
https://helda.helsinki.fi

Query Suggestions as Summarization in Exploratory Search

Medlar, Alan

ACM

2021

Medlar , A , Li , J & Glowacka , D 2021 , Query Suggestions as Summarization in

Exploratory Search . in Proceedings of the 2021 Conference on Human Information

þÿ�I�n�t�e�r�a�c�t�i�o�n� �a�n�d� �R�e�t�r�i�e�v�a�l� �.� �A�C�M� �,� �p�p�.� �1�1�9 ��1�2�8� �,� �A�C�M� �S�I�G�I�R� �C�o�n�f�e�r�e�n�c�e� �o�n� �H�u�m�a�n

Information Interaction and Retrieval , Canberra , Australia , 14/03/2021 . https://doi.org/10.1145/3406522.3446020

http://hdl.handle.net/10138/352580

https://doi.org/10.1145/3406522.3446020

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Query Suggestions as Summarization in Exploratory Search
Alan Medlar

University of Helsinki
alan.j.medlar@helsinki.fi

Jing Li
University of Helsinki
jing.li@helsinki.fi

Dorota Głowacka
University of Helsinki

dorota.glowacka@helsinki.fi

ABSTRACT
Query suggestions have been shown to benefit users performing
information retrieval tasks. In exploratory search, however, users
may lack the necessary domain knowledge to assess the relevance
of query suggestions with respect to their information needs. In this
article, we investigate the use of alternative queries in exploratory
search. Alternative queries are queries that would retrieve simi-
lar search results to those currently visible on-screen. They are
independent of the original search query and can, therefore, be up-
dated dynamically as users scroll through search results. In addition
to being follow-on queries, alternative queries serve as keyword
summaries of the current search results page to help users assess
whether results are inline with their search intents.

We investigated the use of alternative queries in scientific litera-
ture search and their impact on user behavior and perception. In a
user study, participants inspected half asmany documents per query
when alternative queries were present, but were exposed to over
40% more search results overall. Despite using them extensively
as follow-on queries, user feedback focused on the summarization
properties offered by alternative queries; finding it reassuring that
documents were relevant to their search goals.

CCS CONCEPTS
• Information systems → Search interfaces; Query sugges-
tion; Presentation of retrieval results.

KEYWORDS
exploratory search; query suggestions; summarization; scientific
literature search; alternative queries
ACM Reference Format:
Alan Medlar, Jing Li, and Dorota Głowacka. 2021. Query Suggestions as
Summarization in Exploratory Search. In Proceedings of the 2021 ACM SI-
GIR Conference on Human Information Interaction and Retrieval (CHIIR ’21),
March 14–19, 2021, Canberra, ACT, Australia. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3406522.3446020

1 INTRODUCTION
Search can be divided into two broad categories: lookup and ex-
ploratory search [32]. Lookup search is where users have precise
search goals, such as question-answering and fact-finding. These
search tasks are well-understood in terms of user behavior and
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHIIR ’21, March 14–19, 2021, Canberra, ACT, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8055-3/21/03. . . $15.00
https://doi.org/10.1145/3406522.3446020

information retrieval system design. Exploratory search, however,
is characterised by user uncertainty with respect to search domain
and information seeking goals. Exploratory search is, therefore,
considered challenging [49] and requires search systems to provide
additional support to help users satisfy their information needs.
Query suggestions are one of many techniques that have been
shown to benefit users performing exploratory search [49]. Query
suggestions are usually generated from query logs, using historical
data to identify common follow-on queries and popular destina-
tions for users issuing similar search queries [48]. In the absence of
query logs, query suggestions have been generated directly from
the corpus [6], external data sources [40] or using pseudo-relevance
feedback [24]. In the case of pseudo-relevance feedback, query sug-
gestions are effectively extractive keyword summaries of search
results; identifying phrases that are over-represented in search
results compared to the corpus as a whole [5].

In this article, we focus on how to use query suggestions in sci-
entific literature search, where users are searching for the purpose
of knowledge acquisition. In previous research, query suggestions
were investigated in the context of exploratory search tasks, such as
purchasing a VoIP telephone [48] or identifying topically relevant
newspaper articles [24]. In these kinds of task, users already have
sufficient knowledge to evaluate whether suggested queries are
better than their own search query. For example, when searching
for information about VoIP telephones, users can leverage their
existing knowledge of cellular and landline telephones to assess
the quality of the provided suggestions. This is not necessarily the
case for exploratory search of scientific literature, however, where
novice users can be highly uncertain about document relevance
[34] and scroll through significantly more search results compared
to lookup search [2, 3]. This can lead to frustration, either because
of time wasted inspecting lower ranked search results or because
the accumulation of low quality feedback leads to query drift [38].

Our approach to query suggestions for exploratory search fo-
cuses on summarization, in addition to providing follow-on queries.
We summarize search results by generating alternative queries,
i.e. queries that would retrieve similar search results to those vis-
ible on-screen. We generate alternative queries using a nearest
neighbor-based approach with a novel SERP embedding model
based on a sequence-to-sequence autoencoder. Alternative queries
provide succinct keyword-based summaries that, as they are inde-
pendent of the original search query, can be updated dynamically
as users scroll down the search results page. We take advantage of
being able to dynamically update query suggestions by integrat-
ing them into an interface with infinite scroll; fetching additional
search results on-demand as users scroll down the page. Infinite
scroll serves two functions: first, removing pagination allows for
fine-grained information to be displayed at all positions of the rank-
ing and, second, provides an opportunity to animate the ordering of
query suggestions, clearly highlighting their changing importance

https://doi.org/10.1145/3406522.3446020
https://doi.org/10.1145/3406522.3446020

to users as they scroll. This interface allows searchers to quickly
assess whether the currently displayed documents are relevant to
their search intent.

In this article, we make the following contributions: (i) a novel
query suggestion method that uses a sequence-to-sequence autoen-
coder to identify alternative queries, (ii) a search interface based
on infinite scroll that dynamically updates query suggestions as
users scroll through results, (iii) an expert assessment of the summa-
rization properties of query suggestions, contrasting our approach
to methods based on pseudo-relevance feedback and (iv) a user
study demonstrating that users appreciated the availability of those
summaries during exploratory scientific literature search.

2 BACKGROUND
In this section, we review prior work on query suggestions in
interactive information retrieval and exploratory search.

2.1 Query Suggestions
Query suggestions are queries displayed alongside search results
that are generally intended to be used as follow-on queries or refor-
mulations of the present search query. Methods for query sugges-
tion tend to use information from query logs to infer relatedness,
either on the basis of click-throughs [8, 48] or query co-occurrence,
i.e. session-based methods [17]. Recent advances have improved
the context-awareness of query suggestions within the same search
session [47] and developed personalized query suggestions [46, 52].
In the absence of query logs, query-phrase correlations [6] and
pseudo-relevance feedback [24] have been used to make query
suggestions. While not a method for query suggestion, query sub-
stitution identifies typical alternatives to queries issued by web
users to transparently improve recall in sponsored search [21]. Our
approach similarly generates alternative queries, but they are pre-
sented to the user to summarize the current search results page.

Prior to the availability of query logs, query expansion methods
suggested terms and phrases using, for example, relevance feedback
[26], concept hierarchies [44] and over-representation statistics [9].
More recently, query expansion methods have used word embed-
dings [37] to suggest search terms that are semantically similar to
the search query. For this purpose, embedding models have been
trained on the entire corpus [27], search results [12] and on the
basis of document relevance, rather than term proximity [50]. Our
approach has much in common with these semantic methods, how-
ever, our model is based on document representations from search
results and is independent of the original search query.

2.2 Query Suggestions in Exploratory Search
Query suggestions in exploratory search have mostly been investi-
gated in the context of web search, product search and using TREC
test collections. In early work on interactive information retrieval,
for example, relevance feedback was used to suggest additional
search terms for users to expand their search queries [26]. More
recently, Kelly et al. used pseudo-relevance feedback and clustering
to generate query suggestions based on the top-100 documents
returned by a given query [24]. In both instances, users were tasked
with finding topically relevant news articles from a TREC test col-
lection.

In the context of web search, query logs or other external data
sets are generally used to generate query suggestions. White et
al. annotated web search results with popular destinations for users
issuing similar search queries [48]. QAque used data fromYahoo! an-
swers, a question answering community, for faceted query expan-
sion [40]. Finally, knowledge graphs based on search logs have been
shown to produce query suggestions that are beneficial to users
engaged in exploratory search [29, 31].

There are also a few systems that focus on query suggestions
in exploratory scientific literature search. PULP used a dynamic
visualization of topic models built for each year of the ArXiv repos-
itory to assist users with query formulation [35]. Recently, faceted
query suggestions derived from pre-defined article keywords from
ACM Digital Library were shown to improve user performance,
although the analysis was based solely on user behavior and task
performance with no user satisfaction data (questionnaires or inter-
views) collected [43]. These systems were designed to assist with
initial and follow-on queries, but not to help users understand their
current search results.

2.3 Summarization in Exploratory Search
This article focuses on the search result summarization properties
of query suggestions during scientific literature search. Summariza-
tion is a broad topic that can touch upon many different aspects of
exploratory search system design. Summarization has been used,
for example, in summary visualization to enable faster relevance
feedback [22, 23, 33], interactive exploration of faceted data sets
[1, 51], topic model-based visualizations of large corpora [16, 30],
query formulation through global visualization of the search space
[13, 15, 35] and interactive interfaces to help the user comprehend
the information space [10, 39]. These interfaces can greatly aid
users conducting exploratory search for knowledge acquisition by
visualizing the global search space and its relationship to the user’s
search intent. Our approach is more local: we summarize the infor-
mation that is currently on-screen in order to help searchers avoid
wasting time on less relevant search results. Studies of exploratory
search behavior have highlighted its dynamic nature with narrow-
ing and broadening of search queries as well as changes in click
behavior throughout a search session [4, 11, 36]. This suggests that
exploratory search should be supported by more fine-grained and
dynamic visualisation or summarizarion methods. Our approach
has specifically this goal in mind: helping users to understand
search results and decide when to terminate the current search and
reformulate the search query.

2.4 Summary and Contributions
Although query suggestions are known to complement exploratory
search, this has tended to be investigated with less cognitively
demanding search tasks [24, 48]. In this paper, we distinguish our
contribution on query suggestions in exploratory search in the
following ways: (i) we are focused on scientific literature search,
(ii) our goal is to provide summarization, as well as follow-on search
queries, (iii) our interface dynamically updates suggestions as users
scroll, providing fine-grained context intended to aid in knowledge
acquisition, and (iv) our approach does not require query logs and
can therefore be used in specialist retrieval systems.

Interface
Search query

Ranked documents

Backend

Visible
document set

Query
suggestions

Query suggestion
generation

Retrieval
algorithm

Initiate
search

Visible documents
change

Figure 1: System overview: users initiate a search with a
search query. A retrieval algorithm is used to rank search re-
sults. Whenever the set of visible documents changes (when
a new search is initiated or due to scrolling), the document
set is sent to the query suggestion module, which returns a
list of suggestions. Whenever the user scrolls near the bot-
tom of the SERP, the retrieval algorithm is called again, im-
plementing infinite scroll.

3 APPROACH
Our system has three components: the user interface, the query
suggestion method and the ranking algorithm. The current version
of the system operates on ∼170, 000 Computer Science articles from
the arXiv repository (www.arxiv.org, downloaded November 2018).
An overview of the system is presented in Figure 1.

3.1 Interface Design
Figure 2 shows the user interface of the system. A search is initiated
by the user typing a search query into the search box at the top of
the page. This results in a list of documents appearing on-screen,
ranked by the Okapi BM25 algorithm [20]. The interface imple-
ments infinite scroll, fetching additional search results on-demand
just prior to the user scrolling to the bottom of the page. A list of
query suggestions generated from the set of visible documents is
anchored to the right-hand margin. Query suggestions are ranked
by their confidence level, which is also visualized as a horizontal
bar graph (longer bars indicate greater confidence). As users scroll
down the page, the query suggestions are updated to reflect the
documents currently visible on-screen, i.e. the rank/bar length of
the currently displayed queries change or are swapped out for new
ones. These transitions are animated, giving the user a visual cue
in their peripheral vision when there is a change.

3.2 Alternative Query Generation
Our approach to query suggestions uses alternative queries (queries
that retrieve similar documents to those visible on-screen) to sum-
marize the content of search results. To generate alternative queries
we used an autoencoder, a type of neural network, to generate a
learned representation for search engine results pages (SERPs). We
refer to the autoencoder as the SERP embedding model. To train
the model, we do not rely on query logs, but simulate queries and
their associated search results directly from the document corpus.

Figure 2: The search interface incorporating query sugges-
tions. The baseline interface in the user study was identi-
cal with the exception that the query suggestion component
(right-hand margin) was absent. Query suggestions are up-
dated dynamically to reflect the current search results cur-
rently displayed on-screen.

Once the model is trained, we generate SERP embeddings for each
simulated query and store the results in a lookup table to allow us
to identify which query is associated with each SERP embedding.

We generate query suggestions when users either issue a new
search query or when the visible set of documents changes as
a result of scrolling. The system uses the top-10 search results
starting from the first visible document and gives them to the SERP
embedding model to generate an new embedding, ®𝑣 . We rank all
SERP embeddings in the lookup table by their cosine similarity with
®𝑣 to identify its nearest neighbors. Finally, we return the simulated
queries associated with the SERP embeddings at the top of the
ranking as query suggestions.

In the following sections, we expand on these details, covering
the architecture of the SERP embedding model, data generation
and augmentation for model training, and query suggestion post-
processing.

3.3 SERP Embedding Model
Figure 3 shows the SERP embedding model, a sequence-to-sequence
autoencoder that learns an unsupervised representation of ranked
search results. Autoencoders are composed of an encoder net-
work (Figure 3, left) and a decoder network (Figure 3, right) [18].
Both encoder and decoder networks were Long Short-Term Mem-
ory (LSTM) networks [19]. Given a sequence of documents, x =

(𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑇), the encoder network reads each document rep-
resentation, 𝑥𝑡 , sequentially and updates the hidden state in the
LSTM network, ℎ𝑡 . After the last document in the SERP, 𝑥𝑇 , the
hidden state, ℎ𝑇 , can be viewed as a learned representation of the
SERP, that we refer to as a SERP embedding. The decoder network
takes the SERP embedding, ℎ𝑇 , as input and attempts to regenerate
the original input sequence as x′. Both encoder and decoder net-
works are trained jointly by minimizing the reconstruction error:
L(x, x′) = | |x−x′ | |2. The goal is that the SERP embedding will be a
meaningful representation of the SERP because the input sequence

www.arxiv.org

LSTM Decoder

LSTM Encoder

x2 x3 xT

x'1 x'2 x'3

Doc2vec embeddings

Search results

SE
RP

 e
m

be
dd

in
g

...

x1 ...

x'T

...

...

Figure 3: The SERP embedding model is a sequence-to-
sequence autoencoder with two LSTM networks: a encoder
network (left) and a decoder network (right). The encoder
network accepts a sequence of Doc2vec embeddings and out-
puts a learned representation that we term the SERP embed-
ding. The decoder is trained jointly with the encoder using
reconstruction loss.

can be reconstructed from the SERP embedding by the decoder
network.

Our training data consisted of a collection of 299,451 unique
search results pages associated with simulated search queries (data
generation procedure described below). We limited the input se-
quence to 10 documents per SERP to simplify training. Each doc-
ument was represented using Doc2vec [28], which was trained
using the PV-DBOW (distributed bag-of-words version of para-
graph vectors) method, ignoring terms with a frequency < 10 to
infer document vectors of length 300. To train the sequence-to-
sequence autoencoder, we used 95% of the data for training and the
remaining 5% for validation to avoid overfitting.We used Adam [25]
with a learning rate of 0.001 and trained for 10 epochs, after which
the validation loss ceased to improve. We performed very little
hyperparameter optimization because we had no objective quality
metric to judge the summarization properties of our queries. In-
stead, we trained several models with different embedding lengths
from which we selected the model with length 300 by manual in-
spection of the predicted queries. As such, our results should be
considered a lower bound for performance using this approach.

3.4 Data Generation and Augmentation
As we do not have query logs, in order to gather the data necessary
to train the SERP embedding model, we generated search queries
from the corpus of documents. We used these queries to search
the same corpus to simulate SERPs. For the corpus, we used all
∼170, 000Computer Science articles from the arXiv repository. Each
document was represented by concatenating the article title and
abstract text. To generate search queries, we preprocessed each
document (removed punctuation, lowercased and filtered out tokens
composed of numbers) and extracted bigrams, which were allowed
to skip over stop words. We performed bigram detection twice,
extracting up to 4-grams. From this collection of automatically-
derived queries, we filtered out the most common (appearing >

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●
●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●●●

●●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●
●

●

●●

●

●
●
●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●
●

●

●

●
●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●
●
●

●

●
●
●
●
●

●

●

●

●
●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●
●

●
●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jaccard Index

M
ea

n
P

P
M

I

Figure 4: Average query suggestion PPMI correlates with
Jaccard Index. The SERP embedding model’s performance
tends to be higher when query phrases have higher average
PPMI, i.e. when search results have a more coherent theme.

5, 000 times), rare (< 10 times) and short (< 3 characters) search
queries. This procedure extracted 70,551 queries, including very
specific (e.g. “deep recurrent neural networks”) and very broad
queries (e.g. “machine learning”).

As the number of query phrases was relatively limited, we per-
formed data augmentation to increase the diversity of the training
set. Using our collection of queries, we retrieved up to the top-50
search results from the corpus using Okapi BM25 [20]. Next, we
used different ranges and stride lengths to extract multiple “top-10”
rankings per search query. For example, if there were 30 search
results, then we used ranges 1–10, 11–20 and 21–30, as well as ev-
ery third document with offsets 0, 1 and 2. This procedure yielded
299,451 unique document rankings associated with search queries
that were used to train the SERP embedding model.

3.5 Query Suggestion Post-processing
The SERP embedding model is trained using search results pages
generated with individual queries, however, it could also be pre-
sented with documents from a mixture of topics. Ideally, when the
SERP embedding model is presented with documents from two
separate search queries, the resulting SERP embedding should ap-
proximate the mid-point between the SERP embeddings for those
two queries. To test whether this was the case we randomly se-
lected two search queries, 𝑞𝑎 and 𝑞𝑏 , without replacement, from
the training set and interpolated the mid-point between them by
adding their respective embeddings: ®𝑣𝑎 + ®𝑣𝑏 = ®𝑣𝑎𝑏 . We then gen-
erated a second vector with our SERP embedding model using
half of the search results associated with 𝑞𝑎 and half from 𝑞𝑏 :
𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑑𝑎 [1..5] + 𝑑𝑏 [1..5]) = ®𝑣 ′

𝑎𝑏
. The output of the SERP em-

bedding model, ®𝑣 ′
𝑎𝑏
, is an approximation of ®𝑣𝑎𝑏 because we only

used half of the documents from 𝑞𝑎 and 𝑞𝑏 . Were ®𝑣𝑎𝑏 ≡ ®𝑣 ′
𝑎𝑏
, then

this would imply there is no information in the unused documents
associated with 𝑞𝑎 and 𝑞𝑏 as they would have contributed nothing
to the result. Finally, we calculated the Jaccard index, which is the
proportion of identical queries in the 10 nearest neighbors between
®𝑣𝑎𝑏 and ®𝑣 ′

𝑎𝑏
after filtering out duplicates. We repeated this proce-

dure 10,000 times. Figure 4 shows how the Jaccard index varies with

the average positive pointwise mutual information (PPMI) between
all pairs of query suggestions. Performance is worse when average
PPMI is lower, making PPMI a predictor of embedding quality.

Taking these findings into consideration, we created a logistic
regression model based on the mean PPMI between all pairs of
query suggestions. We defined the response variable as whether
the Jaccard index between interpolated and SERP embedding model-
derived queries passed a threshold of 0.6 (threshold chosen empiri-
cally, data not shown). We use the probability output by the logistic
regression model to determine the proportion of query suggestions
to use from the SERP embedding model, with the remainder made
up of phrases with the highest Okapi BM25 term weights (see Sec-
tion 4.1 for details). This takes advantage of the SERP embedding
model in scenarios where it performswell, but falls back to a simpler
pseudo-relevance feedback method when we detect no coherent
theme to the search results on the basis of PPMI.

4 EXPERT ASSESSMENT
We conducted an expert assessment of the summarization proper-
ties of alternative queries, focusing on relevance and specificity. We
focused on search results covering multiple broadly-defined topics
(e.g. “computer vision” and “autonomous driving”) because the
SERP embeddingmodel was trained using search results from single
topics and we wanted to understand how well different approaches
generalized to more complex searches.

4.1 Baseline Methods
We compared our approach to several pseudo-relevance feedback-
based methods for generating query suggestions. In this context,
query suggestions are equivalent to extractive keyword summaries
over search results [5]. The baselines were Rocchio’s weights [42],
using TF-IDF and Okapi BM25 [20] as weighting functions, 𝜒2
[14] and KL divergence [9]. Following [45], we set 𝑘1 = 1.2 and
𝑏 = 0.75 for Okapi BM25. All methods had access to the same
document representation as the SERP embedding model (i.e. n-
grams containing 1–4 terms) and were used to output the top-10
scoring phrases as query suggestions.

We tested four variants of our approach: (i) our approach, utilis-
ing both SERP embeddingmodel and the post-processing procedure,
(ii) our approach, but constrained to only output phrases present on
the SERP, (iii) the SERP embedding model alone and (iv) the SERP
embedding model, but constrained to only output phrases present
on the SERP. Variants (ii) and (iv) will help us to understand the
impact of using the entire vocabulary, whereas (iii) and (iv) will
help us understand the effect of our post-processing procedure.

4.2 Study Design
We designed an experiment around scientific literature search. We
assumed users were searching for literature related to two broadly
defined topics, e.g. “autonomous driving” and “computer vision”,
and considered two different scenarios: (i) all search results contain
both topics, that we refer to as conjoint results and (ii) the topics
are mutually exclusive, with each document containing only one
of the two topics, which we refer to as disjoint results. In terms of
set operations, conjoint results are found at the intersection of two
topics and disjoint results in the symmetric difference.

SERP Simulation. We identified pairs of topics related to machine
learning by manually enumerating phrases from the Scikit-learn
user guide section headings (https://scikit-learn.org/stable/user_
guide.html) and identified phrases that co-occurred in our corpus.
We manually inspected this list of topic pairs and removed subjec-
tively broad (e.g. “machine learning”) and narrow topics (as these
would be lookup searches). We generated conjoint results by iden-
tifying all documents that contained both topics and randomly
sampled 10 documents without replacement. Similarly, we gener-
ated disjoint results by identifying documents that contained one of
the two topics at least 3 times, but not the other. We required topics
to be present multiple times as documents where they appeared
only once or twice tended to not be specifically related to that topic.
Finally, we randomly sampled 5 documents without replacement
for each topic and merged them together.

Expert Assessment. We randomly sampled 125 SERPs for conjoint
and disjoint search results and for each SERP generated 10 query
suggestions using all eight methods. The expert, a professor in ma-
chine learning, classified queries on the basis of whether they were
relevant to a majority of documents in the SERP (i.e. summarized
the document content appropriately). Assessment was carried out
double-blind: SERPs were selected randomly, the queries generated
by all methods were pooled, duplicates removed and the presenta-
tion order randomized. Relevant queries were further subdivided
by their specificity into: a) narrow, b) in-between and c) broad.
Similarly, not relevant query suggestions were further subdivided
into: a) too generic and b) unrelated. Queries classified as “rele-
vant/narrow” were more specialized terms, e.g. names of specific
methods. Queries classified as “relevant/broad” were the opposite,
focusing on broader topics or classes of method, e.g. “clustering”.
“Relevant/in-between” were relevant queries that fit neither narrow
nor broad categories. For not relevant queries, “too generic” occur
frequently in Computer Science, such as “model” and “algorithm”.
“Unrelated” included terms such as “state of the art” that are unin-
formative. In Section 4.4, we review each assessment category in
terms of IDF to show that these assessments were highly consistent.

4.3 Results
We present the results from the expert assessment of conjoint and
disjoint SERPs in Tables 1 and 2, respectively. In addition to counts
for each assessment category, we include precision@10 (average
proportion of relevant queries) and precision@5. We also calculated
the number of excess queries as the mean absolute difference from
equality, i.e. |5−𝑛 |, where 𝑛 is the number of queries more strongly
associated with one of the two topics by PPMI in the document
corpus. Excess queries can range from 0 (5 queries per topic) to 5
(10 queries for one topic and 0 for the other).

Conjoint Results. Our approach had 5% higher precision@10
than the best performing SERP embedding model and 26% more
than Okapi BM25, the best performing pseudo-relevance feedback
method. This lead dropped to 3% and 11% for precision@5 compared
to the SERP embedding model and Okapi BM25, respectively. Our
approach had the lowest number of excess queries, treating both
topics more fairly than all other methods. Post-processing was
essential to the success of our approach: 74% of query suggestions

https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html

Ex
ces
s q
ue
rie
s

Re
lev
an
t/n
arr
ow

Re
lev
an
t/in

-be
tw
een

Re
lev
an
t/b
roa
d

No
t r
ele
va
nt/
too

ge
ne
ric

No
t r
ele
va
nt/
un
rel
ate
d

P@
10

P@
5

TF-IDF 2.4 308 88 375 301 178 0.62 0.77
𝜒2 3.9 412 114 254 176 294 0.62 0.74

KL Divergence 2.4 301 97 403 311 138 0.64 0.76
Okapi BM25 2.5 301 86 441 284 138 0.66 0.81

SERP emb. (const.) 2.4 476 25 457 159 132 0.77 0.87
SERP emb. 2.0 553 45 391 118 143 0.79 0.85

Our method (const.) 2.4 468 28 488 144 121 0.79 0.89
Our method 1.8 505 55 478 117 95 0.83 0.90

Table 1: Expert assessment of query suggestions for con-
joint results. Our method performs best in precision@10,
precision@5 and divides queries most evenly between top-
ics. “Const.” refers to queries being constrained to terms ap-
pearing in search results as in pseudo-relevance feedback.

came from the SERP embedding model and the remainder came
from Okapi BM25 weighted phrases.

The pseudo-relevance feedback methods had similar overall per-
formance to one another in terms of precision, but skewed to either
more narrow (𝜒2) or broad (TF-IDF, Okapi BM25 and KL divergence)
queries. All pseudo-relevance feedbackmethods were outperformed
by both SERP embedding models in terms of precision@10 and pre-
cision@5. The embedding approaches excel at finding narrowly
relevant queries. Constraining methods to only predict queries
present in documents on the SERP had a minor effect on perfor-
mance, suggesting that there is little, if any, benefit from drawing
queries from the entire vocabulary. Removing this constraint, how-
ever, improved fairness (i.e. excess queries was lower).

Disjoint Results. Our approach had 20% higher precision@10
than the best performing SERP embedding model and 8% more
relevant queries than 𝜒2, the best performing pseudo-relevance
feedback method. For precision@5, our approach was consistently
better than the embedding models by a margin of at least 22%, but 1-
2% worse than Okapi BM25 and 𝜒2. All methods performed worse
in terms of precision compared to the conjoint experiment, but
better in terms of excess queries. While the pseudo-relevance feed-
back methods had a moderate drop in performance, the semantic
methods’ performance dropped dramatically. In this scenario, our
approach automatically compensated by using the SERP embedding
model to only predict 49% of query suggestions. In this experiment,
constraining the SERP embedding model to queries on the SERP ac-
tually improved performance, preventing many irrelevant queries
from being output.

4.4 IDF Analysis
Weused inverse document frequency (IDF) tomeasure the predicted
queries’ specificity, with higher IDF indicating their presence in
fewer documents in the corpus. Figure 5 shows that all methods

Ex
ces
s q
ue
rie
s

Re
lev
an
t/n
arr
ow

Re
lev
an
t/in

-be
tw
een

Re
lev
an
t/b
roa
d

No
t r
ele
va
nt/
too

ge
ne
ric

No
t r
ele
va
nt/
un
rel
ate
d

P@
10

P@
5

TF-IDF 0.9 299 100 325 240 286 0.58 0.71
𝜒2 1.4 344 133 269 120 305 0.60 0.73

KL Divergence 1.2 254 101 340 255 300 0.56 0.71
Okapi BM25 1.5 226 118 379 238 289 0.58 0.74

SERP emb. (const.) 1.7 223 37 418 190 382 0.54 0.63
SERP emb. 1.6 231 21 401 145 452 0.52 0.59

Our method (const.) 1.5 233 47 461 194 315 0.59 0.73
Our method 1.5 245 60 504 156 285 0.65 0.72

Table 2: Expert assessment of query suggestions for dis-
joint results. Our method has the highest precision@10, but
lags behind Okapi BM25 for precision@5. “Const.” refers to
queries being constrained to terms appearing in search re-
sults, as in pseudo-relevance feedback.

predict queries with a wide range of specificities. Okapi BM25, KL
divergence and TF-IDF tended to predict more common queries
than other methods. TF-IDF, despite clear similarities with Okapi
BM25, had a much wider spread of IDF values, which was reflected
in terms of performance. 𝜒2 appears to focus on rarer terms, which
explains why it predicted more narrowly relevant queries (see Ta-
ble 1). Unfortunately, this can lead to error, 𝜒2 suffered from many
irrelevant queries, which is concordant with its IDF distribution
being most similar to random (the term frequency distribution has
a long tail, so random sampling will include mostly rare terms).
In terms of median IDF, the methods using the SERP embedding
model sat between 𝜒2 and the other pseudo-relevance feedback
methods.

We additionally used IDF to investigate the properties of the
blinded expert assessments. In general, the expert assessments
were concordant with our expectations. The median IDF for rel-
evant/narrow was higher than relevant/broad, which was higher
than not relevant/too generic. Themedian IDF of relevant/in-between
was the same as relevant/narrow, but it’s third quartile was lower.
The IDF distribution for not relevant/unrelated queries was higher
than the relevant/broad and not relevant/too generic categories
because it contains rarer, noisy terms.

5 USER STUDY
From the expert assessment we know that alternative queries pro-
vide better summaries compared to pseudo-relevance feedback
methods, but we also want to know whether they help users per-
forming exploratory scientific literature search. We conducted a
within-subject user study. We were particularly interested in users’
perceptions of query suggestions; whether they were perceived
as appropriate follow-on queries and whether they were actually
used for summarization purposes. We compared two systems: one
incorporating query suggestions and a baseline that did not. Thus,

0

4

8

12

KL
Div.

Oka
pi

BM
25

TF−I
DF

SERP e
m

b.
(c

on
st.

)

Our
 m

et
ho

d
(c

on
st.

)

Our
 m

et
ho

d

SERP e
m

b.

Chi
Squ

ar
ed

Ran
do

m

Rele
va

nt
/n

ar
ro

w

Rele
va

nt
/in

−b
et

wee
n

Rele
va

nt
/b

ro
ad

Not
 re

lev
an

t/t
oo

 g
en

.

Not
 re

lev
an

t/u
nr

el.

ID
F

Conjoint Disjoint Random Expert

Figure 5: Boxplots of inverse document frequencies (IDF) of
suggested queries. Higher IDF indicates greater specificity.
We show IDF for eachmethod, for both conjoint and disjoint
experiments, and for each expert assessment category.

any differences in the observed user behavior can be attributed to
the presence of query suggestions.

5.1 Participants
Prior to the experiment, potential participants were pre-screened in
the following manner. We asked users to rate their familiarity on a
4-point scale (where 1 = "no knowledge" and 4 = "highly familiar (I
worked on project/thesis on this topic)") with the following topics:
robotic surgery, political bias online, sports analytics, gender recog-
nition, cancer diagnosis, autonomous driving evaluation, gender
bias in natural language processing and music recommendation.
The topics were selected beforehand to ensure appropriate coverage
in the corpus. To ensure that users would engage in exploratory
search, only topics with low levels of familiarity for a given user
were considered, i.e. topics marked as 1 or 2. If a user indicated only
two topics they are unfamiliar with, then those two topics were
randomly assigned to the two systems. If users indicated low famil-
iarity with more than two topics, then they were asked to select
their two preferred topics, which were then randomly assigned to
the two systems. Users who did not indicate low familiarity with
at least two topics were excluded from participation in the study.

Nineteen participants (eight female), aged 23–48 (median age
30), passed the pre-screening and took part in the study. All partici-
pants were Computer Science students: 8 MSc and 11 PhD students
in the early stages of their doctoral degree. Each participant was
compensated with a book voucher worth 15 EUR for taking part in
the study. Each participant performed two tasks – one with each
interface. The order of the interfaces was balanced. Before perform-
ing the two tasks, participants were shown a video tutorial on how
to use the two interfaces. This was followed by a practice session to
allow the users to familiarize themselves with the systems at their
own pace. In the practice session, the participants were instructed
to perform a free search related to their own study interests. The
interface with query suggestions was used in the practice session
as it covers all the features present in both interfaces.

QS B p Question
3.4 2.7 0.0049 1. I think that I would like to use this system

frequently
1.7 1.9 0.107 2. I found the system unnecessarily complex
4.3 3.8 0.107 3. I thought the system was easy to use
1.6 1.5 0.726 4. I think that I would need the support of a tech-

nical person to be able to use this system
3.8 3.4 0.159 5. I found the various functions in this system

were well integrated
1.9 1.9 0.705 6. I thought there was too much inconsistency in

this system
4.3 4.2 1.0 7. I would imagine that most people would learn

to use this system very quickly
1.9 2.1 0.129 8. I found the system very cumbersome to use
3.6 3.3 0.144 9. I felt very confident using the system
1.6 1.5 0.705 10. I needed to learn a lot of things before I could

get going with this system
Table 3: SUS score averages for query suggestion interface
(QS) and baseline (B) systems with p-values from Wilcoxon
signed-rank test. Questions used a 5-point scale from 1
(strongly disagree) to 5 (strongly agree). Best score in each
row is bold; higher is better for odd numbered questions and
lower is better for even numbered questions.

5.2 Tasks and Procedure
In the search tasks, users were instructed to write a short essay
draft on a given topic. The task descriptions followed the template:

“You are going to start a new research project on the follow-
ing topic: X. You would like to learn as much information as
possible about this topic, e.g. applications, problems, specific
algorithms. Write your answer as an essay draft or in bullet
points, and bookmark at least 10 relevant articles that you
could use as a reference in writing the article.”

The search session with each system was limited to 30 minutes
to ensure that the results obtained from both systems and all the
users were not skewed by overly long search sessions. Participants
were allowed to take a short break in between the two tasks. The
average search session duration was 29.5 and 28.4 minutes for our
system and the baseline, respectively. Participants were provided
with pen and paper as well as a text editor for note taking and could
select the method they felt most comfortable with. All participants
opted for the text editor. After the search session was completed,
participants could take additional time to finalize their draft essay.

After each task, the participants completed the SUS question-
naire [7] with 10 questions (Table 3) and a modified version of
the ResQue questionnaire [41] with 12 questions (Table 4). During
the experiments, we logged the queries issued by users, the query
suggestions displayed, the documents presented and whether any
of those documents were bookmarked. After both tasks were com-
pleted, the users completed a post-experiment questionnaire (Table
5) and we conducted a semi-structured interview. While the aim of
the SUS and the ResQue questionnaires was to understand how our
approach compares to the baseline, the focus of the post-experiment
questionnaire and the interview was to better understand the utility
of summarization in exploratory scientific literature search.

5.3 Results
We looked at the usability, task performance, user behavior and
perception of query suggestions in scientific literature search.

5.3.1 Usability: Our system obtained higher scores in both SUS
and ResQue questionnaires than the baseline. In SUS, the overall
score was 76.8 for our system and 71.2 for the baseline. While the
difference was not significant (𝑝 = 0.136, Wilcoxon signed-rank
test), it shows that the usability of the system did not suffer from
the added functionality provided by query suggestions. In ResQue,
our system significantly outperformed the baseline averaging 83.2
versus 67.8 (𝑝 = 0.001, Wilcoxon signed-rank test), which shows
that participants found the query suggestions useful.

5.3.2 Task Performance and User Behavior: Task performance was
assessed by two experts based on participants’ short essay drafts.
The assessors were senior researchers with a background in ma-
chine learning and artificial intelligence with more than 10 years of
post-PhD research experience who were not otherwise involved in
the user study. Assessments were blinded. The ratings were done
on 5-point scale from 1 (bad) to 5 (good). The inter-rater agreement
between the two assessors was ^ = 0.82 (weighted Cohen’s Kappa
test with linear weights). The average task performance was 2.95
with the baseline and 3.37 with our system (𝑝 = 0.035, Wilcoxon
signed-rank test). To understand the difference in essay scores, we
investigated how the presence of query suggestions affected how
users interacted with the system. When using our system, users
issued more queries per session (8.2 queries per session compared
to 3.7 with the baseline (𝑝 = 0.0006, Wilcoxon signed-rank test)),
they inspected fewer documents per query (7.8 documents per
query compared to 18.6 with the baseline (𝑝 = 0.004, Wilcoxon
signed-rank test)), but were exposed to more documents overall
(55.3 documents compared to 38.7 with the baseline (𝑝 = 0.02,
Wilcoxon signed-rank test)). There was no significant difference
in the number of bookmarked documents, with 9.4 and 9.2 book-
marks for our system and the baseline, respectively. This is almost
certainly due to the fact that users were instructed to bookmark at
least 10 documents as part of the essay writing task. Finally, in the
system with query suggestions, on average 49.3% of queries issued
by the user were from query suggestions.

5.3.3 User Perception: After completing both search tasks, users
completed a post-experiment questionnaire (Table 5) and a semi-
structured interview. During the post-experiment questionnaire,
users stated that they preferred our system to the baseline almost
unanimously (18/19, 𝑝 = 7.6 × 10−5, binomial test). A majority of
users felt that the presence of query suggestions reassured them that
search results were relevant to their search goals (16/19, 𝑝 = 0.004).
While we were concerned that the dynamic nature of the query
suggestions would annoy users engaged in exploratory search,
none of the participants thought they were distracting (0/19, 𝑝 =

3.8 × 10−6), although a minority found the animation distracting
(3/19, 𝑝 = 0.004).

Similarly, during the semi-structured interview, a majority of
users (16/19) reported that they preferred our system to the baseline,
while two users stated that, although they liked the augmented
interface, they thought it would only be useful for very specific
applications. The most often mentioned benefits were: a concise

QS B p Question
4.0 3.5 0.01 1. The documents recommended to me matched

what I was searching for
3.7 3.1 0.0139 2. The system helped me discover new docu-

ments
3.6 2.8 0.1305 3. The documents recommended to me are di-

verse
3.6 2.8 0.0164 4. The system helped me find the ideal docu-

ments
4.2 4.1 0.7054 5. I became familiar with the system very quickly
3.8 2.8 0.0189 6. I found it easy to notice if the search results

were not correct any more
3.9 3.2 0.011 7. I felt confident to modify my query
3.6 3.2 0.0522 8. Using the system to find what I like is easy
3.7 3.7 0.7192 9. I found it easy to re-find documents I had been

recommended before
3.7 3.1 0.0079 10. The system gave me good suggestions
3.8 3.5 0.07 11. The system made me confident about the doc-

uments I bookmarked
3.6 3.2 0.0374 12. Overall, I am satisfied with the system

Table 4: ResQue score averages for query suggestions (QS)
and baseline (B) systems with p-values from Wilcoxon
signed-rank test. Questions used a 5-point scale from 1 (dis-
agree) to 5 (agree). Best score in each row is boldface; higher
is better.

summary of the search results (8 users), help with search context (2)
and help to find new and interesting documents faster (3). Individual
comments made about our system included: “...provide an instant
analysis of the documents” [p4], “gives an idea of what the content
is like in general” [p5], “makes it faster to see the information as a
whole” [p9], and “giving you a very quick summary” [p16]. Users
also provided some suggestions for future improvements, e.g. some
of the suggestions provided by the system were too generic to form
a basis of a good follow-up query and that we should indicate which
papers are most correlated with which queries.

6 DISCUSSION
Query suggestions have been shown to benefit users performing
specific exploratory search tasks [24, 48], however, these tasks place
very different cognitive demands on the user compared to scientific
literature search. In this article, we were inspired by observations
that, during exploratory scientific literature search, users scroll
through more documents [2] and are more uncertain about docu-
ment relevance [34] than in lookup search. This led us to consider
the role that query suggestions could have in summarizing whether
search results are inline with users’ search intents.

In our expert assessment, we demonstrated that when search re-
sults contain multiple search topics (conjoint results), the semantic
information provided by the SERP embedding model was suffi-
cient to outperform pseudo-relevance feedback methods. Pseudo-
relevance feedback produces noisier results (higher not relevant/too
generic counts) because they were easily misled by terms that are
common in a given topic (e.g. “model” in machine learning), but

Prop. agree p-value Question
0.947 7.6e-05 1. Which system did you prefer to use?
0.737 0.063 2. I found it easier to perform the search with query suggestions
0.737 0.063 3. I found it easier to write the essay draft with query suggestions
0.895 0.0007 4. The labels of the query suggestion interface are clear
0.632 0.359 5. The bars of the query suggestion interface are clear
0.474 1.0 6. The query suggestions should be an optional function
0.895 0.0007 7. The query suggestions enhanced my search session
0.895 0.0007 8. The query suggestions were related to my search results
0.842 0.004 9. The query suggestions reassured me that my search results were relevant to my search goals
0.737 0.063 10. The query suggestions provided a good summary of my search results
0.526 1.0 11. The query suggestions provided good followup queries
0.0 3.8e-06 12. The query suggestions were distracting
0.158 0.004 13. The query suggestion animations were distracting
0.579 0.647 14. The system’s confidence in each query suggestion was clearly indicated
0.895 0.0007 15. The system was better with the query suggestions than without
0.0 3.8e-06 16. There were too many query suggestions

Table 5: Post-experiment questions with p-values. Question number 1 was binary. Questions 2–16 were scored on a 5-point
scale from 1 (strongly disagree) to 5 (strongly agree). Prop. agree is the proportion of participants who preferred our system
in Question 1 or who answered 4 (agree) or 5 (strongly agree) in Questions 2–16. P-values are from a one sample binomial test
where the null hypothesis is a proportion of 0.5.

rare in the corpus as a whole. Next, we showed that when mul-
tiple search topics were mutually exclusive (disjoint results), our
approach still had the best performance, though the performance of
all methods were significantly degraded. We note that even when
simulated topics were related to one another, there were always
query suggestions that were either too generic or unrelated to
search results. Indeed, even one of the study participants observed
that some queries were too generic to be useful. This could have
been due to us always displaying 10 query suggestions when there
might not have been that many relevant queries for a given set
of documents. Unfortunately, filtering out low quality queries is
difficult, as even variables that correlate with relevance, such as IDF
(Figure 5), only correlate weakly. To improve the quality of queries
further, we would need to understand how users conceptualize
their relevance in order to better calibrate the specificity of query
suggestions to suit individual knowledge levels.

In the user study, we saw that the presence of query sugges-
tions dramatically impacts user behavior: users issue more queries,
investigate fewer documents per query, but are exposed to more
documents overall. From a user behavior perspective, it appears
that query suggestions aid users in the decision-making process of
whether or not to terminate the current phase of their information
seeking, i.e. whether to reformulate the search query or continue
scrolling through the current search results. Athukorala et al. [2]
showed that behavioral variables, such as the number of documents
investigated, are key discriminative indicators of whether users’
are performing exploratory or lookup search. Our results, however,
suggest that such behaviors are a consequence of search interfaces
not supporting the kinds of decisions needed to navigate unfamiliar
topics.

Finally, users stated almost unanimously that they preferred the
system with query suggestions over the baseline (Table 5, Q1). In
line with our expectations, users were reassured by the queries that
search results matched their search intent (Table 5, Q9 and Table 4,

Q6). These findings are suggestive that query suggestions help to
bridge the knowledge gap between users who better understand
their search domain and those that do not. What is not clear, how-
ever, is whether the system would be as positively received by users
performing lookup search; the queries could be more distracting
and the errors (non-relevant queries) more obvious.

In future work, we want to expand on several ideas touched
upon by this work. The SERP embedding model introduced in this
article provides a general method to condense information about
sequences of documents to points in latent space. We are interested
in whether this technique can be used to characterise whole search
sessions, with the trajectory being used to distinguish between
different search strategies or even to identify struggling behav-
ior. Second, our findings suggest that augmented interfaces can
make exploratory search behavior appear more lookup-like (fewer
queries, fewer documents inspected per query, etc.). We want to
investigate whether reducing the divergence between exploratory
and lookup search behavior could be used as a general evaluation
metric for exploratory search systems.

REFERENCES
[1] Jae-wook Ahn, Peter Brusilovsky, Jonathan Grady, Daqing He, and Radu Florian.

2010. Semantic annotation based exploratory search for information analysts.
Information processing & management 46, 4 (2010), 383–402.

[2] Kumaripaba Athukorala, Dorota Głowacka, Giulio Jacucci, Antti Oulasvirta, and
Jilles Vreeken. 2016. Is exploratory search different? A comparison of information
search behavior for exploratory and lookup tasks. Journal of the Association for
Information Science and Technology 67, 11 (2016), 2635–2651.

[3] Kumaripaba Athukorala, Alan Medlar, Antti Oulasvirta, Giulio Jacucci, and
Dorota Glowacka. 2016. Beyond relevance: adapting exploration/exploitation
in information retrieval. In Proceedings of the 21st International Conference on
Intelligent User Interfaces. ACM, 359–369.

[4] Kumaripaba Athukorala, Antti Oulasvirta, Dorota Głowacka, Jilles Vreeken, and
Giulio Jacucci. 2014. Narrow or broad?: Estimating subjective specificity in
exploratory search. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management. ACM, 819–828.

[5] Santosh Kumar Bharti and Korra Sathya Babu. 2017. Automatic keyword extrac-
tion for text summarization: A survey. arXiv preprint arXiv:1704.03242 (2017).

[6] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra. 2011. Query suggestions
in the absence of query logs. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. 795–804.

[7] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[8] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and
Hang Li. 2008. Context-aware query suggestion by mining click-through and
session data. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 875–883.

[9] Claudio Carpineto, Renato DeMori, Giovanni Romano, and Brigitte Bigi. 2001. An
information-theoretic approach to automatic query expansion. ACM Transactions
on Information Systems (TOIS) 19, 1 (2001), 1–27.

[10] Duen Horng Chau, Aniket Kittur, Jason I Hong, and Christos Faloutsos. 2011.
Apolo: making sense of large network data by combining rich user interaction
and machine learning. In Proceedings of the SIGCHI conference on human factors
in computing systems. 167–176.

[11] Dongho Choi. 2017. A Study of Information Seeking Behavior: Investigating
Exploratory Behavior in Physical & Online Spaces. Rutgers The State University
of New Jersey-New Brunswick.

[12] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. 2016. Query Expansion with
Locally-Trained Word Embeddings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics. 367–377.

[13] Marian Dörk, Sheelagh Carpendale, Christopher Collins, and Carey Williamson.
2008. Visgets: Coordinated visualizations for web-based information exploration
and discovery. IEEE Transactions on Visualization and Computer Graphics 14, 6
(2008), 1205–1212.

[14] Tamas E Doszkocs. 1978. AID, an associative interactive dictionary for online
searching. Online Review 2, 2 (1978), 163–173.

[15] Dorota Glowacka, Tuukka Ruotsalo, Ksenia Konuyshkova, Samuel Kaski, Giulio
Jacucci, et al. 2013. Directing exploratory search: Reinforcement learning from
user interactionswith keywords. In Proceedings of the 2013 international conference
on Intelligent user interfaces. ACM, 117–128.

[16] Brynjar Gretarsson, John O’donovan, Svetlin Bostandjiev, Tobias Höllerer, Arthur
Asuncion, David Newman, and Padhraic Smyth. 2012. Topicnets: Visual analysis
of large text corpora with topic modeling. ACM Transactions on Intelligent Systems
and Technology (TIST) 3, 2 (2012), 1–26.

[17] Qi He, Daxin Jiang, Zhen Liao, Steven CH Hoi, Kuiyu Chang, Ee-Peng Lim, and
Hang Li. 2009. Web query recommendation via sequential query prediction. In
2009 IEEE 25th international conference on data engineering. IEEE, 1443–1454.

[18] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. Science 313, 5786 (2006), 504–507.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[20] K Sparck Jones, Steve Walker, and Stephen E. Robertson. 2000. A probabilis-
tic model of information retrieval: development and comparative experiments.
Information processing & management 36, 6 (2000), 779–840.

[21] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. 2006. Generating
query substitutions. In Proceedings of the 15th international conference on World
Wide Web. ACM, 387–396.

[22] Mika Käki. 2005. Findex: search result categories help users when document rank-
ing fails. In Proceedings of the SIGCHI conference on Human factors in computing
systems. 131–140.

[23] Antti Kangasrääsiö, Yi Chen, Dorota Głowacka, and Samuel Kaski. 2016. Interac-
tive Modeling of Concept Drift and Errors in Relevance Feedback. In Proceedings
of the 2016 Conference on User Modeling Adaptation and Personalization. ACM,
185–193.

[24] Diane Kelly, Karl Gyllstrom, and Earl W Bailey. 2009. A comparison of query
and term suggestion features for interactive searching. In Proceedings of the 32nd
international ACM SIGIR conference on Research and development in information
retrieval. 371–378.

[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[26] Jürgen Koenemann and Nicholas J Belkin. 1996. A case for interaction: A study
of interactive information retrieval behavior and effectiveness. In Proceedings of
the SIGCHI conference on human factors in computing systems. 205–212.

[27] Saar Kuzi, Anna Shtok, and Oren Kurland. 2016. Query expansion using word
embeddings. In Proceedings of the 25th ACM international on conference on infor-
mation and knowledge management. ACM, 1929–1932.

[28] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International Conference on Machine Learning. 1188–1196.

[29] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis. 2020.
Graph-Query Suggestions for Knowledge Graph Exploration. In Proceedings of
The Web Conference 2020. 2549–2555.

[30] Shixia Liu, Michelle X Zhou, Shimei Pan, Yangqiu Song,Weihong Qian,Weijia Cai,
and Xiaoxiao Lian. 2012. Tiara: Interactive, topic-based visual text summarization

and analysis. ACM Transactions on Intelligent Systems and Technology (TIST) 3, 2
(2012), 1–28.

[31] Chao Ma and Bin Zhang. 2018. A New Query Recommendation Method Support-
ing Exploratory Search Based on Search Goal Shift Graphs. IEEE Transactions on
Knowledge and Data Engineering 30, 11 (2018), 2024–2036.

[32] G. Marchionini. 2006. Exploratory search: from finding to understanding. Com-
mun. ACM 49, 4 (2006), 41–46.

[33] Justin Matejka, Tovi Grossman, and George Fitzmaurice. 2012. Citeology: vi-
sualizing paper genealogy. In CHI’12 Extended Abstracts on Human Factors in
Computing Systems. ACM, 181–190.

[34] Alan Medlar and Dorota Glowacka. 2018. How Consistent is Relevance Feedback
in Exploratory Search?. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. ACM, 1615–1618.

[35] Alan Medlar, Kalle Ilves, Ping Wang, Wray Buntine, and Dorota Glowacka. 2016.
PULP: A system for exploratory search of scientific literature. In Proceedings
of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval. ACM, 1133–1136.

[36] Alan Medlar, Joel Pyykkö, and Dorota Glowacka. 2017. Towards Fine-Grained
Adaptation of Exploration/Exploitation in Information Retrieval. In Proceedings of
the 22nd International Conference on Intelligent User Interfaces (Limassol, Cyprus)
(IUI ’17). Association for Computing Machinery, New York, NY, USA, 623–627.
https://doi.org/10.1145/3025171.3025205

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[38] MandarMitra, Amit Singhal, and Chris Buckley. 1998. Improving automatic query
expansion. In Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 206–214.

[39] Saeed Mohajeri, Hamman W Samuel, Osmar R Zalane, and Davood Rafiei. 2016.
BubbleNet: An innovative exploratory search and summarization interface with
applicability in health social media. In 2016 International Conference on Digital
Economy (ICDEc). IEEE, 37–44.

[40] Atsushi Otsuka, Yohei Seki, Noriko Kando, and Tetsuji Satoh. 2012. QAque:
faceted query expansion techniques for exploratory search using community QA
resources. In Proceedings of the 21st International Conference on World Wide Web.
799–806.

[41] Pearl Pu, Li Chen, and Rong Hu. 2011. A user-centric evaluation framework for
recommender systems. In Proceedings of the fifth ACM conference on Recommender
systems. ACM, 157–164.

[42] Joseph John Rocchio. 1971. Relevance feedback in information retrieval. The
SMART retrieval system: experiments in automatic document processing (1971),
313–323.

[43] Tuukka Ruotsalo, Giulio Jacucci, and Samuel Kaski. 2020. Interactive faceted
query suggestion for exploratory search: Whole-session effectiveness and in-
teraction engagement. Journal of the Association for Information Science and
Technology (2020).

[44] Mark Sanderson and Bruce Croft. 1999. Deriving concept hierarchies from text.
In Proceedings of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval. 206–213.

[45] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press Cambridge.

[46] Milad Shokouhi. 2013. Learning to personalize query auto-completion. In Proceed-
ings of the 36th international ACM SIGIR conference on Research and development
in information retrieval. 103–112.

[47] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. 553–562.

[48] Ryen W White, Mikhail Bilenko, and Silviu Cucerzan. 2007. Studying the use
of popular destinations to enhance web search interaction. In Proceedings of the
30th annual international ACM SIGIR conference on Research and development in
information retrieval. 159–166.

[49] Ryen WWhite and Resa A Roth. 2009. Exploratory search: Beyond the query-
response paradigm. Synthesis lectures on information concepts, retrieval, and
services 1, 1 (2009), 1–98.

[50] Hamed Zamani and W Bruce Croft. 2017. Relevance-based word embedding.
In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 505–514.

[51] Jian Zhao, Christopher Collins, Fanny Chevalier, and Ravin Balakrishnan. 2013.
Interactive exploration of implicit and explicit relations in faceted datasets. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (2013), 2080–2089.

[52] Jianling Zhong, Weiwei Guo, Huiji Gao, and Bo Long. 2020. Personalized Query
Suggestions. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1645–1648.

https://doi.org/10.1145/3025171.3025205

