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ABSTRACT
Interactive image retrieval involves users searching a collection of
images to satisfy their subjective information needs. However, even
large image collections are finite and therefore may not be able to
satisfy users. An alternate approach would be to explore a gener-
ative adversarial network (GAN) and model users’ search intents
directly in terms of the latent space used by the GAN to generate
images. In this article, we present a simulation study exploring the
performance of Gaussian Process bandits in the context of inter-
active GAN exploration. We used recent advances in interpretable
GAN controls to investigate the scalability of different approaches
in terms of image space dimensionality. While we present several
experiments with promising results, none of the approaches tested
scale sufficiently well to explore the entire GAN image space.
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1 INTRODUCTION
Generative adversarial networks (GANs) are a framework for es-
timating generative models [13]. A GAN is composed of two net-
works that are trained jointly: a generator, that learns to generate
synthetic data with the same distributional properties as the train-
ing data, and a discriminator, that learns to distinguish between
synthetic and real data. A majority of GAN research is centered
around synthetic image generation and recent work has resulted in
GANs capable of generating high quality images, even at high reso-
lutions [21, 23, 24]. While there are many techniques to manipulate
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the images generated by a GAN, the problem of how to perform
interactive image retrieval over the GAN’s image space has largely
been ignored.

Interactive image retrieval involves users searching through
images to satisfy their subjective information needs [26]. Given
that the images generated by a GAN are defined by a continu-
ous latent space, referred to as 𝒵 space, this might allow us to
capture users’ search intents better than a discrete collection of
images. Approaches based on exploration–exploitation tradeoff
[7, 9, 33, 41, 46], including bandit algorithms [5, 14, 17, 19, 27], have
been shown to perform well in interactive intent modeling in image
and multimedia search. Unfortunately, GANs present numerous
challenges to the application of bandit algorithms in an interactive
search setting: (i) there is no clear mapping between latent dimen-
sions and semantic features, (ii) the dimensions of the latent space
are entangled, and (iii) the number of unique images that can be
generated is exceptionally high. These issues are not present to the
same extent in other domains where bandit algorithms have been
used to successfully model search intent, such as in exploratory
search of scientific literature [29], where the datasets and features
are usually static and pre-defined .

Two recent developments, however, suggest that bandit algo-
rithms could be used to perform exploratory search of the GAN
image space. First, Härkönen et al. show that principal component
analysis (PCA) can be used to create interpretable GAN controls to
alter, for example, the gender, age or pose of a generated face [15].
Second, Ukkonen et al. [42] show that relevance feedback can be
used to explore a GAN using Rocchio’s algorithm [35] to perform a
local, greedy search of the underlying image space. We took inspira-
tion from these two papers to investigate whether bandit algorithms
can be used to perform exploratory search of a GAN’s latent space.
We present preliminary results from a simulation study compar-
ing the performance of Gaussian Process (GP) bandits [10, 40] to
Rocchio’s algorithm in exploratory image search. In this paper, we
present the following contributions:

• To our knowledge, we present the first study of using bandit
algorithms to search a GAN’s image space.

• We show that GP bandits ties with or outperforms Rocchio in a
majority of experimental settings, but was too computationally
intensive to search the full GAN image space.

• We demonstrate that neither of the methods investigated con-
verge when searching > 10 principal components, suggesting
that systems based on these approaches may struggle to satisfy
users’ information needs.

2 RELATEDWORK
We briefly review related research in GANmanipulation techniques
and the use of bandit algorithms in information retrieval.
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2.1 GAN Architectures and Manipulation
Research into GANs initially focused on improving the quality
of generated images and the stability of training. For example,
DCGAN uses convolutions in both the generator and discriminator
[34], PCGAN progressively grows its architecture, and therefore the
resolution of images, during training [21] and BigGAN introduced
the “truncation trick”, where images are generated by sampling
from a truncated normal distribution [6]. More recently, StyleGAN
[23] and StyleGAN2 [22, 24] used many of the same techniques as
above together with a further intermediate latent space, called𝒲
space, that contains less entangled features.

Images generated by GANs can be manipulated by transforming
a latent code in either the original latent space 𝒵 or 𝒲 space by
adding a vector for a given semantic feature, such as age, gender
or facial expression. These vectors are often referred to as inter-
pretable directions or controls. Interpretable controls can be created
in a supervised manner [2, 18, 38], however, such approaches are
constrained by the variety of available labels and tend to be biased
due to multicollinearity of features. There are also unsupervised
approaches to finding interpretable controls. Härkönen et al. create
controls by sampling 𝒵 space and performing PCA on an interme-
diate representation of the GAN (𝒲 space in StyleGAN or feature
space in BigGAN) [15]. Shen et al. show that unsupervised controls
could be created without sampling, using closed-form factorization
of network weights [39]. Other approaches for unsupervised discov-
ery of interpretable controls are also being developed (e.g. [43, 44]).

Many other methods have been proposed for manipulating or
editing images generated by GANs, such as using style transfer
techniques [1], methods that involve drawing directly on an im-
age [1, 50] and combining features from different images [8, 31].
For a comprehensive survey of GAN manipulation methods, we
recommend the recent survey by Xia et al. [47].

2.2 Bandits in Information Retrieval
Over the last two decades bandit algorithms have been gaining
popularity in various applications related to information retrieval
and recommender systems [12]. Bandits have been successfully
applied in many areas of information retrieval, including, the learn-
ing to rank problem and modeling user click behavior [16], result
diversification [48], query auto-completion [45] and online ranker
evaluation [51].

Bandit algorithms allow a system to trade off exploration (ac-
quiring new information about the the search interest of the user)
and exploitation (using existing knowledge about user’s search
interests). This characteristic makes bandit algorithms particularly
suitable in areas such as exploratory search [28], where users have
open-ended or ill-defined search goals that can gradually shift over
a search session [5, 29, 30]. Additionally, bandit algorithms can be
combined with relevance feedback [36] to allow incorporation of
user’s interests and preferences that further facilitate user intent
modeling [3, 49]. At the same time, the exploration–exploitation
tradeoff forming part of bandit algorithms prevents users from
getting stuck in a context trap, which is often associated with tradi-
tional relevance feedback approaches [25].

In this study, we investigated using Gaussian Process bandits
to perform exploratory search of a GAN’s latent space. To our

knowledge, the only work in this area used relevance feedback
[42] and, therefore, the problem could benefit from the additional
exploration performed by a bandit-based approach.

3 METHODOLOGY
In this section, we provide a brief overview of image generation in
StyleGAN2, describe both Gaussian Process bandits and Rocchio’s
algorithm, and outline our simulation procedure.

3.1 Image Generation in StyleGAN2
We used StyleGAN2 [24]1 to generate images of faces using a pre-
trained model2 based on the Flickr-Faces-HQ (FFHQ) data set [23].
StyleGAN2 has a special generator structure which consists of a
mapping network 𝑓 and a synthesis network 𝑔. To generate an
image, a latent vector 𝑧 is sampled from a distribution (typically
multivariate normal) and mapped to an intermediate latent vector
𝑤 using the mapping network 𝑓 . Finally,𝑤 is fed to the synthesis
network 𝑔 to produce an image 𝐼 . More formally, the image genera-
tion process can be described as 𝐼 = 𝑔(𝑓 (𝑧)), where 𝑧 ∼ 𝑃 (𝑧). As
not all areas of 𝒲-space produce high quality images, StyleGAN2
uses the truncation trick to constrain 𝑤 to be closer to the mean
vector according to 𝑤 ′ = �̄� + 𝜓 (𝑤 − �̄�). This technique greatly
improves the quality of generated images, but reduces image vari-
ety. We set the truncation parameter to𝜓 = 0.5, as it provides high
quality images without loosing too much variation.

Unfortunately, 𝒵 and𝒲-space are not very useful on their own
for controlling the appearance of generated images because their
dimensions do not correspond to semantically meaningful features.
We therefore used the method proposed by Härkönen et al. [15],
where interpretable directions in latent space are found using PCA.
In brief, we sampled 106 𝑧-vectors, transformed them to 𝒲-space
and then computed PCA. We did not restrict the usage of the ob-
tained latent vectors to a subset of network layers, as is proposed
in the original paper, but use PCA-space directly as a surrogate
search space instead of 𝒵 or𝒲-space. When searching PCA-space,
instead of choosing𝑤 directly, we choose a vector 𝑥 in PCA-space
and transform it back into𝒲-space using inverse PCA.

3.2 Gaussian Process Bandits
As shown in the original StyleGAN paper, latent vectors that are
close to each other produce similar images [23], which implies that
such images would also get a similar reward from a user. Thus, we
assume that the reward landscape is sufficiently smooth and use
Gaussian process (GP) regression to predict the reward associated
with images, using principal components as features. Gaussian
processes are fully defined by their mean and covariance (or kernel)
functions, ` (𝑥) and ^ (𝑥, 𝑥 ′), respectively, which can be chosen to
reflect prior knowledge. In our application, we used Matern kernel
with the following parameter settings: nu = 2.5, alpha = 1e-6 (as
in [32]). Matern kernel is a generalisation of the RBF kernel and
is often used in applications related to spatial statistics and image
analysis. The strength of using GP regression lies in its ability
to model the uncertainty of predictions as variance. This enables
the use of upper confidence bound (UCB) methods [4], where the
1https://github.com/NVlabs/stylegan2-ada-pytorch
2https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/ffhq.pkl
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search is focused on areas with the best potential. We used the UCB
algorithm for Gaussian processes called GP-UCB [40].

The problem definition in GP-UCB is similar to the case of in-
dependent arms. We attempt to sequentially optimize a reward
function 𝑓 : 𝒳 → R, where 𝒳 is the input space. This is done by
choosing a point 𝒙𝑡 ∈ 𝒳 and evaluate the result 𝑦𝑡 = 𝑓 (𝒙𝑡 + 𝜖𝑡 ) at
that point. The goal is to maximize the sum of rewards.

In order to utilize the information of function values at the sam-
pled points, we also have to take into account the mean values of
the GP regression. Always selecting the information gain maxi-
mizer would be an exploration only strategy, while selecting points
𝒙𝑡 = argmax𝒙∈𝐷 `𝑡−1 (𝒙) would be pure exploitation and would
likely get stuck in a local optima. These two approaches can be
balanced by choosing

𝒙𝑡 = argmax
𝒙∈𝐷

`𝑡−1 (𝒙) + 𝛽𝜎𝑡−1 (𝒙),

where 𝛽 are appropriately chosen constant balancing factors for
exploration-exploitation tradeoff. This objective greedily selects
both points where reward is expected to be high and the uncertainty
of the reward is large. In our experiments, we used 𝛽 = 0.9 (iden-
tified from manual inspection, data not shown). We implemented
GP-UCB with the Bayesian Optimization Python library [32].

3.3 Rocchio’s Algorithm
We used the variant of Rocchio’s algorithm introduced by Ukkonen
et al. [42] as a baseline to compare with GP-UCB. In this context,
Rocchio’s algorithm maintains a centroid, 𝑐 , in latent space and at
every iteration samples vectors close to 𝑐 . The sampled images are
shown to the user, who provides relevance feedback. The feedback
is used to update 𝑐 so that it moves closer to relevant images and
further away from irrelevant ones. Following Ukkonen et al., we
sampled from amultivariate normal distribution with a scale param-
eter, 𝜎 , around the centroid and presented five candidate images at
once. Ukkonen et al. only used positive relevance feedback, which
simplifies the centroid update rule to 𝑐𝑖 = (1−𝛼)𝑐𝑖−1+𝛼 𝑣𝑎𝑣𝑔 , where
𝑣𝑎𝑣𝑔 is the average latent vector of images that received relevance
feedback. The parameters used for experiments were 𝜎 = 0.2 and
𝛼 = 0.7 (as in [20]). We performed experiments in 𝒵 space like the
original paper and PCA-space.

3.4 Simulation Procedure
3.4.1 User Model. We simulated users performing exploratory im-
age search. We assumed that users would (i) have a particular target
image in mind and (ii) be capable of assessing the distance between
the target image and the candidate images presented to them. In
each simulation, a target image is chosen at random from the search
space (either 𝒵 or PCA-space) so the exact target image can po-
tentially be found. This is important because in some experiments
we restrict the search space to the first 𝑛 principal components.
We calculated the distance between faces with the Python Face
Recognition library [11] that uses an approach similar to FaceNet
[37]. We defined a threshold distance of 0.1 whereby images were
considered “close enough” to the target image to have converged.

3.4.2 Rocchio’s algorithm. For experiments with Rocchio, at each
iteration we sampled 5 images and selected the closest image to
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Figure 1: Rocchio performance on full image space: (a) distri-
bution of distances from the best image found to the target
image, (b) impact of initial centroid on final results. (Z = 𝒵-
space, PCA = PCA-space, ws = warm start).

the target for relevance feedback (i.e. 𝑣𝑎𝑣𝑔 = 𝑣𝑏𝑒𝑠𝑡 ). The search
continues until an image close enough to the target is found or for
a maximum of 80 iterations (showing the user a maximum of 400
images). With Rocchio, we ran experiments with and without warm
start. Without warm start, the initial centroid is randomly sampled
from a multivariate normal distribution, whereas with warm start
the initial centroid is chosen as the closest image to the target from
100 randomly sampled images (this is similar to the “near task” in
Ukkonen et al. [42]).

3.4.3 GP-UCB. In the experiments with GP-UCB, a single image
was shown at each iteration on the basis of the upper confidence
bound. We gave a reward equal to the negative distance between
the current image and the target image. The search continues until
an image close enough to the target is found or for a maximum of
400 iterations, i.e. the same image budget as Rocchio without warm
start. In our experience, sampling from PCA-space was prone to
producing unsatisfactory images when 𝑥 is sampled too far from
the origin. We therefore provided GP-UCB with the same bounds
that result from Rocchio’s use of a truncated normal distribution to
constrain the search space.

3.4.4 Random Baseline. As an additional baseline, we randomly
sampled 400 images from the search space, either 𝒵 or PCA-space,
and find the closest image to the target image.

4 RESULTS
We investigated two experimental settings: (i) exploring the full
GAN using either 𝒵 or PCA-space, and (ii) exploring a restricted
space defined by the first 𝑛 principal components in PCA-space.
For each experimental setting, we performed 100 simulation runs
using 100 randomly sampled target images. The same 100 target
images were used to search the full GAN space using each method
and a different 100 target images were generated for each number
of principal components tested. This ensures that all targets are
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Figure 2: Distribution of distances from the best image
found to the target image for different numbers of princi-
pal components for Rocchio (left) and GP-UCB (right). Red
crosses are the median performance of random sampling.

reachable as an image that can be represented exactly in, for ex-
ample, 20 principal components, can only be approximated in 10.
In the PCA experiments, we used 1, 5, 10, 20, 50 and 100 principal
components that explained 6.6%, 27.5%, 44.9%, 58.0%, 71.5% and
81.4% of the variance, respectively.

4.1 Full Image Space
Figure 1a shows the distribution of face distances between the target
image and the best image found (lower distances are better). We
simulated Rocchio in 512 dimensional 𝒵-space and in PCA-space
using all 512 principal components, both with and without warm
start. GP-UCB is absent from the plot as it was too computationally
intensive to run on the full image space. For comparison, we also
included the random baseline.

None of the simulation runs in Figure 1a managed to converge
to the target image. In 𝒵-space, Rocchio benefited from warm
start, improving the median face distance by 27.8% from 0.372 to
0.291. In PCA-space, however, warm start made less difference, only
improving performance by 5.2% from 0.324 to 0.308. Rocchio did not
perform as well as expected compared to simply sampling random
images. Indeed, searching 𝒵-space without warm start frequently
produced worse results than the median performance of random.
Figure 1b shows how dependent Rocchio is on starting conditions:
the lower the distance between the initial centroid and the target
image, the better the final result (Pearson correlation of 0.45-0.55,
depending on experimental setting).

4.2 Reduced Image Spaces
Figure 2 shows the distribution of face distances between the target
image and the best image found (lower distances are better). We
compared Rocchio with warm start and GP-UCB with different
numbers of principal components ranging from 1–100. The red
crosses show the median performance of random sampling.

For lower numbers of principal components, both methods per-
formed similarly: converging in a majority of simulation runs for
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Figure 3: Time series of the average final distance to target
image for Rocchio and GP-UCB searching 50 and 100 princi-
pal components.

1, 5 and 10 principal components. When searching more than 10
principal components, however, the performance of both methods
degrades in terms of distance to target and overall spread. With 20
principal components, Rocchio outperformed GP-UCB by 29.8% in
median distance to target. At the highest dimensionalities tested,
GP-UCB outperformed Rocchio by 5.8% and 16.8% for 50 and 100
principal components, respectively. Figure 3 shows how the search
progresses over time for 50 and 100 principal components. Despite
GP-UCB having a significant disadvantage compared to Rocchio
(GP-UCB does not use warm start), it catches up quickly and, in
the case for 100 principal components, achieves similar distance to
target at 250 images compared to Rocchio at 400 images.

5 SUMMARY
In this paper, we conducted a simulated study of GP-UCB and a vari-
ant of Rocchio’s algorithm for performing exploratory search over
a GAN. In our experiments, GP-UCB either tied with or exceeded
the performance of Rocchio in 5/6 experimental settings (Figure 2),
despite not benefiting from warm start. While GP-UCB appeared
to scale better than Rocchio at higher dimensions (Figure 3), it was
too computationally intensive to run on the full image space. In-
deed, the best we managed to run was 100 principal components,
covering 81.4% of explained variance of the full GAN image space.

Despite appearing to performwell, both methods only succeeded
in converging with up to 10 principal components. We visually
inspected the faces generated using 10 and 20 principal components,
and noted that, despite only going from 44.9% to 58.0% explained
variance, the variety of faces increased substantially in terms of
more varied hair color, ethnicities and lighting conditions. This
suggests that systems based on these approaches may struggle to
satisfy users’ information needs and more research is needed to
understand how to search a dense continuous latent space within a
constrained image budget.
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