benzoate	C9H10O2	93-89-0	150.18	668.70ª	23.20 ¹	489.00 ¹	6.68655 ^p	517.57 ^p
ethylbenzene	C8H10	100-41-4	106.17	617.20ª	36.00ª	374.00ª	5.72572 ^p	477.71 ^p
ethylene	C2H4	74-85-1	28.05	282.40ª	50.40ª	130.40ª	4.04838 ^p	169.08 ^p
ethylferrocene	C12H14Fe	1273-89-8	214.08	554.21°	27.41°	400.64°	6.02127 ^p	428.96 ^p
2-ethyltoluene	C9H12	611-14-3	120.19	651.00ª	30.40ª	460.00ª	6.12635 ^p	503.87 ^p

Name	F 1	C A C	М	$T_{\rm c}$	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
3-ethyltoluene	C9H12	620-14-4	120.19	637.00ª	28.40ª	490.00 ^a	6.21196 ^p	493.04 ^p
4-ethyltoluene	C9H12	622-96-8	120.19	640.00ª	29.40ª	470.00ª	6.15660 ^p	495.36 ^p
eugenol	$C_{10}H_{12}O_2$	97-53-0	164.2	735.31 ^d	33.52 ^d	447.23 ^d	6.17078 ^p	569.13 ^p
ferrocene	$C_{10}H_{10}Fe$	102-54-5	186.04	786.27°	32.07°	317.77°	6.37838 ^p	608.57 ^p
2-fluoroanisole	C7H7FO	321-28-8	126.13	644.81 ^d	38.11 ^d	328.87 ^d	5.70253 ^p	499.08 ^p
fluorobenzene	C_6H_5F	462-06-6	96.1	560.10ª	45.50ª	269.00ª	5.16448 ^p	433.52 ^p
3-fluorophenol	C ₆ H ₅ FO	372-20-3	112.1	665.54 ^e	54.83 ^e	339.60 ^e	5.14165 ^p	515.13 ^p
geraniol	$C_{10}H_{18}O$	106-24-1	154.25	688.44 ^e	25.78 ^e	571.30 ^e	6.54030 ^p	532.85 ^p
<i>n</i> -heptane	C7H16	142-82-5	100.2	540.30ª	27.40ª	432.00ª	5.94356 ^p	404.05 ^p
2-heptanone	C7H14O	110-43-0	114.19	611.50ª	34.40 ¹	421.00 ¹	5.78966 ^p	473.30p
4-heptanone	C7H14O	123-19-3	114.19	595.31 ¹	29.96 ¹	433.50 ¹	5.98953 ^p	460.77 ^p
hexachlorobenzene	C ₆ Cl ₆	118-74-1	284.78	825.00 ¹	28.50 ¹	526.00 ¹	6.69481 ^p	638.55 ^p

Name	Eamaala	CAC	М	$T_{\rm c}$	$P_{\rm c}$	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
<i>n</i> -hexadecane	C16H34	544-76-3	226.45	722.00 ^a	14.10 ^a	930.00ª	7.36480 ^p	1669.19 ^p
1-hexadecene	C16H32	629-73-2	224.43	722.00 ^g	14.80g	933.00 ^g	7.70891 ^p	558.83 ^p
1,1,1,5,5,5-hexafluoroacetylacetone	$C_5H_2F_6O_2$	1552-22-1	208.06	569.07 ^f	27.17 ^f	406.05 ^f	6.08561 ^p	440.46 ^p
hexafluorobenzene	C_6F_6	392-56-3	186.06	516.70ª	33.00ª	335.00ª	5.56763 ^p	399.93 ^p
<i>n</i> -hexane	$C_{6}H_{14}$	110-54-3	86.18	507.50ª	30.10ª	370.00ª	5.61841 ^p	434.76 ^p
ibuprofen	$C_{13}H_{18}O_2$	15687-27-1	206.29	769.63 ^e	22.85 ^e	686.35 ^e	6.98841 ^p	595.69 p
indole	C8H7N	204-420-7	117.15	790.00 ¹ .	43.40 ¹	431.00 ¹	5.83184 p	611.46 ^p
iodobenzene	C ₆ H ₅ I	591-50-4	204.01	721.00ª	45.20ª	351.00ª	5.59976 ^p	558.05 ^p
isobutylbenzene	$C_{10}H_{14}$	538-93-2	134.22	650.00 ^h	30.50 ^h	480.00 ^h	6.11748 ^p	503.10 ^p
krypton	Kr	7439-90-9	83.8	209.40ª	55.00ª	91.20ª	2.89870 ^p	511.92 ^p
D-limonene	$C_{10}H_{16}$	5989-27-5	136.24	660.00 ¹	27.50 ¹	524.00 ¹	6.33828 ^p	510.84 ^p
linalool	$C_{10}H_{18}O$	78-70-6	154.25	645.80e	25.95 ^e	558.00 ^e	6.40654 ^p	499.85 ^p

Name	F 1	CAC	М	T_{c}	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
linoleic acid	C18H32O2	60-33-3	280.45	775.00ь	14.10 ^b	990.00 ^b	7.93427 ^p	599.85 ^p
linoleic acid methyl ester	C19H34O2	112-63-0	294.48	870.78 ^f	12.54^{f}	1070.95 ^f	8.34769 ^p	673.98 ^p
α -Linolenic acid	$C_{18}H_{30}O_2$	463-40-1	278.44	780.00 ^b	14.40 ^b	1070.00 ^b	7.90702 ^p	603.72 ^p
γ-linolenic acid	$C_{18}H_{30}O_2$	506-26-3	278.44	958.98 ^f	14.17^{f}	992.35 ^f	8.30482 ^p	742.25 ^p
γ-linolenic acid ethyl ester	$C_{20}H_{34}O_{2}$	31450-14-3	306.48	937.01°	17.56°	797.37°	7.87896 ^p	725.25 ^p
γ-linolenic acid methyl ester	C19H32O2	16326-32-2	292.46	882.79 ^f	12.92^{f}	1050.86 ^f	8.32085 ^p	683.28 ^p
L-menthone	C10H18O	14073-97-3	154.25	699.44 ^j	25.30 ^j	525.24 ^j	6.60650 ^p	541.37 ^p
methane	CH ₄	74-82-8	16.04	190.40ª	46.00ª	99.20ª	3.58484 ^p	167.15 ^p
methanol	CH ₄ O	67-56-1	32.04	512.60ª	80.90ª	118.00ª	3.79957 ^p	685.96 ^p
2-methylanisole	$C_8H_{10}O$	578-58-5	122.17	648.79 ^d	35.60 ^d	371.70 ^d	5.83396 ^p	502.16 ^p
4-methylanisole	$C_8H_{10}O$	104-93-8	122.17	655.36 ^d	35.60 ^d	371.70 ^d	5.85195 ^p	507.25 ^p
3-methylbutylbenzene	C11H15	2049-94-7	148.25	672.06 ^h	26.50 ^h	542.47 ^h	6.44224 ^p	520.17 ^p

Name	F 1		М	$T_{\rm c}$	$P_{\rm c}$	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	$\rm cm^3~mol^{-1}$	Å	К
1-methylnaphthalene	C11H10	90-12-0	142.2	772.00 ^g	36.00 ^g	465.00 ^g	6.12893 ^p	597.53 ^p
monoolein	$C_{21}H_{40}O_{4}$	111-03-5	356.55	885.00 ^b	12.40 ^b	1210.00 ^b	8.39247 ^p	684.99 ^p
myristic acid ethyl ester	C16H32O2	124-06-1	256.43	789.35 ^f	13.89 ^f	950.66 ^f	7.99595 ^p	610.96 ^p
myristoleic acid	$C_{14}H_{26}O_2$	544-64-9	226.36	854.23 ^e	16.97 ^e	819.90 ^e	7.76875 ^p	661.17 ^p
myristoleic acid methyl ester	$C_{15}H_{28}O_2$	56219-06-8	240.39	777.79 ^e	15.26 ^e	876.45 ^e	7.79244 ^p	602.01 ^p
naphthalene	$C_{10}H_8$	91-20-3	128.17	748.40ª	40.50ª	413.00ª	5.85874 ^p	579.26 ^p
1-naphthol	$C_{10}H_8O$	90-15-3	144.17	802.00 ¹	47.37 ¹	375.50 ¹	5.70365 ^p	620.75 ^p
2-naphthol	$C_{10}H_8O$	135-19-3	144.17	811.40 ⁱ	47.40^{i}	375.50 ⁱ	5.72302 ^p	628.02 ^p
2-nitroanisole	C7H7NO3	91-23-6	153.14	782.00 ¹	37.60 ¹	422.00 ¹	6.07271 ^p	605.27 ^p
nitrobenzene	C6H5NO2	98-95-3	123.11	719.00 ¹	44.00 ¹	349.00 ¹	5.64167 ^p	556.51 ^p
3-nitrotoluene	C7H7NO2	99-08-1	137.14	734.00 ¹	38.00 ¹	441.00 ¹	5.93831 ^p	568.12 ^p
<i>n</i> -nonane	C9H20	111-84-2	128.26	594.60ª	22.90ª	548.00ª	6.43057 ^p	497.35 ^p

Name	F 1		М	$T_{\rm c}$	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
2-nonanone	C9H18O	821-55-6	142.24	644.29 ¹	24.53 ¹	545.50 ¹	6.50874 ^p	498.68 ^p
5-nonanone	C9H18O	502-56-7	142.24	640.00 ^b	23.20 ^b	560.00 ^b	6.60236 ^p	495.36 ^p
octafluorotoluene	C7F8	434-64-0	236.06	534.47 ^m	27.05 ^m	428.00 ^m	5.97931 ^p	413.68 ^p
<i>n</i> -octane	C_8H_{18}	111-65-9	114.23	568.80ª	24.90ª	492.00ª	6.17328 ^p	478.32 ^p
1-octene	C_8H_{16}	111-66-0	112.22	566.70ª	26.20ª	464.00ª	6.14478 ^p	438.63 ^p
oleic acid	$C_{18}H_{34}O_2$	112-80-1	282.47	781.00 ^b	13.90 ^b	1000.00 ^b	7.97503 ^p	604.49 ^p
oleic acid ethyl ester	C20H38O2	111-62-6	310.52	891.97 ^e	11.38 ^e	1154.20 ^e	8.53715 ^p	690.38 ^p
oleic acid methyl ester	C19H36O2	112-62-9	296.49	868.65 ^e	12.01 ^e	1098.65 ^e	8.41384 ^p	672.34 ^p
palladium(II) acetylacetonate	$C_{10}H_{14}O_4Pd$	14024-61-4	304.64	651.12°	4.13 ^c	435.41°	4.90200s	994.14 ^s
palmitic acid ethyl ester	$C_{18}H_{36}O_2$	628-97-7	284.48	835.62 ^f	12.36 ^f	1061.66 ^f	8.30307 ^p	646.77 ^p
pentafluorobenzene	C ₆ HF ₅	363-72-4	168.07	530.97 ^m	35.31 ^m	324.00 ^m	5.49825 ^p	410.97 ^p
<i>n</i> -pentane	C5H12	109-66-0	72.15	469.70ª	33.70ª	304.00ª	5.36967 ^p	363.55 ^p

Name	F	CAC	М	$T_{\rm c}$	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{\rm LJ}/k_{\rm B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
2,2,4,4-tetramethyl-3-pentanone	C9H18O	815-24-7	142.24	627.18 ^c	30.29°	407.72 ^c	6.06486 ^p	485.44 ^p
2,4-dimethyl-3-pentanone	C7H14O	565-80-0	114.19	576.00 ^b	30.20 ^b	416.00 ^b	5.91550 ^p	445.82 ^p
2-pentanone	$C_5H_{10}O$	107-87-9	86.13	561.10ª	36.90ª	301.00ª	5.51733 ^p	434.29 ^p
3-pentanone	$C_5H_{10}O$	96-22-0	86.13	561.00ª	37.30ª	336.00ª	5.49858 ^p	434.21 ^p
<i>n</i> -pentylbenzene	$C_{11}H_{16}$	538-68-1	148.25	679.90 ¹	26.04 ¹	550.00 ¹	6.49745 ^p	526.24 ^p
phenanthrene	$C_{14}H_{10}$	85-01-8	178.23	873.00ª	29.00ª	554.00ª	6.77034 ^p	675.70 ^p
phenol	C_6H_6O	108-95-2	94.11	694.20ª	61.30ª	229. 00ª	5.03026 ^p	537.31 ^p
phenylacetic acid	$C_8H_8O_2$	103-82-2	136.15	783.55 ^e	38.50 ^e	422.60 ^e	6.03311 ^p	606.47 ^p
phenylacetylene	C_8H_6	536-74-3	102.14	655.43 ¹	44.03 ¹	337.50 ¹	5.48099 ^p	507.30 ^p
phenylbutazone	$C_{19}H_{20}N_2O_2$	50-33-9	308.38	861.18 ^e	18.38 ^e	933.55 ^e	7.63140 ^p	666.55 ^p
1-phenyldodecane	C18H30	123-01-3	246.44	774.26 ¹	15.79 ¹	1000.00 ¹	7.71873 ^p	599.28 ^p
1-phenylethanol	$C_8H_{10}O$	98-85-1	122.17	675.30 ^d	40.60 ^{k*}	392.15 ^{k*}	5.67259 ^p	522.68 ^p

Name	F 1	CAC	М	T_{c}	P_{c}	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
2-phenylethanol	C8H10O	60-12-8	122.17	684.00 ¹	39.20 ¹	387.00 ¹	5.75677 ^p	529.42 ^p
2-phenylethyl acetate	$C_{10}H_{12}O_2$	103-45-7	164.1	712.23 ^d	30.12 ^d	524.15 ^d	6.31046 ^p	551.27 ^p
1-phenylhexane	C12H18	1077-16-3	162.28	698.00 ¹	23.80 ¹	618.00 ¹	6.71996 ^p	540.25 ^p
phenylmethanol	C7H8O	100-51-6	108.14	720.20ª	44.00 ¹	335.00 ¹	5.64457 ^p	557.43 ^p
1-phenyloctane	C14H22	2189-60-8	190.33	729.00 ¹	20.20 ¹	703.00 ¹	7.12309 ^p	564.25 ^p
3-phenylpropyl acetate	$C_{11}H_{14}O_2$	122-72-5	178.3	718.70 ^d	27.23 ^d	580.37 ^d	6.51801 ^p	556.27 ^p
α-pinene	$C_{10}H_{16}$	80-56-8	136.24	632.00 ¹	27.60 ¹	504.00 ¹	6.25044 ^p	489.17 ^p
β-pinene	$C_{10}H_{16}$	127-91-3	136.24	643.00 ¹	27.60 ¹	506.00 ¹	6.28262 ^p	497.68 ^p
platinum(II) acetylacetonate	Pt(acac) ₂	15170-57-7	393.29	-	-	-	5.22900s	975.45 ^s
propane	C ₃ H ₈	74-98-6	44.09	369.80ª	42.50ª	203.00ª	4.50412 ^p	457.99 ^p
1-propanol	C ₃ H ₈ O	71-23-8	60.10	536.80ª	51.70ª	219.00ª	4.49190 ^p	2120.83 ^p
2-phenyl-1-propanol	C9H12O	1123-85-9	136.20	662.02 ^d	36.90 ^d	443.23 ^d	5.80605 ^p	512.40 ^p

Name	F 1		М	$T_{\rm c}$	P _c	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
2-propanol	C ₃ H ₈ O	67-63-0	60.10	508.30ª	47.60ª	220.00 ^a	4.93749 ^p	393.42 ^p
3-phenyl-1-propanol	C9H12O	122-97-4	136.2	702.30 ^d	36.40 ^d	455.45 ^d	5.93627 ^p	543.58 ^p
i-propylbenzene	C9H12	98-82-8	120.19	631.10ª	32.10 ¹	427.70 ¹	5.97029 ^p	488.47 ^p
<i>n</i> -propylbenzene	C9H12	103-65-1	120.19	638.20ª	32.00ª	440.00ª	5.99624 ^p	493.97 ^p
pyrene	$C_{16}H_{10}$	129-00-0	202.25	936.00 ¹	26.10 ¹	630.00 ¹	7.11077 ^p	724.46 ^p
squalene	C30H50	111-02-4	410.73	716.50 ⁿ	7.03 ⁿ	1601.00 ^{k*}	9.46409 p	554.57 p
stearic acid	C18H36O2	57-11-4	284.48	803.00 ^g	13.30 ^g	1140.00 ^g	8.10600 ^p	621.52 ^p
stearic acid ethyl ester	$C_{20}H_{40}O_2$	111-61-5	312.53	777.90 ^g	10.19 ^g	1380.00 ^g	8.49783 ^p	602.09 ^p
styrene	C_8H_8	100-42-5	104.15	647.00ª	39.90 ¹	352.00 ¹	5.62827 ^p	500.78 ^p
sulfur hexafluoride	SF ₆	2551-62-4	146.05	318.70ª	37.60ª	198.80ª	4.76629 ^p	271.68 ^p
tetrabutyltin	C16H36Sn	1461-25-2	347.17	767.97°	17.25°	760.75°	7.53290 ^p	594.41 ^p
<i>n</i> -tetradecane	$C_{14}H_{30}$	629-59-4	198.39	693.00ª	14.40ª	830.00ª	7.68286 ^p	536.38 ^p

N	F 1		М	$T_{\rm c}$	Pc	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	$\rm cm^3~mol^{-1}$	Å	К
1-tetradecene	C14H28	1120-36-1	196.37	691.00 ^g	16.27 ^g	865.00 ^g	7.44105 ^p	534.83 ^p
tetraethyltin	C8H20Sn	597-64-8	234.95	655.92°	25.75°	429.28 ^c	6.45047 ^p	507.68 ^p
1,2,3,5-tetrafluorobenzene	$C_6H_2F_4$	2367-82-0	150.08	555.49 ^e	36.40 ^e	351.05 ^e	5.52349 ^p	429.95 ^p
1,2,4,5-tetrafluorobenzene	$C_6H_2F_4$	327-54-8	150.07	535.25 ^m	37.47 ^e	351.05 ^e	5.41106 ^p	414.28 ^p
tetrahydrofuran	C_4H_8O	109-99-9	72.11	540.10ª	51.90ª	224.00ª	4.89719 ^p	418.04 ^p
tetramethyltin	$C_4H_{12}Sn$	594-27-4	178.85	511.77°	34.18°	263.54°	5.49115 ^p	396.11 ^p
tetrapropyltin	C12H28Sn	2176-98-9	291.06	759.88°	20.66 ^c	595.01°	7.16031 ^p	588.15 ^p
thenoyltrifluoroacetone	$C_8H_5F_3O_2S$	326-91-0	222.18	838.69 ^c	26.32 ^c	428.15°	6.88081 ^p	649.15 ^p
α-tocopherol	C29H50O2	10191-41-0	430.71	915.76°	8.46°	1534.20°	9.33059 ^p	708.80 ^p
toluene	C7H8	108-88-3	92.140	591.80ª	41.00ª	316.00ª	5.45450 ^p	350.74 ^p
triarachidonin	C63H98O6	23314-57-0	951.45	1499.66 ^c	6.51°	2341.53°	10.74274 ^p	1160.74 ^p
trierucin	C69H128O6	2752-99-0	1053.75	1549.28 ^c	5.62°	2832.93°	11.44706 ^p	1199.14 ^p

N	F 1		М	T_{c}	Pc	V _c	$\sigma_{ m LJ}$	$\varepsilon_{ m LJ}/k_{ m B}$
Name	Formula	CAS	g mol ⁻¹	К	bar	$\rm cm^3~mol^{-1}$	Å	K
trifluoroacetylacetone	$C_5H_5F_3O_2$	367-57-7	154.09	594.02 ^f	32.89 ^f	365.58 ^f	5.81789 ^p	459.77 ^p
1,2,4-trifluorobenzene	$C_6H_3F_3$	367-23-7	132.09	558.22 ^e	38.98 ^e	335.05 ^e	5.41530 ^p	432.06 ^p
1,3,5-trimethylbenzene	C9H12	108-67-8	120.19	637.30ª	31.30 ¹	433.00 ¹	6.03392 ^p	493.27 ^p
2,2,4-trimethylpentane	C_8H_{18}	540-84-1	144.23	543.80 ¹	25.70 ¹	468.00 ¹	6.10433 ^p	420.90 ^p
trinervonin	$C_{75}H_{140}O_{6}$	81913-24-8	1137.91	1601.10 ^c	5.20°	3081.54 ^c	11.77257 ^p	1239.25 ^p
triolein	C57H104O6	122-32-7	885.43	1640.00 ^b	4.70 ^b	3090.00 ^b	11.78333 ^p	1269.36 ^p
s-trioxane	$C_3H_6O_3$	110-88-3	90.08	604.00 ¹	58.20 ¹	206.00 ¹	4.89292 ^p	467.50 ^p
ubiquinone CoQ10	C59H90O4	303-98-0	863.34	1522.50 ^c	7.09 ^c	2146.17°	10.43527 ^p	1178.41 ^p
<i>n</i> -undecane	$C_{11}H_{24}$	1120-21-4	156.31	638.80ª	19.70ª	660.00ª	6.9144 4 ^p	494.43 ^p
6-undecanone	C11H22O	927-49-1	170.30	678.01 ^b	20.46 ^b	657.50 ^b	6.95669 ^p	524.78 ^p
vanillin	$C_8H_8O_3$	121-33-5	152.15	777.00 ¹	40.10 ¹	415.00 ¹	5.94398 ^p	601.40 ^p
vitamin K1	C31H48O2	84-80-0	452.71	1329.54 ^e	8.58 ^e	1620.20 ^e	9.50177 ^p	1029.06 ^p

Namo	Formula	CAS	М	$T_{\rm c}$	P _c	Vc	$\sigma_{ m LJ}$	$\varepsilon_{\rm LJ}/k_{\rm B}$
Ivanie			g mol ⁻¹	К	bar	cm ³ mol ⁻¹	Å	К
vitamin K ₃	$C_{11}H_8O_2$	58-27-5	172.18	893.85 ^e	31.96 ^e	537.20 ^e	6.62867 ^p	691.84 ^p
water	H ₂ O	7732-18-5	18.02	647.30ª	221.20ª	57.10ª	3.24681 ^p	501.01 ^p
xenon	Xe	7440-63-3	131.30	289.70ª	58.40ª	118.40ª	3.85754 ^p	224.23 ^p
5- <i>tert</i> -butyl- <i>m</i> -xylene	$C_{12}H_{18}$	98-19-1	162.28	684.85 ^d	23.90 ^d	591.75 ^d	6.67527 ^p	530.07 ^p
<i>m</i> -xylene	C_8H_{10}	108-38-3	106.17	617.10ª	35.40ª	376.00ª	5.75507 ^p	477.64 ^p
<i>o</i> -xylene	C_8H_{10}	95-47-6	106.17	630.30ª	37.30ª	369.00ª	5.70029p	487.85 ^p
<i>p</i> -xylene	C8H10	106-42-3	106.17	616.20ª	35.10ª	379.00ª	5.76754 ^p	476.94 ^p

^a taken from Reid *et al* [10];

^b Taken from Yaws (2008) [152];

^c Estimated by the Klincewicz method [10,153];

^d Average of the values by the Joback [10,154,155] and Wen-Qiang [156] methods;

^e Average of the values by the Joback [10,154,155] and Ambrose [10,157,158] methods;

- ^f Average of the values by the Joback [10,154,155] and Somayajulu [159] methods;
- 273 g Taken from DIPPR database [160];
- ^h Taken from Pizarro *et al.*[64];
- ⁱ Taken from Table 4 of Liu and Ruckenstein [161];
- ^j Average of the values by the Joback [10,154,155] and Constantinou-Gani [162] methods;
- ¹ Taken from Yaws (1998) [30];
- ^k Estimated by the Joback method [10,154,155];
- ^m Taken from Korea Thermophysical Properties Data Bank (KDB) [163];
- 280 ⁿ Taken from Catchpol *et al* [164];
- 281 ° Taken from ASPEN database [165];
- 282 ^p Taken from Silva and Liu 2008 [24];
- 283 ^q Estimated by equation (8) and (9) of the manuscript.
- ^r Taken from Cordeiro *et al.* [76];
- ^s Taken from Cordeiro [166].

Table A3 – Calculated results obtained by TLSM, TLSMd and TLSMen models for each individual system: AARD and binary interaction

287 parameters ($k_{12,d}$ and $k_{12,en}$).

			TLSM	TLSM	la	TLSM	.en
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
carbon dioxide	acetone	213	8.08	3.527×10-2	4.26	1.636×10-1	4.25
	acridine	6	16.10	7.834×10-2	1.95	3.011×10-1	1.97
	adamantanone	8	44.85	2.594×10-1	2.54	8.952×10-1	2.54
	allylbenzene	15	11.65	6.974×10-2	2.99	3.012×10-1	3.08
	aluminum acetylacetonate	84	28.16	-1.021×10-1	10.47	-5.035×10-1	10.40
	aniline	15	7.77	-3.358×10-2	2.98	-1.358×10-1	3.02
	anisole	15	8.94	4.683×10-2	2.06	1.990×10-1	2.08
	anthracene	22	27.81	1.487×10-1	3.88	5.928×10-1	4.02
	arachidonic acid (AA)	75	21.42	1.167×10-1	2.13	4.831×10-1	2.04
	AA ethyl ester	48	24.51	1.329×10-1	2.43	5.597×10-1	2.46

			TLSM	TLSMd		TLSMen	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	behenic acid ethyl ester	17	26.95	1.426×10-1	3.66	5.990×10-1	3.75
	benzene	249	14.49	8.606×10-2	7.38	4.087×10-1	7.39
	benzoic acid	35	15.92	8.952×10-2	5.50	3.435×10-1	5.71
	benzyl acetate	15	10.02	5.357×10-2	2.21	2.230×10-1	2.28
	benzylacetone	15	8.55	4.499×10-2	2.32	1.861×10-1	2.42
	biphenyl	24	19.60	1.084×10-1	3.41	4.144×10-1	3.24
	2-bromoanisole	15	10.73	5.827×10-2	2.37	2.335×10-1	2.49
	bromobenzene	21	17.17	9.406×10-2	4.48	3.849×10-1	4.42
	2-butanone	40	16.69	8.819×10-2	1.91	3.854×10-1	2.02
	N-(4-methoxybenzylidene)-4-n-						
	butylaniline	5	43.94	2.537×10-1	1.77	8.798×10-1	1.77
	<i>n</i> -butylbenzene	15	14.55	7.993×10-2	1.90	3.391×10-1	2.06

			TLSM		TLSM _d		TLSM _{en}	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD	
	sec-butylbenzene	1.	5 13.24	7.043×10-2	2.14	3.069×10-1	2.15	
	<i>tert</i> -butylbenzene	1,	5 15.15	9.035×10-2	3.87	3.935×10-1	4.10	
	butyric acid ethyl ester	1	6 17.21	8.674×10-2	3.64	3.765×10-1	3.73	
	caffeine	2	5 10.86	4.492×10-2	7.92	1.783×10-1	7.93	
	capric acid ethyl ester	1	6 22.35	1.163×10-1	3.85	4.976×10-1	3.95	
	caprylic acid ethyl ester	1	6 19.72	1.049×10-1	2.93	4.529×10-1	3.05	
	β-carotene	9	0 20.78	1.090×10-1	1.38	4.299×10-1	1.56	
	L-carvone	2	7 15.03	8.176×10-2	3.51	3.467×10-1	3.48	
	chlorobenzene	2	1 3.30	5.238×10-3	3.24	2.997×10-2	3.24	
	chromium(III) acetylacetonate	10-	4 6.59	-2.393×10-2	5.21	-8.593×10-2	5.14	
	chrysene		4 31.87	1.698×10-1	1.45	6.461×10-1	2.03	
	citral	1	5 20.87	1.076×10-1	3.19	4.658×10-1	3.45	

			TLSM	$TLSM_d$		TLSM _{en}	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	cobalt(III) acetylacetonate	38	1.58	-4.436×10-5	1.58	-2.065×10-4	1.58
	copper(II) trifluoroacetylacetonate	12	17.80	-8.246×10-2	4.73	-4.225×10-1	4.67
	15-crown-5	29	25.45	1.457×10-1	5.18	5.657×10-1	5.17
	dibenzo-24-crown-8	28	25.90	1.459×10-1	2.06	5.374×10-1	2.19
	cycloheptanone	8	14.56	6.630×10-2	2.95	2.751×10-1	2.95
	cyclononanone	8	14.98	7.446×10-2	3.25	3.097×10-1	3.25
	cyclopentanone	8	3.90	1.799×10-2	1.04	7.338×10-2	1.04
	<i>n</i> -decane	5	41.43	2.252×10-1	3.70	8.614×10-1	3.96
	dibenzyl ether	15	9.54	5.142×10-2	2.14	2.131×10-1	2.25
	1,2-dichlorobenzene	15	16.63	8.500×10-2	1.48	3.478×10-1	1.54
	1,3-dichlorobenzene	4	10.71	4.902×10-2	3.78	2.004×10-1	3.78
	p-dichlorobenzene	13	14.25	6.710×10 ⁻²	3.54	2.641×10-1	3.49

			TLSM	TLSM	ld	TLSM	len
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	diethyl ether	17	16.27	2.910×10-2	16.18	1.371×10-1	16.12
	1,2-diethylbenzene	15	14.41	7.676×10-2	1.79	3.326×10-1	1.83
	1,4-diethylbenzene	15	14.13	7.719×10-2	2.98	3.395×10-1	3.12
	diisopropyl ether	15	14.79	3.390×10-2	12.60	1.632×10-1	12.55
	2,3-dimethylaniline	15	4.01	1.764×10-2	1.95	7.548×10-2	1.92
	2,6-dimethylaniline	15	4.62	2.212×10-2	2.66	9.091×10-2	2.67
	1,1'-dimethylferrocene	68	7.83	4.436×10-2	2.78	2.036×10-1	2.77
	2,3-dimethylnaphthalene	3	19.15	1.005×10-1	1.29	4.015×10-1	1.29
	2,6-dimethylnaphthalene	6	17.56	9.741×10-2	3.84	3.876×10-1	3.84
	2,7-dimethylnaphthalene	6	20.15	9.182×10-2	4.35	3.657×10-1	4.35
	2,4-dimethylphenol	15	5.13	2.221×10-2	2.58	8.975×10-2	2.62
	diolein	9	23.51	1.245×10-1	1.64	5.521×10-1	1.64

			TLSM	TLSM TLSMd		d TLSMen		
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD	
	disperse blue 14	47	32.69	1.780×10-1	2.61	6.471×10-1	2.83	
	disperse orange 11	65	33.85	1.873×10-1	3.70	6.727×10-1	4.01	
	1,3-divinylbenzene	15	17.23	8.848×10-2	1.09	3.760×10-1	1.10	
	docosahexaenoic acid (DHA)	63	10.84	5.786×10-2	1.35	2.594×10-1	1.32	
	DHA ethyl ester	65	19.78	1.047×10-1	2.28	4.690×10-1	2.36	
	DHA methyl ester	17	21.27	1.122×10-1	3.00	4.910×10-1	3.10	
	<i>n</i> -dodecane	5	47.19	2.593×10-1	5.39	8.841×10-1	5.73	
	eicosapentaenoic acid (EPA)	55	21.19	1.148×10-1	1.20	4.697×10-1	1.13	
	EPA ethyl ester	48	25.01	1.339×10-1	2.80	5.607×10-1	2.86	
	EPA methyl ester	17	22.87	1.212×10-1	3.62	5.137×10-1	3.68	
	ethanol	24	32.30	1.827×10-1	3.00	5.016×10-1	3.00	
	ethyl acetate	16	19.23	1.927×10-2	19.00	8.862×10 ⁻²	18.96	

			TLSM	$TLSM_d$		TLSM _{en}	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	ethyl benzoate	15	16.97	7.818×10-2	4.93	3.526×10-1	5.07
	ethylbenzene	15	17.47	9.140×10-2	2.07	3.936×10-1	2.08
	2-ethyltoluene	15	13.95	7.786×10-2	3.28	3.373×10-1	3.33
	3-ethyltoluene	15	14.42	7.504×10-2	3.59	3.291×10-1	3.64
	4-ethyltoluene	15	11.85	6.179×10-2	2.68	2.766×10-1	2.70
	eugenol	15	4.75	2.181×10-2	3.36	8.958×10-2	3.38
	ferrocene	107	27.63	1.568×10-1	4.35	6.111×10-1	4.43
	2-fluoroanisole	15	7.58	4.079×10-2	1.66	1.749×10-1	1.69
	fluorobenzene	15	5.58	2.650×10-2	3.64	1.173×10-1	3.67
	3-fluorophenol	4	4.04	-2.299×10-2	3.86	-9.190×10-2	3.86
	geraniol	4	4.70	8.590×10-3	3.91	3.678×10-2	3.91
	<i>n</i> -heptane	5	33.05	1.755×10-1	3.31	7.230×10-1	3.55

			TLSM	TLSMd		TLSM _{en}	
Solvent	Solute	NDP	AARD	k _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	2-heptanone	11	37.88	2.030×10-1	4.47	7.883×10-1	4.47
	4-heptanone	9	44.43	2.517×10-1	2.19	9.004×10-1	2.19
	hexachlorobenzene	14	25.93	1.569×10-1	7.77	6.292×10-1	7.47
	1-hexadecene	11	18.17	8.566×10-2	11.13	3.954×10-1	11.24
	1,1,1,5,5,5-hexafluoroacetylacetone	15	6.66	3.640×10-2	4.08	1.619×10-1	4.07
	<i>n</i> -hexane	5	29.45	1.489×10-1	2.85	6.075×10-1	3.00
	ibuprofen	99	20.40	1.113×10-1	3.05	4.750×10-1	3.24
	iodobenzene	20	14.67	7.925×10-2	2.62	3.173×10-1	2.61
	isobutylbenzene	15	12.54	6.819×10-2	2.35	3.015×10-1	2.43
	D-limonene	15	19.73	1.076×10-1	3.15	4.545×10-1	3.23
	linalool	15	16.58	8.349×10-2	3.49	3.709×10-1	3.51
	linoleic acid	71	12.78	7.314×10-2	3.25	3.221×10-1	3.25

			TLSM	TLSM	d	TLSM	en
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	linoleic acid methyl ester	20	20.90	1.089×10-1	1.27	4.672×10-1	1.33
	α -Linolenic acid	56	14.47	7.551×10 ⁻²	1.83	3.355×10-1	1.93
	γ-linolenic acid	142	21.27	1.154×10-1	2.79	4.849×10-1	2.65
	γ -linolenic acid ethyl ester	41	16.79	9.356×10-2	6.27	4.056×10-1	6.07
	γ -linolenic acid methyl ester	52	21.01	1.104×10-1	5.39	4.782×10-1	5.33
	L-menthone	23	17.77	9.704×10-2	4.05	4.058×10-1	3.97
	methanol	10	14.39	8.571×10 ⁻²	3.90	2.931×10-1	3.90
	2-methylanisole	15	8.57	4.704×10-2	1.99	2.002×10-1	1.95
	4-methylanisole	15	3.19	1.435×10-2	2.41	6.308×10-2	2.41
	3-methylbutylbenzene	15	13.79	7.579×10 ⁻²	2.61	3.372×10-1	2.64
	1-methylnaphthalene	11	10.04	7.049×10-4	10.02	1.055×10-1	10.01
	monoolein	11	13.91	7.215×10-2	1.40	3.113×10-1	1.40
			TLSM	TLSM	la	TLSM	len
---------	-------------------------------	-----	-------	--------------------------	------	--------------------	------
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	myristic acid ethyl ester	16	23.88	1.322×10-1	3.84	5.586×10-1	3.96
	myristoleic acid	42	16.09	8.700×10-2	4.06	3.888×10-1	3.93
	myristoleic acid methyl ester	81	11.14	4.107×10-2	9.86	1.887×10-1	9.95
	naphthalene	114	19.97	1.206×10-1	9.98	4.706×10-1	9.84
	1-naphthol	11	28.26	1.545×10-1	2.18	5.879×10-1	2.48
	2-naphthol	16	30.20	1.630×10-1	2.53	6.171×10-1	3.02
	2-nitroanisole	15	9.94	5.277×10-2	1.63	2.193×10-1	1.65
	nitrobenzene	23	12.04	6.199×10-2	1.92	2.492×10-1	1.94
	3-nitrotoluene	15	12.84	6.903×10-2	2.74	2.845×10-1	2.87
	<i>n</i> -nonane	5	41.26	2.224×10-1	3.65	8.339×10-1	3.93
	2-nonanone	10	44.20	2.519×10-1	4.21	9.013×10-1	4.21
	5-nonanone	12	42.00	2.331×10-1	4.95	8.695×10-1	4.95

			TLSM	TLSM	ld	TLSM	[en
Solvent	Solute	NDP	AARD	k _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	<i>n</i> -octane	5	38.36	2.028×10-1	3.65	7.796×10-1	3.83
	oleic acid	19	12.15	7.038×10-2	2.52	3.101×10-1	2.52
	oleic acid ethyl ester	5	11.85	5.355×10-2	5.87	2.332×10-1	5.87
	oleic acid methyl ester	21	10.33	1.934×10-2	9.49	8.476×10-2	9.49
	palladium(II) acetylacetonate	125	2.45	-5.920×10-4	2.45	-2.577×10-3	2.45
	palmitic acid ethyl ester	17	22.88	1.223×10-1	3.18	5.192×10-1	3.24
	<i>n</i> -pentane	5	20.76	9.650×10-2	3.15	4.276×10-1	3.29
	2-pentanone	23	18.45	9.925×10-2	2.06	4.264×10-1	2.09
	3-pentanone	46	17.95	9.521×10-2	2.17	4.154×10-1	2.25
	2,4-dimethyl-3-pentanone	8	4.49	1.518×10-2	3.25	6.728×10-2	3.25
	2,2,4,4-tetramethyl-3-pentanone	9	41.73	2.353×10-1	2.92	8.663×10-1	2.92
	<i>n</i> -pentylbenzene	31	15.12	8.162×10-2	2.04	3.628×10-1	2.58

			TLSM	TLSM	la	TLSM	len
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	phenanthrene	25	32.75	1.849×10-1	4.88	6.966×10-1	4.90
	phenol	109	13.55	6.924×10-2	3.12	2.720×10-1	3.23
	phenylacetic acid	16	17.71	8.841×10-2	2.01	3.489×10-1	2.10
	phenylacetylene	15	8.67	4.420×10-2	1.22	1.901×10-1	1.20
	phenylbutazone	78	15.46	8.141×10-2	4.25	3.398×10-1	4.56
	1-phenyldodecane	15	5.83	2.986×10-2	2.37	1.310×10-1	2.39
	1-phenylethanol	15	4.81	2.204×10-2	1.84	9.269×10-2	1.90
	2-phenylethanol	15	5.33	2.654×10-2	2.00	1.116×10-1	2.07
	2-phenylethyl acetate	15	4.49	2.439×10-2	2.09	1.042×10-1	2.14
	1-phenylhexane	15	13.96	7.293×10-2	1.95	3.162×10-1	2.03
	phenylmethanol	15	9.56	4.882×10-2	1.79	1.953×10-1	1.80
	1-phenyloctane	15	16.15	8.159×10-2	2.57	3.508×10-1	2.68

			TLSM		TLSMd		TLSMen	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD	
	3-phenylpropyl acetate	15	4.77	2.310×10-2	2.56	9.950×10-2	2.62	
	α-pinene	30	14.78	7.001×10-2	3.82	3.091×10-1	3.86	
	β-pinene	15	22.55	1.215×10-1	3.59	5.223×10-1	3.80	
	platinum(II) acetylacetonate	62	4.53	2.646×10-3	4.52	-8.552×10-5	4.53	
	1-propanol	17	42.27	2.413×10-1	4.99	5.578×10-1	4.99	
	2-phenyl-1-propanol	15	1.82	3.723×10-3	1.73	1.627×10-2	1.73	
	2-propanol	18	12.06	6.693×10-2	3.97	2.929×10-1	3.97	
	3-phenyl-1-propanol	15	5.52	2.827×10-2	2.17	1.188×10-1	2.21	
	<i>i</i> -propylbenzene	36	17.90	9.507×10-2	2.22	4.068×10-1	2.20	
	<i>n</i> -propylbenzene	60	15.56	8.636×10-2	8.20	3.769×10-1	8.23	
	pyrene	21	26.97	1.383×10-1	4.78	5.567×10-1	4.78	
	squalene	5	28.01	1.546×10-1	4.89	6.983×10-1	4.89	

			TLSM	TLSMd		TLSM en	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	stearic acid	4	50.62	2.956×10-1	1.34	9.550×10-1	1.34
	stearic acid ethyl ester	17	20.32	1.116×10-1	3.46	4.993×10-1	3.56
	styrene	15	7.24	3.773×10-2	4.10	1.608×10-1	4.12
	<i>n</i> -tetradecane	5	43.49	2.469×10-1	7.77	8.963×10-1	8.06
	tetrahydrofuran	15	14.86	1.550×10-2	14.70	6.823×10-2	14.67
	thenoyltrifluoroacetone	15	14.93	7.263×10-2	3.09	2.970×10-1	3.01
	α -tocopherol	82	27.71	1.492×10-1	1.36	6.366×10-1	1.69
	toluene	41	15.70	5.181×10-2	11.09	2.528×10-1	11.01
	triarachidonin	27	21.83	1.201×10-1	3.16	4.831×10-1	3.16
	trierucin	101	17.30	9.498×10-2	4.99	4.024×10-1	5.03
	trifluoroacetylacetone	15	17.33	9.123×10-2	1.82	3.893×10-1	1.91
	1,3,5-trimethylbenzene	34	12.15	6.586×10-2	4.31	2.840×10-1	4.34

			TLSM	TLSM	la	TLSM	.en
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	trinervonin	38	8 18.93	1.023×10-1	4.11	4.299×10-1	4.18
	triolein	14	4 31.18	1.768×10-1	3.36	6.971×10-1	3.18
	ubiquinone CoQ10	80) 20.66	1.042×10-1	2.69	4.122×10-1	2.98
	<i>n</i> -undecane	Ę	5 44.60	2.439×10-1	4.47	8.876×10-1	4.76
	6-undecanone	13	3 43.55	2.432×10-1	4.89	8.882×10-1	4.89
	vanillin	15	5 11.51	5.834×10-2	1.92	2.292×10-1	1.99
	vitamin K1	17	34.25	1.915×10-1	2.36	7.209×10-1	2.36
	vitamin K3	22	2 26.50	1.491×10-1	3.82	5.699×10-1	3.82
	water	24	27.32	-1.278×10-1	13.05	-4.545×10-1	12.45
	5- <i>tert</i> -butyl- <i>m</i> -xylene	31	15.30	8.362×10-2	2.26	3.683×10-1	2.55
	<i>m</i> -xylene	12	2 20.78	1.368×10-2	20.09	6.393×10-2	20.08
	<i>p</i> -xylene	7	7 18.73	1.067×10-1	3.48	4.485×10-1	3.55

			TLSM	TLSM TLSM		Id TLSMen		
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD	
cyclohexane	acetone	4	11.30	4.955×10-2	3.09	2.934×10-1	2.91	
	argon	7	20.10	1.014×10-1	11.80	6.802×10-1	11.22	
	benzene	12	6.29	1.041×10-2	6.07	1.316×10-1	5.79	
	carbon tetrachloride	7	12.65	6.568×10-2	3.56	3.747×10-1	2.79	
	1,1'-dimethylferrocene	5	4.87	-1.757×10-2	3.07	-9.921×10-2	3.06	
	ethane	5	10.47	1.348×10-2	10.21	9.491×10-2	10.09	
	ethylene	5	11.37	-8.498×10-3	10.84	-6.578×10-2	10.91	
	ethylferrocene	6	1.27	1.273×10-3	1.19	6.962×10-3	1.19	
	ferrocene	5	20.25	9.568×10-2	2.90	4.474×10-1	2.98	
	krypton	6	17.70	6.549×10-2	10.23	3.981×10-1	9.65	
	methane	6	16.61	-9.605×10-2	7.38	-9.052×10-1	8.24	
	naphthalene	12	13.89	7.168×10-2	7.66	3.963×10-1	6.07	

			TLSM		TLSMd		TLSM _{en}	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD	
	phenanthrene	8	16.34	6.352×10-2	6.30	4.505×10-1	4.70	
	tetrabutyltin	7	2.50	1.148×10-3	2.47	5.699×10-3	2.47	
	tetraethyltin	7	12.07	5.894×10-2	2.90	3.212×10-1	2.42	
	tetramethyltin	7	11.58	6.154×10-2	4.54	3.577×10-1	3.82	
	tetrapropyltin	6	9.27	3.977×10-2	3.07	2.710×10-1	2.75	
	toluene	12	8.91	4.090×10-2	7.89	2.728×10-1	7.07	
	1,3,5-trimethylbenzene	12	8.44	4.280×10-2	6.81	2.356×10-1	5.90	
	xenon	7	19.53	9.196×10-2	10.48	5.855×10-1	9.74	
	<i>m</i> -xylene	4	17.61	7.620×10-2	5.17	3.942×10-1	4.87	
	<i>p</i> -xylene	8	10.79	2.858×10-2	7.62	2.881×10-1	6.92	
<i>n</i> -decane	argon	3	12.26	-5.149×10-2	5.01	-4.105×10-1	5.74	
	carbon tetrachloride	3	6.08	-2.744×10-2	0.74	-1.265×10-1	1.05	

				TLSM	TLSM	[d	TLSM	.en
Solvent	Solute	NDP		AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	12-crown-4		4	13.13	-7.401×10-2	2.93	-2.619×10-1	2.92
	15-crown-5		4	13.95	-7.414×10-2	5.15	-2.492×10-1	5.19
	18-crown-6		4	11.72	-6.570×10-2	2.97	-2.570×10-1	2.87
	dicyclohexano-18-crown-6		4	12.10	-6.592×10-2	3.01	-2.131×10-1	2.23
	dicyclohexano-24-crown-8		4	16.69	-9.014×10-2	3.31	-2.728×10-1	2.24
	krypton		3	6.35	-1.799×10-2	4.96	-9.196×10-2	5.28
	tetrabutyltin		4	20.73	-1.045×10-1	1.40	-4.074×10-1	0.46
	tetraethyltin		4	15.00	7.229×10-2	1.84	3.277×10-1	0.76
	tetramethyltin		4	11.01	-5.890×10-2	1.31	-2.634×10-1	2.28
	tetrapropyltin		4	12.14	-5.827×10-2	0.24	-2.450×10-1	0.91
	s-trioxane		4	14.36	-7.347×10-2	1.36	-2.888×10-1	2.13
	xenon		8	8.11	5.266×10-3	7.93	2.993×10-2	7.87

			TLSM	TLSM	ld	TLSM	len
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
2,3-dimethylbutane	benzene	11	8.77	-3.834×10-2	1.65	-2.898×10-1	1.64
	naphthalene	9	3.03	1.325×10-2	2.07	7.908×10-2	2.08
	phenanthrene	11	8.47	4.517×10-2	2.90	2.503×10-1	2.89
	toluene	10	5.36	-2.908×10-2	1.41	-2.050×10-1	1.39
<i>n</i> -dodecane	acetone	5	31.64	-1.441×10-1	1.02	-6.070×10-1	1.30
	benzene	4	26.19	-1.229×10-1	0.49	-5.098×10-1	0.98
	carbon dioxide	9	14.60	-7.529×10-2	8.37	-3.982×10-1	10.12
	carbon monoxide	9	41.76	-1.880×10-1	9.32	-2.011	12.22
	<i>n</i> -decane	5	6.95	-3.194×10-2	2.17	-1.810×10-1	3.03
	<i>n</i> -hexadecane	5	16.88	8.487×10-2	4.43	2.477×10-1	2.51
	linoleic acid methyl ester	4	29.39	-1.384×10-1	2.25	-3.981×10-1	1.54
	naphthalene	5	3.52	-1.576×10-2	1.86	-5.033×10-2	1.94

			r	TLSM	TLSM	[d	TLSM	.en
Solvent	Solute	NDP		AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	<i>n</i> -octane		9	6.01	-2.991×10-2	1.47	-1.354×10-1	2.24
	<i>n</i> -tetradecane		5	6.52	-4.062×10-2	3.70	-1.984×10-1	3.68
	toluene		4	18.17	-9.156×10-2	1.16	-3.589×10-1	1.18
	1,3,5-trimethylbenzene		4	16.51	-8.181×10-2	1.54	-2.505×10-1	1.95
	vitamin K ₃		4	7.82	3.672×10-2	0.72	1.169×10-1	0.52
	<i>m</i> -xylene		4	9.64	-5.135×10-2	1.14	-1.651×10-1	1.40
<i>n</i> -eicosane	carbon dioxide		5	47.89	-2.382×10-1	4.71	-1.440	8.12
	carbon monoxide		5	86.18	-3.683×10-1	2.88	-4.302	7.09
	<i>n</i> -dodecane		5	39.67	-1.805×10-1	2.29	-7.710×10-1	3.13
	<i>n</i> -hexadecane		5	14.13	-6.736×10-2	2.22	-2.233×10-1	3.17
	<i>n</i> -octane		5	48.75	-2.287×10-1	3.11	-1.150	4.53
ethane	1-octene		6	14.98	6.900×10-2	5.98	3.770×10-1	5.69

Solvent	Solute	NDP	AARD	k _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	1-tetradecene	9	25.34	1.333×10-1	2.03	6.643×10-1	1.84
<i>n</i> -heptane	benzene	11	12.29	-5.496×10-2	2.36	-2.729×10-1	2.33
	<i>n</i> -decane	6	0.98	8.972×10-4	0.92	1.500×10-2	0.88
	<i>n</i> -dodecane	6	7.02	3.308×10-2	1.24	1.403×10-1	1.51
	ethylbenzene	4	10.93	-5.637×10-2	0.82	-2.098×10-1	1.08
	<i>n</i> -hexadecane	9	20.64	1.060×10-1	1.90	3.324×10-1	1.46
	<i>n</i> -hexane	11	2.21	-9.846×10-3	1.40	-4.358×10-2	1.35
	<i>n</i> -octane	13	1.69	2.548×10-3	1.66	1.155×10-2	1.68
	<i>n</i> -tetradecane	6	2.99	1.747×10-2	1.43	7.389×10-2	1.49
	toluene	4	5.67	-3.162×10-2	2.31	-1.548×10-1	2.46
	1,3,5-trimethylbenzene	4	7.63	-3.857×10-2	0.68	-1.520×10-1	0.86
	2,2,4-trimethylpentane	4	9.08	-4.467×10-2	0.43	-2.006×10-1	0.37

			TLSM	TLSM	TLSMd		len
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	o-xylene		4 3.32	-1.241×10-2	3.24	-5.336×10-2	3.30
	<i>p</i> -xylene		4 4.34	1.819×10-2	2.10	1.268×10-1	2.00
<i>n</i> -hexadecane	carbon dioxide	1	0 35.61	-1.617×10-1	4.13	-5.341×10-1	8.15
	carbon monoxide	1	0 95.40	-4.059×10-1	3.31	-2.513	8.90
	<i>n</i> -decane		5 26.23	-1.120×10-1	11.12	-4.237×10-1	7.38
	<i>n</i> -dodecane		5 8.59	-3.198×10-2	4.88	-8.363×10-2	3.88
	<i>n</i> -octane	1	0 25.50	-9.798×10-2	8.82	-3.417×10-1	5.53
	<i>n</i> -tetradecane		5 13.47	-6.707×10-2	7.32	-1.770×10-1	5.74
<i>n</i> -hexane	acetone		5 14.47	-5.912E-02	2.11	-2.870E-01	2.14
	acetonitrile		7 5.84	-6.807×10-4	5.81	-2.451×10-3	5.81
	benzene	4	.8 6.60	-1.905×10-2	4.83	-8.948×10-2	5.06
	carbon disulfide	1	0 10.43	4.360×10-2	4.75	1.925×10-1	4.75

			TL	SM	TLSM	I d	TLSMen		
Solvent	Solute	NDP	AA	ARD	k _{12,d}	AARD	<i>k</i> _{12,en}	AARD	
	carbon tetrabromide		8	8.51	-4.386×10-2	5.89	-1.640×10-1	5.89	
	o-difluorobenzene		7	10.29	5.111×10-2	1.78	2.144×10-1	2.45	
	p-difluorobenzene		7	10.52	5.444×10-2	1.31	2.310×10-1	1.75	
	9,10-dimethylanthracene		8	21.59	1.159×10-1	1.18	4.041×10-1	1.18	
	1,1'-dimethylferrocene		4	16.67	-8.488×10-2	0.89	-3.721×10-1	0.89	
	ethylferrocene		4	13.63	-6.778×10-2	0.68	-2.891×10-1	0.68	
	ferrocene		4	8.22	4.022×10-2	0.51	1.514×10-1	0.51	
	<i>n</i> -heptane		11	5.26	-9.722×10-4	5.24	-4.214×10-3	5.24	
	hexafluorobenzene		7	11.64	5.953×10-2	1.98	2.294×10-1	1.62	
	indole		2	7.19	3.150×10-2	1.05	1.178×10-1	1.05	
	linoleic acid		2	5.08	-3.200×10-2	1.34	-1.194×10-1	1.34	
	naphthalene		21	9.44	4.035×10-2	6.39	2.072×10-1	6.05	

			TLSM	TLSM	Id TLSM _{en}		
Solvent	Solute	NDP	AARD	k _{12,d}	AARD	<i>k</i> _{12,en}	AARD
	octafluorotoluene	7	8.94	3.931×10-2	1.89	1.707×10-1	1.45
	<i>n</i> -octane	7	3.31	1.731×10-2	0.43	7.335×10-2	0.45
	pentafluorobenzene	7	12.75	6.206×10-2	2.96	2.436×10-1	1.67
	phenanthrene	15	13.36	7.797×10-2	6.54	3.702×10-1	6.16
	pyrene	8	28.10	-1.337×10-1	1.85	-4.374×10-1	1.85
	1,2,3,5-tetrafluorobenzene	7	16.09	8.534×10-2	2.67	3.152×10-1	3.39
	1,2,4,5-tetrafluorobenzene	7	12.63	7.153×10-2	2.04	2.792×10-1	2.43
	toluene	32	5.74	-1.229×10-2	5.22	-7.400×10-2	5.28
	1,2,4-trifluorobenzene	7	14.37	6.784×10-2	2.24	2.836×10-1	1.24
	1,3,5-trimethylbenzene	20	5.26	3.439×10-3	5.23	1.398×10-2	5.24
	vitamin k3	5	15.22	8.587×10-2	2.07	3.093×10-1	2.07
	<i>m</i> -xylene	5	3.16	6.522×10 ⁻³	2.94	2.614×10-2	2.95

			TLSM	TLSM	TLSMd		TLSM _{en}	
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	<i>k</i> _{12,en}	AARD	
	<i>p</i> -xylene	17	7.72	2.289×10-2	7.25	1.298×10-1	7.27	
<i>n</i> -octane	argon	4	16.39	-7.539×10-2	3.47	-5.037×10-1	4.38	
	benzene	8	10.24	-5.520×10-2	1.35	-2.138×10-1	1.59	
	carbon tetrachloride	4	2.01	-1.365×10-2	0.76	-5.500×10-2	0.62	
	ethylbenzene	8	11.39	-5.576×10-2	1.81	-2.136×10-1	2.09	
	<i>n</i> -heptane	7	5.31	-2.225×10-2	0.96	-9.658×10-2	0.79	
	<i>n</i> -hexane	6	10.02	-4.571×10-2	2.78	-1.847×10-1	2.52	
	krypton	4	7.89	-4.417×10-2	4.28	-8.951×10-2	4.80	
	methane	4	60.89	-2.716×10-1	1.95	-1.765	4.19	
	tetrabutyltin	4	11.69	-7.100×10-2	3.47	-2.701×10-1	2.22	
	tetraethyltin	5	5.32	-1.307×10-2	4.66	-4.837×10-2	4.61	
	tetramethyltin	4	6.23	-3.458×10-2	0.96	-1.418×10-1	0.98	

				TLSM	TLSM	TLSMd		en
Solvent	Solute	NDP		AARD	k _{12,d} AARD		k _{12,en}	AARD
	tetrapropyltin		4	4.83	-2.720×10-2	2.19	-1.042×10-1	1.70
	toluene		8	10.11	-5.243×10-2	1.55	-2.347×10-1	1.69
	1,3,5-trimethylbenzene		8	13.41	-6.727×10-2	0.64	-2.541×10-1	0.46
	xenon		8	9.46	-1.719×10-2	9.14	-9.309×10-2	9.32
	<i>o</i> -xylene		8	3.50	-1.985×10-2	1.02	-7.577×10-2	0.92
	<i>p</i> -xylene		8	3.41	1.421×10-2	1.32	5.496×10-2	1.39
propane	1-octene		8	17.32	8.520×10-2	2.23	3.693×10-1	1.82
	1-tetradecene		8	24.65	1.278×10-1	2.61	5.187×10-1	2.10
sulfur hexafluoride	benzene		9	14.30	-3.528×10-2	8.41	-2.123×10-1	8.41
	benzoic acid		6	12.32	-6.601×10-2	4.99	-3.228×10-1	5.03
	carbon tetrachloride		7	10.97	-5.444×10-3	10.67	-2.915×10-2	10.67
	naphthalene		5	15.96	7.966×10-2	5.47	3.661×10-1	5.60

			TLSM	TLSM	ld	TLSM	len
Solvent	Solute	NDP	AARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	toluene	11	14.37	-6.357×10-2	11.39	-3.682×10-1	11.39
	1,3,5-trimethylbenzene	10	11.16	-3.744×10-2	10.37	-1.921×10-1	10.37
	<i>p</i> -xylene	52	9.76	3.268×10-2	7.57	1.501×10-1	7.46
<i>n</i> -tetradecane	acridine	8	37.40	2.007×10-1	23.61	7.673×10-1	21.29
	argon	4	55.66	2.829×10-1	37.15	9.802×10-1	36.36
	benzothiophene	7	29.29	1.060×10-1	17.85	5.133×10-1	16.64
	carbon tetrachloride	4	64.04	3.546×10-1	33.15	9.857×10-1	31.35
	dibenzothiophene	8	28.93	1.041×10-1	15.00	4.563×10-1	14.19
	krypton	4	58.90	3.267×10-1	38.16	9.843×10-1	36.30
	methane	4	50.82	-4.648×10-2	50.75	9.631×10-1	49.83
	naphthalene	7	43.72	1.406×10-1	26.51	6.127×10-1	24.90
	tetrabutyltin	4	49.17	2.148×10-1	37.78	7.907×10-1	34.89

			Τ	TLSM	TLSM	[d	TLSM	en
Solvent	Solute	NDP	A	ARD	<i>k</i> _{12,d}	AARD	k _{12,en}	AARD
	tetraethyltin		4	55.67	2.731×10-1	40.19	9.264×10-1	37.19
	tetramethyltin		4	55.09	2.559×10-1	39.67	9.249×10-1	37.28
	tetrapropyltin		4	53.91	2.456×10-1	38.74	8.652×10-1	35.75
	xenon		8	71.70	3.204×10-1	50.46	9.978×10-1	48.89
2,2,4-trimethylpentane	benzene		4	31.91	-1.543×10-1	1.65	-3.371	2.96
	1,3,5-trimethylbenzene		4	27.72	-1.771×10-1	4.27	-2.744	5.40
	ethylbenzene		4	31.88	-1.540×10-1	1.34	-2.638	1.44
	toluene		4	34.62	-1.338×10-1	1.64	-3.002	2.39
	o-xylene		4	27.34	-1.240×10-1	2.46	-2.540	3.73
	<i>p</i> -xylene		4	14.73	-7.543×10-2	1.82	-2.330	1.91

290 References

- 291 [1] C.M. Silva, H. Liu, Modeling of Transport Properties of Hard Sphere Fluids and
- 292 Related Systems, and its Applications, in: A. Mulero (Ed.), Theory Simul. Hard-
- 293 Sph. Fluids Relat. Syst., Springer, Berlin / Heidelberg, 2008: pp. 383–492.
- 294 [2] R. Krishna, J.A. Wesselingh, The Maxwell-Stefan approach to mass transfer,
 295 Chem. Eng. Sci. 52 (1997) 861–911.
- 296 [3] R. Taylor, R. Krishna, Multicomponent Mass Transfer, John Wiley & Sons, Inc.,
 297 New York, 1993.
- A. Vignes, Diffusion in binary solutions. Variation of diffusion coefficient with
 composition, Ind. Eng. Chem. Fundam. 5 (1966) 189–199.
- R. V. Vaz, J.R.B. Gomes, C.M. Silva, Molecular dynamics simulation of diffusion
 coefficients and structural properties of ketones in supercritical CO₂ at infinite
- 302 dilution, J. Supercrit. Fluids. 107 (2016) 630–638.
- 303 [6] C.R. Wilke, P. Chang, Correlations of diffusion coefficients in dilute solutions,
 304 AICHE J. 1 (1955) 264–270.
- 305 [7] E.G. Scheibel, Liquid Diffusivities, Ind. Eng. Chem. 9 (1954) 2007–2008.
- 306 [8] K.A. Reddy, L.K. Doraiswamy, Estimating liquid diffusivity, I&EC Fundam. 6
 307 (1967) 77–79.
- 308 [9] M.A. Lusis, G.A. Ratcliff, Difision in binary liquid mixtures at infinite dilution,
 309 Can. J. Chem. Eniineerinig. 46 (1968) 385–387.
- 310 [10] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids,
 311 Fifth ed., The McGraw-Hill Companies, Inc, 2001.
- 312 [11] W. Hayduk, B.S. Minhas, Correlations for prediction of molecular diffusivities in
- 313 liquids, Can. J. Chem. Eniineerinig. 60 (1982) 295–299.

- 314 [12] C. Lait, C. Tan, Measurement of Molecular Diffusion Coefficients in Supercritical
 315 Carbon Dioxide Using a Coated Capillary Column, Ind. Eng. Chem. Res. 34 (1995)
 316 674–680.
- 317 [13] O.J. Catchpole, M.B. King, Measurement and correlation of binary diffusion
 318 coefficients in near critical fluids, Ind. Eng. Chem. Res. 33 (1994) 1828–1837.
- 319 [14] Y. Zhu, X. Lu, J. Zhou, Y. Wang, J. Shi, Prediction of diffusion coefficients for gas,
- liquid and supercritical fluid: application to pure real fluids and infinite dilute
 binary solutions based on the simulation of Lennard–Jones fluid, Fluid Phase
 Equilib. 194–197 (2002) 1141–1159.
- R. V. Vaz, A.L. Magalhães, C.M. Silva, Prediction of binary diffusion coefficients
 in supercritical CO₂ with improved behavior near the critical point, J. Supercrit.
 Fluids. 91 (2014) 24–36.
- J.H. Dymond, Corrected Enskog theory and transport coefficients of liquids, J.
 Chem. Phys. 60 (1974) 969–973.
- J.H. Dymond, E. Bitch, E. Vogel, W.A. Wakeham, V. Vesovic, M.J. Assael, Dense
 fluids, in: J. Millat, J.H. Dymond, C.A. Nieto de Castro (Eds.), Transp. Prop.
- Fluids. Their Correl. Predict. Estim., Cambridge University Press, Cambridge,
 1996.
- A.L. Magalhães, F.A. Da Silva, C.M. Silva, Free-volume model for the diffusion
 coefficients of solutes at infinite dilution in supercritical CO₂ and liquid H₂O, J.
 Supercrit. Fluids. 74 (2013) 89–104.
- 335 [19] A.L. Magalhães, F.A. Da Silva, C.M. Silva, Tracer diffusion coefficients of polar
 336 systems, Chem. Eng. Sci. 73 (2012) 151–168.
- 337 [20] A.L. Magalhães, F.A. Da Silva, C.M. Silva, New models for tracer diffusion

- coefficients of hard sphere and real systems: Application to gases, liquids and
 supercritical fluids, J. Supercrit. Fluids. 55 (2011) 898–923.
- A.L. Magalhães, P.F. Lito, F.A. Da Silva, C.M. Silva, Simple and accurate
 correlations for diffusion coefficients of solutes in liquids and supercritical fluids
 over wide ranges of temperature and density, J. Supercrit. Fluids. 76 (2013) 94–
 114.
- H. Liu, C.M. Silva, E.A. Macedo, New equations for tracer diffusion coefficients
 of solutes in supercritical and liquid solvents based on the Lennard-Jones fluid
 model, Ind. Eng. Chem. Res. 36 (1997) 246–252.
- 347 [23] C.M. Silva, H. Liu, E.A. Macedo, Models for self-diffusion coefficients of dense
 348 fluids, including hydrogen-bonding substances, Chem. Eng. Sci. 53 (1998) 2423–
 349 2429.
- 350 [24] H. Liu, C.M. Silva, E.A. Macedo, Unified approach to the self-diffusion
 351 coefficients of dense fluids over wide ranges of temperature and pressure hard352 sphere, square-well, Lennard-Jones and real substances, Chem. Eng. Sci. 53 (1998)
 353 2403–2422.
- A.L. Magalhães, S.P. Cardoso, B.R. Figueiredo, F.A. Da Silva, C.M. Silva,
 Revisiting the liu-silva-macedo model for tracer diffusion coefficients of
 supercritical, liquid, and gaseous systems, Ind. Eng. Chem. Res. 49 (2010) 7697–
 7700.
- 358 [26] G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Leland Jr., Equilibrium
 359 thermodynamic properties of the mixture of hard spheres, J. Chem. Phys. 54
 360 (1971) 1523–1525.
- 361 [27] C.M. Silva, H. Liu, E.A. Macedo, Comparison between different explicit

- 362 expressions of the effective hard sphere diameter of Lennard-Jones fluid:
 363 application to self-diffusion coefficients, Ind. Eng. Chem. Res. 37 (1998) 221–227.
- 364 [28] D. Ben-Amotz, D.R. Herschbach, Estimation of effective diameters for molecular
 365 fluids, J. Phys. Chem. 94 (1990) 1038–1047.
- 366 [29] U.S. Department of Commerce, National Institute of Standards and Technology
 367 (NIST), (n.d.). https://www.nist.gov/.
- 368 [30] C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamic,
 369 Environmental, Transport, Safety, and Health Related Properties for Organic and
 370 Inorganic Chemicals, McGraw-Hill Professional, New York, 1998.
- [31] K.S. Pitzer, D.R. Schreiber, Improving equation-of-state accuracy in the critical
 region; equations for carbon dioxide and neopentane as examples, Fluid Phase
 Equilib. 41 (1988) 1–17.
- 374 [32] V. V. Altunin, M. Skhabetinov, Viscosity of liquid and gaseous carbon dioxide at
 375 temperatures 220–1300 K and pressure up to 1200 bar, Teploenergetika. 8 (1972)
 376 85–89.
- T. Funazukuri, C.Y. Kong, S. Kagei, Binary diffusion coefficients of acetone in
 carbon dioxide at 308.2 and 313.2 K in the pressure range from 7.9 to 40 MPa, Int.
 J. Thermophys. 21 (2000) 651–669.
- [34] P.R. Sassiat, P. Mourier, M.H. Caude, R.H. Rosset, Measurement of diffusion
 coefficients in supercritical carbon dioxide and correlation with the equation of
 Wilke and Chang, Anal. Chem. 59 (1987) 1164–1170.
- T. Funazukuri, C.Y. Kong, S. Kagei, Infinite-dilution binary diffusion coefficients
 of 2-propanone, 2-butanone, 2-pentanone, and 3-pentanone in CO₂ by the Taylor
 dispersion technique from 308.15 to 328.15 K in the pressure range from 8 to 35

- 386 MPa, Int. J. Thermophys. 21 (2000) 1279–1290.
- [36] C.Y. Kong, T. Funazukuri, S. Kagei, Chromatographic impulse response
 technique with curve fitting to measure binary diffusion coefficients and retention
 factors using polymer-coated capillary columns, J. Chromatogr. A. 1035 (2004)
 177–193.
- 391 [37] H. Nishiumi, M. Fujita, K. Agou, Diffusion of acetone in supercritical carbon
 392 dioxide, Fluid Phase Equilib. 117 (1996) 356–363.
- 393 [38] V.M. Shenai, B.L. Hamilton, M.A. Matthews, Diffusion in liquid and supercritical
 394 fluid mixtures, in: E. Kiran, J.F. Brennecke (Eds.), Supercrit. Fluid Eng. Sci. 395 Fundam. Appl., 1992: pp. 92–103.
- [39] N. Dahmen, A. Kordikowski, G.M. Schneider, Determination of binary diffusion
 coefficients of organic compounds in supercritical carbon dioxide by supercritical
 fluid chromatography, J. Chromatogr. A. 505 (1990) 169–178.
- 399 [40] O. Suárez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, Diffusion coefficients of 2400 fluoroanisole, 2-bromoanisole, allylbenzene and 1,3-divinylbenzene at infinite
- 401 dilution in supercritical carbon dioxide, Fluid Phase Equilib. 260 (2007) 279–286.
- 402 [41] C.Y. Kong, K. Watanabe, T. Funazukuri, Determination and correlation of infinite
 403 dilution binary diffusion coefficients for aluminum acetylacetonate in
 404 supercritical and liquid fluids, Fluid Phase Equilib. 420 (2015) 83–88.
- 405 [42] L.M. González, O. Suárez-Iglesias, J.L. Bueno, C. Pizarro, I. Medina, Limiting
 406 binary diffusivities of aniline, styrene, and mesitylene in supercritical carbon
 407 dioxide, J. Chem. Eng. Data. 52 (2007) 1286–1290.
- 408 [43] L.M. González, J.L. Bueno, I. Medina, Determination of binary diffusion 409 coefficients of anisole, 2,4-dimethylphenol, and nitrobenzene in supercritical

- 410 carbon dioxide, Ind. Eng. Chem. Res. 40 (2001) 3711–3716.
- 411 [44] K. Abaroudi, Limpieza de Matrices Sólidas Porosas de Interés Medioambiental
 412 con Fluidos Supercríticos, Universidad Politécnica de Catalunã, 2001.
- 413 [45] T. Funazukuri, C.Y. Kong, T. Kikuchi, S. Kagei, Measurements of binary diffusion
 414 coefficient and partition ratio at infinite dilution for linoleic acid and arachidonic
- 415 acid in supercritical carbon dioxide, J. Chem. Eng. Data. 48 (2003) 684–688.
- 416 [46] Y.S. Han, Y.W. Yang, P.D. Wu, Binary diffusion coefficients of arachidonic acid
- 417 ethyl ester, cis-5,8,11,14,17-eicosapentaenoic acid ethyl ester, and cis-
- 418 4,7,10,13,16,19-docosahexanenoic acid ethyl ester in supercritical carbon dioxide,
- 419 J. Chem. Eng. Data. 52 (2007) 555–559.
- 420 [47] K.K. Liong, P.A. Wells, N.R. Foster, Diffusion coefficients of long-chain esters in
 421 supercritical carbon dioxide, Ind. Eng. Chem. Res. 30 (1991) 1329–1335.
- [48] C.A. Filho, C.M. Silva, M.B. Quadri, E.A. Macedo, Infinite dilution diffusion
 coefficients of linalool and benzene in supercritical carbon dioxide, J. Chem. Eng.
 Data. 47 (2002) 1351–1354.
- [49] I. Swaid, G.M. Schneider, Determination of binary diffusion coefficients of
 benzene and some alkylbenzenes in supercritical CO₂ between 308 and 328 K in
 the pressure range 80 to 160 bar with supercritical fluid chromatography (SFC),
- 428 Berichte Der Bunsengesellschaft/Physical Chem. Chem. Phys. 83 (1979) 969–974.
- J.J. Suárez, J.L. Bueno, I. Medina, Determination of binary diffusion coefficients of
 benzene and derivatives in supercritical carbon dioxide, Chem. Eng. Sci. 48 (1993)
 2419–2427.
- 432 [51] T. Funazukuri, N. Nishimoto, Tracer diffusion coefficients of benzene in dense
 433 CO2 at 313.2 K and 8.5-30 MPa, Fluid Phase Equilib. 125 (1996) 235–243.

- T. Funazukuri, C.Y. Kong, S. Kagei, Infinite dilution binary diffusion coefficients
 of benzene in carbon dioxide by the Taylor dispersion technique at temperatures
 from 308.15 to 328.15 K and pressures from 6 to 30 MPa, Int. J. Thermophys. 22
 (2001) 1643–1660.
- J.M.H.L. Sengers, U.K. Deiters, U. Klask, P. Swidersky, G.M. Schneider,
 Application of the Taylor dispersion method in supercritical fluids, Int. J.
 Thermophys. 14 (1993) 893–922.
- 441 [54] K. Ago, H. Nishiumi, Mutual diffusion coefficients of benzene in supercritical
 442 carbon dioxide, J. Chem. Eng. Japan. 32 (1999) 563–568.
- 443 [55] J.L. Bueno, J.J. Suárez, J. Dizy, I. Medina, Infinite dilution diffusion
 444 coefficients:benzene derivatives as solutes in supercritical carbon dioxide, J.
 445 Chem. Eng. Data. 38 (1993) 344–349.
- 446 [56] C.Y. Kong, T. Funazukuri, S. Kagei, Binary diffusion coefficients and retention
 447 factors for polar compounds in supercritical carbon dioxide by chromatographic
 448 impulse response method, J. Supercrit. Fluids. 37 (2006) 359–366.
- 449 [57] H. Fu, L.A.F. Coelho, M.A. Matthews, Diffusion coefficients of model
 450 contaminants in dense CO2, J. Supercrit. Fluids. 18 (2000) 141–155.
- 451 [58] O. Suárez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, Diffusion of benzyl acetate,
 452 2-phenylethyl acetate, 3-phenylpropyl acetate, and dibenzyl ether in mixtures of
- 453 carbon dioxide and ethanol, Ind. Eng. Chem. Res. 46 (2007) 3810–3819.
- 454 [59] O. Suárez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, Limiting diffusion
 455 coefficients of ethyl benzoate, benzylacetone, and eugenol in carbon dioxide at
 456 supercritical conditions, J. Chem. Eng. Data. 53 (2008) 779–784.
- 457 [60] L.M. González, O. Suárez-Iglesias, J.L. Bueno, C. Pizarro, I. Medina, Application

- 458 of the corresponding states principle to the diffusion in CO₂, AIChE J. 53 (2007)
 459 3054–3061.
- 460 [61] J.J. Suárez, I. Medina, J.L. Bueno, Diffusion coefficients in supercritical fluids:
 461 available data and graphical correlations, Fluid Phase Equilib. 153 (1998) 167–212.
- 462 [62] T. Funazukuri, Measurements of binary diffusion coefficients of 20 organic
 463 compounds in CO₂ at 313.2 K and 16.0 MPa, J. Chem. Eng. Japan. 29 (1996) 191–
 464 192.
- 465 [63] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Diffusion coefficients of *n*466 butylbenzene, *n*-pentylbenzene, 1-phenylhexane, 1-phenyloctane, and 1467 phenyldodecane in supercritical carbon dioxide, Ind. Eng. Chem. Res. 47 (2008)
 468 6783–6789.
- [64] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Diffusion coefficients of
 isobutylbenzene, *sec*-butylbenzene, and 3-methylbutylbenzene in supercritical
 carbon dioxide, J. Chem. Eng. Data. 58 (2013) 2001–2007.
- 472 [65] L.M. González, J.L. Bueno, I. Medina, Measurement of diffusion coefficients for 2473 nitroanisole, 1,2-dichlorobenzene and *tert*-butylbenzene in carbon dioxide
 474 containing modifiers, J. Supercrit. Fluids. 24 (2002) 219–229.
- 475 [66] K.K. Liong, P.A. Wells, N.R. Foster, Diffusion of fatty acid esters in supercritical
 476 carbon dioxide, Ind. Eng. Chem. Res. 31 (1992) 390–399.
- 477 [67] P.A. Wells, Diffusion in supercritical fluids, The University of New South Wales,
 478 Kensington, Australia, 1991.
- [68] C.C. Lai, C.S. Tan, Measurement of molecular diffusion coefficient in supercritical
 carbon dioxide using a coated capillary column, Ind. Eng. Chem. Res. 34 (1995)

481 674–680.

482	[69]	G. Knaff, E.U. Schlünder, Diffusion coefficients of naphthalene and caffeine in
483		supercritical carbon dioxide, Chem. Eng. Process. 21 (1987) 101–105.
484	[70]	H.H. Lauer, D. McManigill, R.D. Board, Mobile-phase transport properties of
485		liquefied gases in near critical and supercritical fluid chromatography, Anal.
486		Chem. 55 (1983) 1370–1375.
487	[71]	T. Funazukuri, C.Y. Kong, S. Kagei, Binary diffusion coefficients, partition ratios
488		and partial molar volumes at infinite dilution for β -carotene and α -tocopherol in
489		supercritical carbon dioxide, J. Supercrit. Fluids. 27 (2003) 85–96.
490	[72]	T. Funazukuri, C.Y. Kong, N. Murooka, S. Kagei, Measurements of binary
491		diffusion coefficients and partition ratios for acetone, phenol, α -tocopherol, and

492 β-carotene in supercritical carbon dioxide with a poly(ethylene glycol)-coated
493 capillary column, Ind. Eng. Chem. Res. 39 (2000) 4462–4469.

- T. Funazukuri, C.Y. Kong, S. Kagei, Measurements of binary diffusion coefficients
 for some low volatile compounds in supercritical carbon dioxide by input–output
 response technique with two diffusion columns connected in series, Fluid Phase
 Equilib. 194 (2002) 1169–1178.
- 498 [74] X. Dong, B. Su, H. Xing, Z. Bao, Y. Yang, Q. Ren, Cosolvent effects on the
 diffusions of 1,3-dichlorobenzene, L-carvone, geraniol and 3-fluorophenol in
 supercritical carbon dioxide, J. Supercrit. Fluids. 58 (2011) 216–225.
- [75] X. Dong, B. Su, H. Xing, Y. Yang, Q. Ren, Diffusion coefficients of L-menthone and
 L-carvone in mixtures of carbon dioxide and ethanol, J. Supercrit. Fluids. 55 (2010)
 86–95.
- 504 [76] J. Cordeiro, A.L. Magalhães, A.A. Valente, C.M. Silva, Experimental and 505 theoretical analysis of the diffusion behavior of chromium(III) acetylacetonate in

506 supercritical CO₂, J. Supercrit. Fluids. 118 (2016) 153–162.

- 507 [77] C.Y. Kong, K. Watanabe, T. Funazukuri, Measurement and correlation of the
 508 diffusion coefficients of chromium(III) acetylacetonate at infinite dilution in
 509 supercritical carbon dioxide and in liquid ethanol, J. Chem. Thermodyn. 105
 510 (2017) 86–93.
- [78] C.A. Filho, C.M. Silva, M.B. Quadri, E.A. Macedo, Tracer diffusion coefficients of
 citral and D-limonene in supercritical carbon dioxide, Fluid Phase Equilib. 204
 (2003) 65–73.
- 514 [79] C.Y. Kong, Y.Y. Gu, M. Nakamura, T. Funazukuri, S. Kagei, Diffusion coefficients
 515 of metal acetylacetonates in supercritical carbon dioxide, Fluid Phase Equilib. 297
 516 (2010) 162–167.
- 517 [80] Y.N. Yang, M.A. Matthews, Diffusion of chelating agents in supercritical CO₂ and
 518 a predictive approach for diffusion coefficients, J. Chem. Eng. Data. 46 (2001) 588–
 519 595.
- 520 [81] C.Y. Kong, N. Takahashi, T. Funazukuri, S. Kagei, Measurements of binary
 521 diffusion coefficients and retention factors for dibenzo-24-crown-8 and 15-crown522 5 in supercritical carbon dioxide by chromatographic impulse response technique,
 523 Fluid Phase Equilib. 257 (2007) 223–227.
- [82] N. Dahmen, A. Dulberg, G.M.M. Schneider, A. Kordikowski, G.M.M. Schneider,
 A. Dulberg, G.M.M. Schneider, Determination of binary diffusion coefficients in
 supercritical carbon dioxide with supercritical fluid chromatography (SFC),
 Berichte Der Bunsen-Gesellschaft-Physical Chem. Chem. Phys. 94 (1990) 384–386.
 [83] S. Umezawa, A. Nagashima, Measurement of the diffusion coefficients of acetone,

benzene, and alkane in supercritical CO2 by the Taylor dispersion method, J.

529

- 530 Supercrit. Fluids. 5 (1992) 242–250.
- 531 [84] C.M. Silva, E.A. Macedo, Diffusion coefficients of ethers in supercritical carbon
 532 dioxide, Ind. Eng. Chem. Res. 37 (1998) 1490–1498.
- 533 [85] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Using supercritical fluid
 534 chromatography to determine diffusion coefficients of 1,2-diethylbenzene, 1,4535 diethylbenzene, 5-*tert*-butyl-*m*-xylene and phenylacetylene in supercritical
 536 carbon dioxide, J. Chromatogr. A. 1167 (2007) 202–209.
- 537 [86] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Binary diffusion coefficients
 538 for 2,3-dimethylaniline, 2,6-dimethylaniline, 2-methylanisole, 4-methylanisole
 539 and 3-nitrotoluene in supercritical carbon dioxide, J. Supercrit. Fluids. 48 (2009)
 540 1–8.
- 541 [87] C.Y. Kong, M. Nakamura, K. Sone, T. Funazukuri, S. Kagei, Measurements of
 542 binary diffusion coefficients for ferrocene and 1,1'-dimethylferrocene in
 543 supercritical carbon dioxide, J. Chem. Eng. Data. 55 (2010) 3095–3100.
- 544 [88] H. Higashi, Y. Iwai, Y. Nakamura, S. Yamamoto, Y. Arai, Correlation of diffusion
 545 coefficients for naphthalene and dimethylnaphthalene isomers in supercritical
 546 carbon dioxide, Fluid Phase Equilib. 166 (1999) 101–110.
- 547 [89] H. Higashi, Y. Iwai, Y. Takahashi, H. Uchida, Y. Arai, Diffusion coefficients of
 548 naphthalene and dimethylnaphthalene in supercritical carbon dioxide, Fluid
 549 Phase Equilib. 144 (1998) 269–278.
- 550 [90] T. Funazukuri, C.Y. Kong, S. Kagei, Effects of molecular weight and degree of
 551 unsaturation on binary diffusion coefficients for lipids in supercritical carbon
 552 dioxide, Fluid Phase Equilib. 219 (2004) 67–73.
- 553 [91] T. Funazukuri, T. Yamasaki, M. Taguchi, C.Y. Kong, Measurement of binary

- diffusion coefficient and solubility estimation for dyes in supercritical carbon
 dioxide by CIR method, Fluid Phase Equilib. 420 (2015) 7–13.
- 556 [92] T. Funazukuri, C.Y. Kong, S. Kagei, Binary diffusion coefficient, partition ratio,
 and partial molar volume for docosahexaenoic acid, eicosapentaenoic acid and *α*linolenic acid at infinite dilution in supercritical carbon dioxide, Fluid Phase
 Equilib. 206 (2003) 163–178.
- 560 [93] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Binary diffusion coefficients
 561 of 2-ethyltoluene, 3-ethyltoluene, and 4-ethyltoluene in supercritical carbon
 562 dioxide, J. Chem. Eng. Data. 54 (2009) 1467–1471.
- 563 [94] C.Y. Kong, K. Sone, T. Sako, T. Funazukuri, S. Kagei, Solubility determination of
 564 organometallic complexes in supercritical carbon dioxide by chromatographic
 565 impulse response method, Fluid Phase Equilib. 302 (2011) 347–353.
- 566 [95] A. Akgerman, C. Erkey, M. Orejuela, Limiting diffusion coefficients of heavy
 567 molecular weight organic contaminants in supercritical carbon dioxide, Ind. Eng.
 568 Chem. Res. 35 (1996) 911–917.
- 569 [96] R. Lin, L.L. Tavlarides, Diffusion coefficients of diesel fuel and surrogate
 570 compounds in supercritical carbon dioxide, J. Supercrit. Fluids. 52 (2010) 47–55.
- 571 [97] C.Y. Kong, K. Sugiura, S. Natsume, J. Sakabe, T. Funazukuri, K. Miyake, I.
 572 Okajima, S. Badhulika, T. Sako, Measurements and correlation of diffusion
 573 coefficients of ibuprofen in both liquid and supercritical fluids, J. Supercrit. Fluids.
 574 159 (2020) 104776.
- 575 [98] T. Funazukuri, S. Hachisu, N. Wakao, Measurements of binary diffusion
 576 coefficients of C16-C24 unsaturated fatty acid methyl esters in supercritical carbon
 577 dioxide, Ind. Eng. Chem. Res. 30 (1991) 1323–1329.

- 578 [99] T. Funazukuri, Y. Ishiwata, Diffusion coefficients of linoleic acid methyl ester,
 579 Vitamin K₃ and indole in mixtures of carbon dioxide and *n*-hexane at 313.2 K, and
 580 16.0 MPa and 25.0 MPa, Fluid Phase Equilib. 164 (1999) 117–129.
- [100] C.Y. Kong, N.R.W. Withanage, T. Funazukuri, S. Kagei, Binary diffusion
 coefficients and retention factors for γ-linolenic acid and its methyl and ethyl
 esters in supercritical carbon dioxide, J. Supercrit. Fluids. 37 (2006) 63–71.
- [101] C.Y. Kong, M. Mori, T. Funazukuri, S. Kagei, Measurements of binary diffusion
 coefficients, retention factors and partial molar volumes for myristoleic acid and
 its methyl ester in supercritical carbon dioxide, Anal. Sci. 22 (2006) 1431–1436.
- 587 [102] T. Funazukuri, Y. Ishiwata, N. Wakao, Predictive correlation for binary diffusion
 588 coefficients in dense carbon dioxide, AIChE J. 38 (1992) 1761–1768.
- 589 [103] D.M. Lamb, S.T. Adamy, K.W. Woo, J. Jonas, Transport and relaxation of
 590 naphthalene in supercritical fluids, J. Phys. Chem. 93 (1989) 5002–5005.
- 591 [104] T. Funazukuri, S. Hachisu, N. Wakao, Measurement of diffusion coefficients of
 592 C18 unsaturated fatty acid methyl esters, naphthalene, and benzene in
 593 supercritical carbon dioxide by a tracer response technique, Anal. Chem. 61 (1989)
 594 118–122.
- 595 [105] P.G. Debenedetti, R.C. Reid, Diffusion and mass transfer in supercritical fluids,
 596 AIChE J. 32 (1986) 2034–2046.
- 597 [106] T. Wells, N.R. Foster, R.P. Chaplin, Diffusion of phenylacetic acid and vanillin in
 598 supercritical carbon dioxide, Ind. Eng. Chem. Res. 31 (1992) 927–934.
- [107] C.Y. Kong, K. Watanabe, T. Funazukuri, Diffusion coefficients of phenylbutazone
 in supercritical CO₂ and in ethanol, J. Chromatogr. A. 1279 (2013) 92–97.
- 601 [108] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Molecular diffusion

- coefficients of phenylmethanol, 1-phenylethanol, 2-phenylethanol, 2-phenyl-1propanol, and 3-phenyl-1-propanol in supercritical carbon dioxide, J. Supercrit.
 Fluids. 43 (2008) 469–476.
- 605 [109] C.M. Silva, C.A. Filho, M.B. Quadri, E.A. Macedo, Binary diffusion coefficients of
 606 α-pinene and β-pinene in supercritical carbon dioxide, J. Supercrit. Fluids. 32
 607 (2004) 167–175.
- R. V. Vaz, A.L. Magalhães, A.A. Valente, C.M. Silva, Measurement and modeling
 of tracer diffusivities of *α*-pinene in supercritical CO₂, and analysis of their
 hydrodynamic and free-volume behaviors, J. Supercrit. Fluids. 107 (2016) 690–698.
- [111] C.Y. Kong, T. Siratori, T. Funazukuri, G. Wang, Infinite dilution partial molar
 volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide, J.
 Chromatogr. A. 1362 (2014) 294–300.
- 614 [112] J.J. Suárez, J.L. Bueno, I. Medina, J. Dizy, Applications of supercritical
 615 chromatography Determination of molecular diffusivity, Afinidad. 49 (1992)
 616 101–113.
- 617 [113] C.Y. Kong, N.R.W. Withanage, T. Funazukuri, S. Kagei, Binary diffusion
 618 coefficients and retention factors for long-chain triglycerides in supercritical
 619 carbon dioxide by the chromatographic impulse response method, J. Chem. Eng.
 620 Data. 50 (2005) 1635–1640.
- [114] T. Funazukuri, C.Y. Kong, S. Kagei, Infinite-dilution binary diffusion coefficient,
 partition ratio, and partial molar volume for ubiquinone CoQ10 in supercritical
 carbon dioxide, Ind. Eng. Chem. Res. 41 (2002) 2812–2818.
- 624 [115] B. Xu, K. Nagashima, J.M. DeSimone, C.S. Johnson Jr., Diffusion of water in liquid
 625 and supercritical carbon dioxide: An NMR study, J. Phys. Chem. A. 107 (2003) 1–

3.

- [116] T. Funazukuri, Nishimoton, N. Wakao, Binary diffusion coefficients of organic
 compounds in hexane, dodecane, and cyclohexane at 303.2-333.2 K and 16.0 MPa,
 J. Chem. Eng. Data. 39 (1994) 911–915.
- [117] S.H. Chen, H.T. Davis, D.F. Evans, Tracer diffusion in polyatomic liquids. II, J.
 Chem. Phys. 75 (1981) 2540–2544.
- [118] C.K.J. Sun, S.H. Chen, Tracer diffusion of aromatic hydrocarbons in liquid
 cyclohexane up to its critical temperature, AIChE J. 31 (1985) 1510–1515.
- 634 [119] M. Toriurmi, R. Katooka, K. Yui, T. Funazukuri, C.Y. Kong, S. Kagei,
 635 Measurements of binary diffusion coefficients for metal complexes in organic
 636 solvents by the Taylor dispersion method, Fluid Phase Equilib. 297 (2010) 62–66.
- [120] B.H.C. Chen, C.K.J. Sun, S.H. Chen, Hard sphere treatment of binary diffusion in
 liquid at high dilution up to the critical temperature, J. Chem. Phys. 82 (1985)
 2052–2055.
- 640 [121] C.K.J. Sun, S.H. Chen, Tracer diffusion of aromatic hydrocarbons in *n*-hexane up
 641 to the supercritical region, Chem. Eng. Sci. 40 (1985) 2217–2224.
- 642 [122] S.H. Chen, H.T. Davis, D.F. Evans, Tracer diffusion in polyatomic liquids. III, J.
 643 Chem. Phys. 77 (1982) 2540–2544.
- 644 [123] H.C. Chen, S.H. Chen, Tracer diffusion of crown ethers in *n*-decane and *n*645 tetradecane: An improved correlation for binary systems involving normal
 646 alkanes, Ind. Eng. Chem. Fundam. 24 (1985) 187–192.
- 647 [124] G.L. Pollack, R.P. Kennan, J.F. Himm, D.R. Stump, Diffusion of xenon in liquid
 648 alkanes: Temperature dependence measurements with a new method. Stokes-649 Einstein and hard sphere theories, J. Chem. Phys. 92 (1990) 625–630.

- [125] C.K.J. Sun, S.H. Chen, Diffusion of benzene, toluene, naphthalene, and
 phenanthrene in supercritical dense 2,3-dimethylbutane, AIChE J. 31 (1985) 1904–
 1910.
- [126] M.A. Matthews, J.B. Rodden, A. Akgerman, High-temperature diffusion of
 hydrogen, carbon monoxide, and carbon dioxide in liquid *n*-heptane, *n*-dodecane,
 and *n*-hexadecane, J. Chem. Eng. Data. 32 (1987) 319–322.
- [127] M.A. Matthews, A. Akgerman, Diffusion coefficients for binary alkane mixtures
 to 573 K and 3.5 MPa, AIChE J. 33 (1987) 881–885.
- 658 [128] J.B. Rodden, C. Erkey, A. Akgerman, High-temperature diffusion, viscosity, and
- density measurements in *n*-eicosane, J. Chem. Eng. Data. 33 (1988) 344–347.
- 660 [129] J.M. Noel, C. Erkey, D.B. Bukur, A. Akgerman, Infinite dilution mutual diffusion
- 661 coefficients of 1-octene and 1-tetradecene in near-critical ethane and propane, J.
 662 Chem. Eng. Data. 39 (1994) 920–921.
- [130] E. Grushka, E.J. Kikta, Diffusion in liquids. II. Dependence of diffusion
 coefficients on molecular weight and on temperature, J. Am. Chem. Soc. 98 (1976)
 665 643–648.
- [131] R.Y. Qian, Y.Q. Fan, M.R. Shi, J. Shi, Predictive equation of tracer liquid diffusion
 coefficient from viscosity, Chinese J. Chem. Eng. 4 (1996) 203–208.
- [132] H.Y. Lo, Diffusion coefficients in binary liquid *n*-alkane systems, J. Chem. Eng.
 Data. 19 (1974) 236–241.
- 670 [133] D.L. Bidlack, D.K. Anderson, Mutual diffusion in nonideal nonassociating liquid
 671 systems, J. Phys. Chem. 68 (1964) 3790–3794.
- 672 [134] A.A. Alizadeh, W.A. Wakeham, Mutual diffusion coefficients for binary mixtures
- 673 of normal alkanes, Int. J. Thermophys. 3 (1982) 307–323.

- 674 [135] C.M. Padrel de Oliveira, J.M.N.A. Fareleira, C.A. Nieto de Castro, Mutual
 675 diffusivity in binary mixtures of *n*-heptane with *n*-hexane isomers, Int. J.
 676 Thermophys. 10 (1989) 973–982.
- 677 [136] S.F.Y. Li, L.S. Yue, Composition dependence of binary diffusion coefficients in
 678 alkane mixtures, Int. J. Thermophys. 11 (1990) 537–554.
- 679 [137] S.F.Y. Li, W.A. Wakeham, Mutual diffusion coefficients for two *n*-octane isomers
 680 in n-heptane, Int. J. Thermophys. 10 (1989) 995–1003.
- [138] M.A. Matthews, J.B. Rodden, A. Akgerman, High-temperature diffusion,
 viscosity, and density measurements in n-hexadecane, J. Chem. Eng. Data. 32
 (1987) 317–319.
- [139] J.H. Dymond, L.A. Woolf, Tracer diffusion of organic solutes in *n*-hexane at
 pressures up to 400 MPa, J. Chem. Soc. Faraday Trans. 1. 78 (1982) 991–1000.
- [140] A. Safi, C. Nicolas, E. Neau, J.L. Chevalier, Measurement and correlation of
 diffusion coefficients of aromatic compounds at infinite dilution in alkane and
 cycloalkane solvents, J. Chem. Eng. Data. 52 (2007) 977–981.
- [141] J. Leffler, H.T. Cullinan, Variation of liquid diffusion coefficients with
 composition. Dilute ternary systems, Ind. Eng. Chem. Fundam. 9 (1970) 88–93.
- [142] K.R. Harris, C.K.N. Pua, P.J. Dunlop, Mutual and tracer diffusion coefficients and
 frictional coefficients for systems benzene-chlorobenzene, benzene-*n*-hexane, and
- 693 benzene-*n*-heptane at 25 °C, J. Phys. Chem. 74 (1970) 3518–3529.
- 694 [143] M.A. Awan, J.H. Dymond, Transport properties of nonelectrolyte liquid mixtures.
- K. Limiting mutual diffusion coefficients of fluorinated benzenes in n-hexane, Int.
 J. Thermophys. 17 (1996) 759–769.
- 697 [144] M. Okamoto, Diffusion coefficients estimated by dynamic fluorescence quenching
- at high pressure: pyrene, 9,10-dimethylanthracene, and oxygen in *n*-hexane, Int.
- 699 J. Thermophys. 23 (2002) 421–435.
- [145] D.L. Bidlack, T.K. Kett, C.M. Kelly, D.K. Anderson, Diffusion in the solvents
 hexane and carbon tetrachloride, J. Chem. Eng. Data. 14 (1969) 342–343.
- [146] E. Grushka, E.J. Kikta, Extension of the chromatographic broadening method of
 measuring diffusion coefficients to liquid systems. I. Diffusion coefficients of
 some alkylbenzenes in chloroform, J. Phys. Chem. 78 (1974) 2297–2301.
- [147] J.T. Holmes, D.R. Olander, C.R. Wilke, Diffusion in mixed Solvents, AIChE J. 8(1962) 646–649.
- 707 [148] Y.Q. Fan, R.Y. Qian, M.R. Shi, J. Shi, Infinite dilution diffusion coefficients of
 708 several aromatic hydrocarbons in octane and 2,2,4-trimethylpentane, J. Chem.
 709 Eng. Data. 40 (1995) 1053–1055.
- [149] J.W. Moore, R.M. Wellek, Diffusion coefficients of n-heptane and *n*-decane in *n*alkanes and *n*-alcohols at several temperatures, J. Chem. Eng. Data. 19 (1974) 136–
 140.
- [150] A. Kopner, A. Hamm, J. Ellert, R. Feist, G.M. Schneider, Determination of binary
 diffusion coefficients in supercritical chlorotrifluoromethane and
 sulfurhexafluoride with supercritical fluid chromatography (SFC), Chem. Eng.
 Sci. 42 (1987) 2213–2218.
- [151] N. Márquez, M.T. Kreutzer, M. Makkee, J.A. Moulijn, Infinite dilution binary
 diffusion coefficients of hydrotreating compounds in tetradecane in the
 temperature range from (310 to 475) K, J. Chem. Eng. Data. 53 (2008) 439–443.
- 720 [152] C.L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons, William
- 721 Andrew Inc., New York, 2008.

109

- [153] K.M. Klincewicz, R.C. Reid, Estimation of critical properties with group
 contribution methods, AIChE J. 30 (1984) 137–142.
- [154] K.G. Joback, R.C. Reid, A unified approach to physical property estimation using
 multivariate statistical techniques, Massachusetts Institute of Technology, 1984.
- [155] K.G. Joback, R.C. Reid, Estimation of pure-component properties from group contributions, Chem. Eng. Commun. 57 (1987) 233–243.
- [156] X. Wen, Y. Qiang, A new group contribution method for estimating critical
 properties of organic compounds, Ind. Eng. Chem. Res. 40 (2001) 6245–6250.
- 730 [157] D. Ambrose, Correlation and estimation of vapour-liquid critical properties. I:
- 731 critical temperatures of organic compounds, in: NPL Tech. Report. Chem. 92, Nat.
 732 Physical Lab., Madison Wis., 1978.
- [158] D. Ambrose, Correlation and estimation of vapour-liquid critical properties. II:
 critical pressure and critical volume, in: NPL Tech. Report. Chem. 92, Nat.
 Physical Lab., Teddington, UK, 1979.
- [159] G.R. Somayajulu, Estimation procedures for critical constants, J. Chem. Eng. Data.
 34 (1989) 106–120.
- 738 [160] AIChE, Design Institute for Physical Properties (DIPPR), (2006).
 739 http://dippr.byu.edu/.
- [161] H. Liu, E. Ruckenstein, A predictive equation for the tracer diffusion of various
 solutes in gases, supercritical fluids, and liquids, Ind. Eng. Chem. Res. 36 (1997)
 5488–5500.
- [162] L. Constantinou, R. Gani, New group contribution method for estimating
 properties of pure compounds, AIChE J. 40 (1994) 1697–1710.
- 745 [163] Molecular Design LAB. (Dept. of Chemical Engineering), Korea Thermophysical

110

746		Properties	Data	Bank	(KDB)	1	(1995).
747		http://www.cheric.	org/research/k	db/hcprop/cm	psrch.php.		
748	[164]	O.J. Catchpole, J.C.	Von Kamp, F	hase equilibriu	um for the extr	action of s	qualene
749		from shark liver oi	l using superc	critical carbon	dioxide, Ind. E	ng. Chem.	Res. 36
750		(1997) 3762–3768.					
751	[165]	AspenTech., Aspen	n Physical Pr	operty System	n - Physical P	Property N	lethods,
752		(2007).					
753	[166]	J. Cordeiro, Mediçã	io e modelação	o de difusivida	des em CO ₂ su	percrítico e	e etanol,
754		Universidade de A	veiro, 2015.				
755							