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1  |  INTRODUC TION

Concerns about incompleteness of the fossil record have long been 
at the forefront of palaeontology research. In the Origins, Charles 
Darwin dedicated more than a full chapter to imperfection of 
the geological record (Darwin, 1859). The fossil record known in 

Darwin's day represented a very small part of potentially available 
material. With over a century of active collection and documen-
tation of fossil evidence, the global fossil record is now broad and 
abundant and includes increasingly rich contextual information 
available via fossil databases (Uhen et al., 2013). If many fragments 
that represent different circumstances are available, we can hope to 
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Abstract
1. We propose to leverage recommender systems from machine learning to build 

large- scale community distribution models for the mammalian fossil record. 
Recommender systems are behind most online life today, from shopping to news 
personalisation, online dating, or the selection of study programmes or fastest 
routes. Many recommender systems work by predicting user preferences from 
items that occur together in user profiles. Technically, this setting closely resem-
bles co- occurrence of species in natural environments.

2. Here we frame community distribution modelling as a recommender systems 
task, tailor existing recommender techniques for this purpose and propose opti-
misation criteria for fitting the models in the ecological context. The predictive 
power comes from species co- occurrences.

3. We demonstrate the potential of this approach for analysing past ecosystems on 
a case study of Miocene fossil sites in Europe, where we use the proposed com-
munity distribution modelling for reconstructing companionships and relative 
abundances of large mammals.

4. The proposed approach to community distribution modelling, although not cli-
matically explicit, can help to reconstruct past ecosystems and analyse their 
structure and dynamics over time and space. It also allows, even coarsely, to 
predict relative abundances of fossil species from presence– absence data. More 
generally, the proposed perspective is a means for analysis of fossil communities 
and the relationships between their ecological contexts.
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reconstruct ecosystems of the past drawing on overlaps between 
those fragments.

Extrapolating from overlaps is how modern recommender sys-
tems work (Ricci et al., 2011). Recommender systems are behind 
most of online life today, ranging from dating applications, book 
recommendations on Amazon, or movies on Netflix to personalised 
learning, personalised banking, or personalised health. A typical rec-
ommender system scenario is that a large list of users is available, 
where each user has rated, watched or purchased some small num-
ber of items. The goal is to predict which other items the user would 
prefer.

The recommender systems approach naturally lends itself to the 
analysis of fossil communities if we consider fossil sites as users and 
fossil taxa as items. One can think of species as components of an 
ecosystem in a similar way as movies can be components of a user 
profile. Typical data behind recommender systems are very sparse, 
as are fossil occurrence data. A single user can realistically watch 
only a small fraction of the movies that have ever been produced. 
Similarly, each fossil assemblage represents only a small fraction 
of all species that have ever lived. As the number of transactions 
can vary from user to user, similarly the species diversity can vary 
from site to site. The goal is to predict the preferences of taxa for 
palaeoenvironments.

One of the key features of the data behind recommender sys-
tems is the uncertainty of absence. In the user modelling setting, 
the presence of a transaction typically signals that the user liked the 
product, but the absence of a transaction might mean either that the 
user did not like the product or that he or she has never come across 
it. Similarly, in the fossil world, the absence of a species at a site 
may mean that a species was absent from that environment or that it 
lived there but has not (yet) been found as a fossil.

The uncertainty of absence in ecology is of two main kinds cor-
responding to presence- background and presence– absence data 
(Wang & Stone, 2019). The former comes from opportunistic sur-
veys where the presence of species has been recorded but there are 
no records of absence. The latter comes from systematic surveys 
in which the confidence about absences is comparable to the con-
fidence about presences. Fossil data are more like the latter. The 
bulk of the data in curated fossil databases record intensively sam-
pled sites where there is some confidence about the absence. At the 
same time, absences remain uncertain, since fossilisation is a very 
unlikely event and even if the site has been well sampled, no repre-
sentatives of a species that was part of a faunal community in the 
past may have fossilised.

We propose a methodology for analysing distribution of fossil 
species and their ecological contexts by leveraging recommender 
system techniques from machine learning. The computational task 
is to generalise over a very large and extremely sparse fossil record 
by modelling preferences of taxa for palaeoenvironments. This will 
not recreate species that have never been found as fossils but can 
help to identify viable fossil communities and estimate their com-
pleteness and relative abundances. This approach is intended to 
work with heterogeneous data coming from multiple sources and 

prior rarefaction or subsampling is not required. Apart from pro-
viding proxies for analysing the dynamics of past ecosystems, this 
approach can offer insights into basic research questions, such as 
what characterises a viable ecosystem over long times. With a case 
study of Middle Miocene fossil sites in Europe, we illustrate how 
such modelling can be used to reconstruct ecological contexts and 
relative abundances of large mammals.

2  |  THE PROPOSED RECOMMENDER 
SYSTEMS APPROACH

Our task is to quantify the preferences of taxa towards different en-
vironments. The classical approach to this task in ecology is species 
distribution modelling.

2.1  |  Rationale

Species distribution modelling, also termed as environmental or 
ecological niche modelling, aims to predict occurrences of species 
based on climate or other environmental characteristics (Elith & 
Leathwick, 2009). Joint species distribution methodology (Pollock 
et al., 2014; Tikhonov et al., 2020) models species occurrences in re-
lation to environmental characteristics as well as to each other. The 
mainstream species distribution modelling in ecology focuses on one 
species at a time, even if co- occurrences are taken as explanatory 
variables. Multi- species distribution models (Dunstan et al., 2011; 
Hui et al., 2015) predict responses of multiple species to environ-
mental gradients. A parallel line of research, community composi-
tion modelling assesses imperfection of observations as a function 
of environmental characteristics (Beasley & Maher, 2019). All these 
approaches primarily rely on climatic data as explanatory variables.

The traditional species distribution modelling has been applied 
to fossil taxa (Myers et al., 2015; Varela et al., 2011). In those set-
tings, climatic data can come either from climate model simulations 
or be predicted from morphological, chemical or taxonomic char-
acteristics of the sediments or fossils themselves. One of the main 
challenges is that localised climatic data of high resolution are not 
realistically available further than for a very recent past.

To the best of our knowledge, no joint species distribution mod-
els, which would consider the distribution of multiple species along 
with their environmental contexts, have yet been reported for the 
fossil record. Recently, we attempted an ecometric species distri-
bution modelling of early humans using functional traits of fossil 
mammals (Saarinen et al., 2021), which is yet another direction close 
to the traditional species distribution modelling. While not explic-
itly modelling species distribution or relative abundances. Toth 
et al. (2019) analysed co- occurrence patterns using a climatic con-
text over the Late Quaternary.

Our proposal is to leverage information of species companion-
ships for modelling probabilities of occurrence. This approach relies 
on the assumption that species co- occurrence is not random in fossil 
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communities, that is, those taxa that sometimes occur together are 
likely to occur together again. While the approach inherently takes 
into account species interactions, such as competitive exclusion, if 
any (Blanchet et al., 2020), the main premise for co- occurrence is 
considered to be the affinity towards similar environmental condi-
tions, climatically or otherwise. The approach does not use climatic 
estimates explicitly.

The proposed approach can be seen as species distribution 
modelling via community affiliation, or community distribution mod-
elling, in brief. This is not meant to replace the traditional species 
distribution modelling, rather to complement it where possible. 
The approach primarily aims at analyses of large spatial or temporal 
scales where high- resolution environmental data are not easily or 
at all available, analysing fossil communities is the primary intended 
application.

What can we do with such a model in the fossil world? 
Collaborative filtering, the technique that we employ, produces pref-
erence estimates for any taxa to occur at any site. Since estimates 
come from a single model for many taxa and sites, they are directly 
comparable across those taxa and sites. Model outputs then be used 
for three potential purposes: analysing community composition, pre-
dicting relative abundances within communities and assisting in data 
curation.

The model can be used to construct community trees, which 
would highlight which taxa are more closely related to each other in 
terms of contexts of their occurrence (companionships). This way we 
can distinguish occurring together from occurring in similar compan-
ionships (while not necessarily often together). We show examples 
of such analysis with a case study of fossil mammals.

From the curatorial perspective, community distribution models 
could also be used to assess the quality of the record, flag poten-
tially missing taxa at sites, as well as highlight potential issues with 
taxonomic identifications. Given preference scores from the model, 
one could ask what are the species that most likely have occurred at 
site X in addition to those already found there as fossils? Are there 
any species that would be highly likely to have been misidentified 
at site X (present at a site but a model gives a low probability for 
that species)? While never intended to be used for automated cor-
rections, such predictions could draw attention of data curators to 
cases for manual inspection. Estimating the number of species that 
have not been observed is an orthogonal challenge (May, 1988) for 
which many statistical solutions already exist (Alroy, 2000; Chao 
et al., 2015; Connolly & Miller, 2001; Foote, 2000, 2016; Raup, 1975). 
Since common species define major patterns of ecosystems (Jernvall 
& Fortelius, 2002), for functional analysis of communities the most 
representative taxa will suffice as long as we can reason about their 
relative abundances (Vermeij & Herbert, 2004).

A promising potential application to be developed is reconstruct-
ing relative abundances from presence– absence data. For the vast 
majority of the global fossil record, information about relative abun-
dances is not available and it might never even have been collected. 
And even if specimen counts were recorded (Moore et al., 2007; 
Olszewski, 2012; Tomasoyvich & Kidwell, 2011), they would not 

necessarily accurately reflect the abundances of living commu-
nities due to taphonomic biases (Badgeley, 1986; Damuth, 1982; 
Lyman, 1994) or the fragmentary nature of the remains such that 
they cannot be assigned to the species or even higher taxonomic 
levels reliably. The idea is to draw upon ecological relationships to 
predict what abundances could have been expected.

A recommender systems approach does not require counting 
frequencies of bones but instead leverages companionships of spe-
cies at sites. The idea is to produce a model that can estimate the 
probability of occurrence for any species at any site in the dataset 
and then convert those estimated probabilities into relative abun-
dances assuming that the higher the probability of occurrence is, the 
more abundant that species has been at that site. If the contexts of 
occurrence (companionships) relate to environmental patterns, then 
the preference scores predicted from companionships should carry 
abundance information. While it is clear that high environmental 
suitability does not always indicate high abundance and complica-
tions arise due to different kinds of rarity (Yu & Dobson, 2000) or 
metabolic scaling (Marquet et al., 1995), to the first approximation 
this relationship is true (Weber et al., 2017).

Recently, several approaches have been proposed to predict 
relative abundances of plants as a function of their climatic toler-
ances at the present day (Bradley, 2016; Couwenberghe et al., 2013; 
Yanez- Arenas et al., 2014). This is not directly applicable to fossil 
data, not least because high- resolution climatic variables are not 
widely available. A theoretical model for reconstructing ances-
tral population sizes conditioned on a phylogenetic tree was re-
cently proposed (Manceau et al., 2020), but any practical attempt 
to apply this to real fossil data is still pending. In the fossil realm, 
analytical studies of relative abundances typically have the rela-
tive abundances available from specimen counts and are primarily 
concerned with estimating their confidence intervals (Buzas, 1990; 
Chang, 1967; Moore et al., 2007). We are not aware of any attempts 
to reconstruct relative abundances at large scales based solely on 
occurrence data of fossil species, which, among other uses, we aim 
at with the recommender systems approach.

2.2  |  Implementation

Machine learning techniques for recommender systems have rap-
idly advanced over the last couple of decades (Adomavicius & 
Tuzhilin, 2005; Aggarwal, 2016; Ricci et al., 2011) not least due to 
commercial interest. Research was further catalysed by the Netflix 
competition, where 1 million dollars was offered and granted 
(Bennett & Lanning, 2007; Koren, 2009) for a film rating prediction 
algorithm that outperformed a contemporary movie recommender 
system.

Automated recommender systems are of two basic types: 
content based and collaborative filtering (Ricci et al., 2011; Su & 
Khoshgoftaar, 2009). Content- based recommender systems build 
personalised models that predict user preferences using product 
characteristics as inputs. This would correspond to the traditional 
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species distribution modelling, which predicts using environmental 
conditions as inputs.

Collaborative filtering captures and extrapolates patterns of co- 
occurrence. The main predictive power comes from the assumption that 
what occurs together is likely to occur together again without the need 
to explicitly describe why they occur together or define a joint morpho-
logical space. Co- occurrences link fragmented data of different users.

The predictive power comes at a price. While content- based ap-
proaches generally predict rare and common items comparably well, 
collaborative filtering is likely to predict rare items less accurately 
than common items. Collaborative filtering may be preferred in the 
circumstances where quantifying traits or environmental character-
istics is not feasible.

Implementation of collaborative filtering offers many possibili-
ties. Latent factor models (Gopalan et al., 2015; Hu et al., 2008; Koren 
et al., 2009; Ning & Karypis, 2011; Salakhutdinov & Mnih, 2008) 
largely dominate the collaborative filtering research for over a de-
cade due to their simplicity and effectiveness, even though deep 
learning is taking over (Fu et al., 2020; Jannach et al., 2020; Liang 
et al., 2018; Steck, 2019), especially in commercial contexts where 
very large datasets are available for model training.

Latent factor models work by decomposing the user– item in-
teraction matrix into the product of two matrices of much lower 
dimensionality. The principle is illustrated in Figure 1. Factorisation 
projects a large dataset into two smaller matrices, which summarise 
user preferences in a low- dimensional space. The first matrix sum-
marises the preferences of users for items, and the second matrix 
summarises the affinity of items towards users. In the setting of 
community distribution modelling, the weights in the first ma-
trix (X) represent the profiles of different sites as combinations 
of extracted latent types (which potentially could be interpreta-
ble, as, for example, hot or cold climate sites, or could have no 

interpretable meaning), while the weights of the second matrix 
(Y) represent preferences of species to those latent types of sites. 
Algorithmically, the main objective of this decomposition is to re-
construct the original user– item matrix not ideally, but approxi-
mately, such that the most prominent co- occurrence patterns are 
captured. Multiplication of the two summary matrices then pro-
duces preference estimates for all user– item (or, in the ecological 
context, site- species) pairs.

Exact factorisation solutions are often infeasible; thus, con-
structing projection matrices from data generally requires algorith-
mic treatment via machine learning. Tens if not hundreds of latent 
factor models and variants for recommender systems are available 
(Koren et al., 2009; Symeonidis & Zioupos, 2017), tailored for various 
circumstances. One criterion to consider is whether feedback about 
user preferences is recorded in the dataset explicitly or implicitly. 
Explicit feedback means that information about user preferences 
is available, for example, as ratings given by users to items. Implicit 
feedback characterises datasets where only user– item interactions 
are recorded, but it is not known to what extent the user liked the 
items. For example, a person may have purchased and watched a 
movie but not liked it, or they may have purchased it for someone 
else. Thus, the presence of a transaction does not necessarily mean 
high preference for the content.

Most large- scale fossil databases record only presence– absence, 
which in the recommender systems setting is referred to as a trans-
action. If a species is on the species list, it does not necessarily mean 
that it has been abundant or thrived in that environment, it may well 
have been barely surviving there. In this setting, the feedback about 
preferences is implicit. Explicit feedback would correspond to infor-
mation about relative abundances being available. Collaborative fil-
tering with implicit feedback can account for these uncertainties (Hu 
et al., 2008; Verstrepen, 2015).

F I G U R E  1  A schematic illustration of a latent factor model applied to fossil data. In the occurrence matrix, black means presence and 
white means absence. In the factorised matrices, shades of grey mean different weights. In the final matrix (farthest right), black means a 
high probability of occurrence, and white means low.
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Solutions with implicit feedback typically draw on the repet-
itiveness of the transaction or the certainty associated with the 
transaction. In the fossil world, repetitiveness can be inferred, for 
instance, from the occurrence of species from the same genera at 
the same site. In addition, certainty can be quantified via qualifi-
ers associated with species identification (‘cf’, ‘aff’ and the like). 
Neither certainty nor presence– absence information has to be 
complete; recommender systems are meant to operate on incom-
plete information.

2.3  |  Algorithmic details

We propose to build community distribution models on a classical 
latent factor modelling technique for collaborative filtering with im-
plicit feedback (Hu et al., 2008). The method works as follows.

Let Dn×m be a matrix of observed presence or absence of spe-
cies at sites. Here n is the total number of sites, and m is the total 
number of species in the dataset. Presence– absence in D most 
typically is binary (1 = presence, 0 = absence), but it does not have 
to be binary (e.g. 0.7 might encode presence with some taxonomic 
uncertainty).

First, presence– absence is translated into a confidence matrix 
Cn×m, which considers the uncertainty of absence. Hu et al. (2008) 
define the confidence matrix as

where α is the parameter that accounts for asymmetry of uncertainty. 
This parameter roughly describes how much more a presence of a 
transaction is certain than an absence. Hu et al. (2008) use α = 40 
for movie recommendations. In practice, fossil data tend to have less 
asymmetry in uncertainties than movie recommendation data and we 
recommend use of α = ∼10 with fossil data.

The next step is matrix factorisation, which decomposes the oc-
currence matrix D into two preference matrices Xn×k and Ym×k such 
that X summarises profiles of sites (as illustrated in Figure 1), and 
Y summarises preferences of species. k is a parameter specifying 
the dimensionality of the projection, which is conceptually similar 
to the number of components for any projection technique, such as 
principal component analysis. Our experiments suggest that k = ∼10 
works well for mammalian fossil data of continental scale, but it 
highly depends on the overall size of the data.

such that the following cost function is minimised

The cost function consists of two terms, the second of which is a regu-
larisation parameter that prevents the entries of X and Y becoming too 

large; this is necessary to mitigate the risk of model overfitting. Here 
c and d are elements of matrices C and D (defined earlier), and X and Y 
are rows of matrices X and Y.

Factorisation is obtained algorithmically by minimising the cost 
function (3). First, matrices X and Y are initialised randomly and then 
each of their columns is repeatedly refined iterating over two equa-
tions, each time over all m species and all n sites:

Here Cu is defined as an m × m diagonal matrix deriving from the confi-
dence matrix such that Cu

i
i = cui, and Ci is similarly defined as an n × n di-

agonal matrix deriving from the confidence matrix such that Ci

uu
= cui . 

Vectors D(u) and D(i) are column and row vectors from the occurrence 
dataset D. D(u) contains presences and absences of all the species at 
site u and D(i) contains presences and absences of species i across all 
the sites. The regularisation parameter λ has the same purpose as in 
many statistical and machine learning optimisation procedures such as 
regularised regression (Hastie et al., 2009), where a small constant is 
added to the diagonal to avoid over- parameterisation. I is the identity 
matrix of k × k dimensions.

It is recommended to repeat the procedure for at least 10 itera-
tions or until convergence (meaning that with further iterations the 
values do not change much). A source code implementing the algo-
rithm in R along with a toy example from which Figure 1 is made is 
given in the online appendix.

Estimated preference scores of each species for each site can be 
obtained by multiplying the factor matrices

Each element pui records a preference score of taxon i for site u. These 
estimates may occasionally go above one or below zero; thus, strictly 
speaking, they are not probabilities unless normalised (e.g. by placing 
a logistic function on the model output). Within this study, we do not 
normalise them, because it is not necessary. The interpretation can be 
obtained directly: the higher the score, the more likely the taxon is to 
have occurred at a given site. The main benefit of this raw treatment is 
that the estimates are obtained from a single statistical model, which 
makes the relative magnitude of the estimates comparable across all 
species and sites.

2.4  |  Selecting parameters for the model

The proposed model requires four parameters: α, k, λ and the num-
ber of model fitting iterations.

α in Equation (1) controls the asymmetry of uncertainties about 
presence and absence. The higher the value, the more import-
ant accurate prediction of presences is considered over accurate 
prediction of absences, that is, higher α assigns more uncertainty 

(1)C = 1 + �D,
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C

→Xn×k × Y
T

m×k
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to absences. The constraint α > 0 should be observed. α = 1 corre-
sponds to the assumption that absences are as equally certain as 
presences. Higher αs produce more of positive predictions and pre-
dictions close to zero become increasingly rare.

k in Equation (2) is the number of inner dimensions in the fac-
tor matrices. k is an integer and naturally k > 0. Lower k generally 
means more clumping of species and sites in the reconstruction of 
preferences for occurrence, and higher k means more individual pre-
dictions. Modelling with low k conceptually relates to the notion of 
chronofaunas (Bingham & Mannila, 2014; Eronen et al., 2009; Kaya 
et al., 2018; Olson, 1952), where sets of species make cohesive dis-
crete units that persist over a long time and are expected to be found 
in their original composition at many places. The meaning of k is sim-
ilar to that of the number of components in principal component 
analysis. In the fossil record analysis, this parameter can be inter-
preted as the number of distinct dietary- environmental categories.

λ in Equation (4) is the regularisation parameter, the purpose 
of which is to keep the elements in the two- factor matrices small. 
Overgrowing of the weights leads to overfitting of the observational 
data in the sense that the dataset is learned ‘by heart’ by the model 
instead of extracting generic patterns from it.

The number of iterations for the model fit is given in Equation (3). 
The model generally converged quite quickly; we found that 10 or 
fewer iterations were usually enough to obtain a stable model.

For exploration purposes, we tested around 200 parameter 
settings via a grid search in the four- dimensional model parameter 
space (α, k, λ and the number of model fitting iterations) using the 
analysis dataset. Our grid search is reported in Appendix B of this 
manuscript, also available as an extended abstract (Zliobaite, 2021).

For the case study, we fixed the following parameter settings: 
α = 10, k = 10, λ = 10 and 10 iterations for model fitting. One can see 
from the roundedness of the values that these parameters are not 
fine- tuned to optimise any single quantitative criterion, but rather 
aimed at robust and biologically meaningful results, informed by our 
grid search.

We initialised matrices X and Y by drawing random values from 
the normal distribution with zero mean and unit variance. It took a 
couple of minutes to fit one model using ad hoc implementation in R 
suite on a commodity laptop.

For integrity and more consistent exposition in this study, we 
chose a single model rather than using separate models for each task 
of the case study or averaging over multiple random initiations. This 
certainly can be done, especially when such modelling is used for 
estimating relative abundances.

2.5  |  Performance criteria for model fitting

An overarching questions is how to evaluate whether the perfor-
mance of a fit model is any good. While many indirect evaluation 
approaches exist for recommender systems (Herlocker et al., 2004), 
usually the most reliable is online testing, where users are exposed 
to different recommender solutions at random. Since species 

occurrence data are almost always exclusively observational, online 
evaluation is not an option and we are left to evaluate the model fit 
based on the observational data used for modelling.

If we wanted the model to reconstruct the observational data 
as closely as possible, the best approach would be to set the num-
ber of internal dimensions k as high as possible and to set the reg-
ularisation parameter λ to zero. Such a model would memorise and 
reconstruct underlying data perfectly but it would not have gen-
eralisation or predictive power, it would simply overfit the data at 
hand. We want the model to extract generic patterns, not to mem-
orise the data.

Cross- validation (Hastie et al., 2009), that would normally be 
used in machine learning to avoid overfitting, is not an option here 
since there is no trivial way to separate a testing set. For latent fac-
tor models, we can do pseudo- cross- validation, where individual oc-
currences are nullified at random (Ning & Karypis, 2011), and check 
which parameter settings best reproduce the nullified occurrences. 
Yet, this is not sufficient either. If we were only to maximise this 
leave- one- out accuracy, the optimal solution would be to predict ev-
erything as ones, that is to predict all species to occur everywhere. 
Clearly, this is not an informative outcome either.

Even if we manage to have a good summary that avoids over-
fitting, reconstructing the original observational data as closely as 
possible is not the only objective of the proposed community dis-
tribution modelling. Ideally, we want the model not only to repro-
duce observed occurrences, but also to identify the species that are 
most likely to be missing at sites, as well as flag potential misidenti-
fications. Clearly, the performance criteria must include something 
other than just the goodness of fit. In other words, predictions must 
be somewhat inaccurate with respect to the training data to produce 
meaningful predictions. We aim at reproducing the occurrences in 
the original data reasonably accurately while predicting more pos-
itive occurrences than in the original data, but not too much more. 
While a movie recommender system could potentially keep recom-
mending highly scored movies to the user for as long as the user 
keeps watching them, an informative species distribution model 
should recommend a finite number of species that can exist within 
the carrying capacity of the habitat.

There is no single quantitative criterion optimising for which 
would produce the most biologically meaningful model here, or in 
general (Warren et al., 2020). Our strategy is to construct quanti-
tative evaluation criteria based on a subset of data points for which 
we have high confidence of positive occurrences and absences and 
allow deviations on the rest of the dataset. Given that deviations are 
allowed we would still want the patterns of commonness of species 
to be preserved, that is species that are common in the observa-
tional data should remain common, and species that are rare should 
remain rare.

We can assemble a subset observations for which we have high 
confidence from repetitive presences (e.g. occurrence of multiple 
species from the same genus) and absences out of a known range 
(e.g. a time range where species has been alive). This time informa-
tion would not be used in the model itself, only in the selection of 
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data points for model evaluation. We can then aim at one or sev-
eral conventional accuracy metrics that can assess the goodness of 
ranking, coming out of the model predictions on those designated 
true- positive and true- negative observations. The area under curve 
(AUC), for instance, the receiver operating characteristics curve 
(ROC), while not without its limitations (Hand, 2009; Peterson 
et al., 2008) is one popular and widely understood measure that can 
be used for the purpose.

Overall, we advise to consider multiple measures for model as-
sessment, focusing on (a) accuracy of reconstructing presences and 
absences on a subset of observational data for which we have higher 
confidence coming from meta information that is not part of model 
fitting (time ranges, repeated occurrences); (b) accurate reproduc-
tion of positive occurrences via leave- one- out cross validation; and 
(c) correlation of the predicted number of species at sites with the 
observed number of genera, and linear correlation of the predicted 
number of occurrences for each genera with observed occurrences.

Finally, robustness is another desired characteristic. Model pre-
dictions should remain stable over multiple random initiations, slight 
perturbations of the input data or slight variations in the values of 
the parameters.

While one could also average over multiple random initiations 
for robustness of the results or even combine models with differ-
ent parameter settings, the latter would produce an ensemble 
(Kuncheva, 2014). For clarity of exposition of the methodology, we 
used the same model for the case study throughout.

2.6  |  Validation with present- day data

Before proceeding with the case study of fossil mammals, let us see 
how the proposed technique would perform on present- day data of 
mammal occurrences, where presences, absences and taxonomic 
affiliations are more certain. We aimed at a setting which would re-
semble our fossil case study in scope.

For this analysis, we used distribution data of large herbivorous 
mammals (Artiodactyla, Perissodactyla, Proboscidea and Primates) 
from International Union for Conservation of Nature (IUCN) Red 
List (IUCN, 2014). Global species occurrences were extracted from 
digital geospatial ranges and mapped on the grid of 50 × 50 km res-
olution, as reported in Oksanen et al. (2019)). Here a grid cell con-
ceptually corresponds a fossil site and spatial averaging substitutes 
temporal averaging (Du & Behrensmeyer, 2018). We selected Africa 
for this analysis, the continent that hosts the richest and least de-
prived large mammal communities today. The continental dataset 
contained 8,238 grid cells for Africa. To make the size of the dataset 
comparable to the fossil data that used for the case study and to get 
rid of spatial redundancy, we randomly selected 350 grid cells with a 
requirement to contain at least three species. The validation dataset 
obtained this way included 126 species that occurred 5,437 times; 
on average 9.8 species occurred per cell.

We assumed that IUCN distributions of large mammals are as 
complete as they can be and for this exercise we considered the re-
ported distributions to be uniformly confident in space and across 
species. To mimic the fossil record scenario where taxa would have 
been present but had not made it to the fossil record of a site we 
randomly nullified a certain percentage of present- day occurrences. 
We varied percentages and random initialisations over multiple 
experiments.

A desired outcome for the model is to predict high probabilities 
of occurrence for those nullified cases and at the same time keep 
predicting low probabilities of occurrence for true absences. When 
randomly selecting a certain percentage of presences to be nullified 
we at the same time randomly selected the same number of true 
absences, which together with the presences made validation sets. 
We varied the percentages of missing presences from 0.1% up to 
90% and repeated each experiment 30 times with different random 
initialisations and random selection of missing data points.

Figure 2a shows the results. We see a clear separation between 
the black dots (nullified occurrences) and the white dots (true 

F I G U R E  2  Validation on present- day occurrences of large plant eating mammals. Black dots indicate the mean estimated probability 
of occurrence for true presences that were, for testing purposes, masked into absences in the input data. White dots indicate the mean 
estimated probability of occurrences for true absences in the input data. The bars indicate the standard deviation over 30 runs where 
randomly selected presences were masked into absences. (a) Results on the original occurrences and (b) a sanity check with randomly 
shuffled occurrences (white dots are overlapping with black dots).
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absences), the model performs as expected. Naturally, when the per-
centage of missing occurrence data is increasing, the predictions be-
come less accurate (the black dot descends), but even at 50% missing 
occurrences the separation remains very clear and the standard de-
viation is low. The standard deviation is higher at the beginning be-
cause fewer missing values make smaller validation sets.

The model works on co- occurrence information. Thus, if there 
are no systematic co- occurrences (due to affinity to similar environ-
ments), the model should not work. To test this, we randomly shuf-
fled occurrences. This experiment still contains the same number of 
occurrences as the original dataset but species occur and co- occur at 
random places, thus any real co- occurrence patterns are destroyed 
(for this testing purpose). We repeated the same procedure as above, 
nullifying a certain percentage of occurrences at a time and we did 
30 runs for each missing percentage.

Figure 2b shows the same experiment with randomly shuffled 
occurrences. Since recommender systems draw on co- occurrence 
patterns, when occurrences happen at random, the predictions 
should not work. Indeed, we see in the figure that in this sanity test 
the white and the black dots are not separable.

The two experiments reassure that the methodology can re-
cover meaningful patterns when there are such patterns and remain 
silent when there are no real underlying pattens.

3  |  ANALYSIS OF FOSSIL MAMMAL S IN 
MIOCENE EUROPE

Next, we demonstrate how the proposed approach can be applied 
to the fossil record. We show three potential application scenarios: 
building community trees for analysing companionships of taxa; ana-
lysing uncertainties in identification; and predicting relative abun-
dances of taxa at sites from faunal lists.

3.1  |  Fossil data and data pre- processing

Data for our case study come from the NOW (New and Old Worlds) 
database of fossil mammals (The NOW Community, 2021). The re-
ported results are based on a public version downloaded on 9 March 
2021.

We focus on the Middle Miocene in Europe, which gives a rel-
atively well- resolved and curated fossil record and includes inter-
esting faunal transitions from brachydont- dominated faunas to 
hypsodont- dominated faunas along with expansion of grasslands in 
the continent (Fortelius et al., 2014; Stromberg, 2011). The time span 
is arbitrarily selected to cover around 10 million years and includes 
a wider time span that the Middle Miocene defined stratigraphically. 
The dataset was filtered to include sites with the maximum age in 
NOW not exceeding 17.3 and minimum age not less than 7.5 mil-
lion years. This captured the sites assigned to the European Land 
Mammal biozones from MN4 to MN12 (Hilgen et al., 2012), as well 
as individually dated sites falling within this age range. We discarded 

sites that had an age range of more than 2.3 million years, which is 
the maximum time span among the MN units.

We selected European sites by country (Switzerland, Spain, 
Greece, Germany, Italy, France, Turkey, Cyprus, Bulgaria, Russia, 
Georgia, Ukraine, Austria, Portugal, Belgium, Romania, Moldova, 
Azerbaijan, Armenia, United Kingdom, Hungary, Poland, Serbia, 
Slovakia, Netherlands, Czech Republic, Croatia, Malta, North 
Macedonia, Norway, Serbia, Montenegro, Sweden, Finland and 
Belarus) and excluded everything that is to the east of 45° longitude, 
which is roughly where the Volga River in Russia flows.

We restricted our analysis to large herbivores by their affil-
iation to Artiodactyla, Perissodactyla, Proboscidea, Primates or 
Hyracoidea. We formed the faunal lists at sites at the genus level. 
This treatment makes no difference from an algorithmic perspective, 
but it is more prudent from a palaeontological perspective. Genera 
have been argued to be more robust than species for palaeoeco-
logical analyses (Eronen et al., 2011), and many previous large- scale 
studies on NOW data used genera as the basis (Eronen et al., 2009; 
Fortelius et al., 2016; Jernvall & Fortelius, 2002; Kaya et al., 2018; 
Zliobaite et al., 2017).

The NOW database lists synonyms at the species level; thus, 
when aggregating at the genus level, synonyms, if any, are not taken 
into account. We discarded entries for which the genus was inde-
termined (‘indet.’) or unspecified (‘gen.’). We did not account for 
synonyms, except for one case which was necessary to facilitate 
analysis of relative abundances at Pasalar, Turkey: we replaced two 
occurrences of Procoelodonta with Begertherium by script.

We discarded sites that had fewer than three genera and then 
discarded genera that occurred in fewer than three sites. This left 
us with a dataset covering 351 sites with 104 genera. The dataset 
included 2,746 observations of genus- site occurrences, on average 
7.8 genera per site.

We accounted for the uncertainty of occurrences in the follow-
ing way. If no additional information was available, for any genus 
listed at a site we arbitrarily assigned an observed probability of oc-
currence of 0.9. If several species of the same genus were reported 
to occur at the same site, we set the probability of occurrence of 
that genus to 1.0. For any genus that was listed but the species was 
undetermined, we assigned a probability of 0.7. The same applied to 
any genus that had uncertain species validity or was listed as infor-
mal species in the database. If, in the database, genus attribution of 
species, family attribution of genus or taxonomic validity was uncer-
tain, then we set the probability of occurrence of that genus at that 
site to 0.5.

3.2  |  Analysis workflow

Fitting the recommender systems model gave us a matrix of prefer-
ence scores of genera for sites, which we used for three types of 
analysis.

Our first analysis aimed at building community trees, identify-
ing companionships of genera and analysing which genera often 
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occur together. This task is remotely related to the concept of 
chronofaunas (Eronen et al., 2009; Kaya et al., 2018; Olson, 1952). 
Chronofaunas are designated assemblages of taxa that all occurred 
at the same time at some classic site. Chronofaunas do not assess 
tendencies to occur together and may include some taxa that gen-
erally are not likely to occur together but which happened to occur 
together at that particular place. Taking the concept of chronofauna 
further, rather than arbitrarily forcing taxa into discrete units of co- 
occurrence, we assessed the tendency of genera to occur together 
and made a community tree out of that, where closeness of taxa on 
the branches of that tree signals that they are more likely to occur in 
each other's companionship.

For making the tree, we used internal components of the model 
rather than its output scores. Recall from Equation (2) that the model 
is D = XYT, where D is the matrix of preference scores, X and Y are 
summary profiles of sites and genera, respectively. Our analysis used 
matrix Y, which sometimes can be seen as a by- product of matrix 
factorisation. We ran hierarchical clustering on Y with the Euclidean 
distance and Ward's linkage (Ward, 1963), which minimises the vari-
ance when joining branches. We chose this linkage for its robustness.

The resulting community tree can be viewed as a ‘phylogeny’ 
of companionships (in contrast to regular phylogeny by ancestry). 
One could do a similar clustering exercise on raw occurrence data, 
but then the clustering reflects the realised occurrences rather than 
their (inferred) preferences. The former would be much more driven 
by the absolute number of occurrences, and the latter is more driven 
by the context of occurrences.

Our second analysis primarily served as an additional model 
validation task. We used the model output scores to analyse un-
determined occurrences of cervids. We selected all cases marked 
as Cervidae indet. at the sites within the analysis dataset and in-
vestigated which of the cervids had the highest propensity scores 
for those sites. This is by no means meant to replace taxonomic 
identification of those remains, but it may give interesting insights 
into patterns of occurrence. We chose Cervidae because of a rel-
atively common case in the Middle Miocene European record in 
which a genus was identified as either Euprox or Heteroprox, which 
are hard to distinguish morphologically. Thus, in addition to our 
analysis of undetermined cervids, we specifically looked at the 
four sites where those undetermined cervids were annotated as 
either Euprox or Heteroprox, but it was undetermined which one. 
We analysed whether the model could make a distinction between 
those two.

Our final analysis aimed to predict the relative abundances from 
faunal lists. We used the model scores for ranking genera at sites by 
their estimated propensity to occur. We assumed that the higher the 
propensity to occur, the higher the relative abundance. This is quite a 
strong assumption, which we have to make in order to be able to link 
propensity to occur to relative abundances. By and large this holds in 
community ecology, even though in reality, abundance– distribution 
relationships can be much more complex (Weber et al., 2017).

We mapped the ranking of preferences of taxa from the rec-
ommender systems model versus relative abundances, calibrating it 

based on two fossil sites for which specimen counts were reported 
in the literature: Somosaguas Norte in Spain (MN5) (Domingo 
et al., 2017) and Pasalar in Turkey (MN6) (Andrews & Ersoy, 1990). 
Figure 3 depicts the distribution of observed relative abundances 
at these two sites. We see that relative abundances follow a sur-
prisingly regular geometric relationship. This relationship is con-
sistent across both sites as indicated by a tight fit of the trend 
line with almost identical slopes (−4.46 for Pasalar, and −4.26 for 
Somosaguas Norte). The intercepts differ because the total num-
ber of distinct taxa is very different across both sites. Somosaguas 
Norte has 7 and Pasalar has 18 distinct large mammal species re-
ported. The relationship is delightfully consistent with the classical 
model of relative species abundances proposed almost a century 
ago (Motomura, 1932).

This information about relative abundances is only available for 
2 out of 351 analysis sites. Those relative abundances have not been 
used in any way for fitting a recommender systems model and will 
serve us for assessing predictions of relative abundances. Despite 
the regularity of the relationship in Figure 3, we must keep in mind 
that these relative abundances do not necessarily represent the 
ground truth that we want to predict, that is, relative abundances 
within faunal communities that lived. The relative abundances in 
Figure 3 are filtered by taphonomic processes. Thus, we expect 
some match between the recommender systems model predictions 
and the observed relative abundances, but we do not aim for an ideal 
match.

In addition, there is the challenge of matching taxon names. 
Somosaguas Norte has all the genera matching the taxonomic 
names in the NOW database. Retroporcus of Somosaguas Norte 
was excluded from our analysis by the filter requiring a genus 
to occur in at least three sites (it had only one occurrence). The 
published Pasalar species count has some mismatches of tax-
onomic names with those reported in the NOW database. The 

F I G U R E  3  Distribution of observed relative abundances at 
Somosaguas Norte in Spain (MN5) and Pasalar in Turkey (MN6). 
Normalised rank order means that the relative abundances 
are ranked from the highest to the lowest and rank orders are 
normalised to fall between 0 and 1, where 0 represents the most 
abundant taxa and 1 represents the least.

 2041210x, 2022, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13916 by U
niversity O

f H
elsinki, W

iley O
nline L

ibrary on [03/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1699Methods in Ecology and EvoluonŽLIOBAITĖ

F I G U R E  4  Companionships of genera 
according to their propensity to occur. 
The numbers following the family indicate 
approximate ages of genera in millions 
of years, and the numbers in brackets 
indicate the mean ordinated hypsodonty 
of their occurrence sites. The mean 
ordinated hypsodonty excludes the 
genera for which the context is computed. 
Colour coding is for readability; it 
arbitrarily distinguishes the seven clusters.
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recommender systems model follows the current faunal list from 
NOW.

For the purpose of the present pilot study, we map refer-
ence scores to relative abundances at site j in a simplified way 
as follows:

where pij is the preference score for species i to occur at site j, com-
ing from the model; dij is the presence– absence matrix, where dij > 0 
means that we only sum taxa that are reported to be present at site 
j. The subtraction of 0.5 from the probability score is an arbitrary 
cut- off implying that preference scores below 0.5 signal absence. 
Although, in principle, preference scores would allow the inclusion 
of absent species which had high estimated probability of occur-
rence, in this pilot study we only analyse the relative abundances of 
present species.

3.3  |  Companionships of species

Figure 4 shows the resulting community tree of companionships. 
Just like phylogenetic trees depict taxa that have recent common 
ancestors close to each other, community trees are meant to depict 
taxa that occur in similar contexts and similar environments close to 
each other.

The numbers on the branches give age of the genera as well as 
the mean ordinated hypsodonty of their sites as a proxy for their en-
vironmental conditions. Neither the age nor the hypsodonty scores 
were used in clustering; the resulting hierarchical tree is from their 
site preference scores only.

We can see that the grouping of species matches in age, 
but not too closely, which gives an interesting perspective; per-
haps some of those genera could have occurred together for 
longer if one of them had not gone extinct or been replaced. 
Curiously, we can see that Heteroprox and Euprox, which are often 

(5)𝜋ij =

�
pij − 0.5

�
∑

dij>0
pij

,

TA B L E  1  Propensity to occur for cervids at sites where Cervidae indet. is listed. Grey shading indicates overlapping time ranges.  
The highest scores for each site are indicated in bold. Underlined are existing occurrences of cervids at those sites in addition to Cervidae  
indet. Stars indicate the sites where Cervidae indet. has additional information listed. HYP = ordinated hypsodonty

Maximum age, ma
Minimum age, 
ma Mean HYP Stephanocernas Procervulus Lagomeryx Heteroprox Stehlinoceros Dicrocerus Euprox Cervavitus Amphiprox Lucentia

Maximum age, Ma 17.2 17.2 17.2 16.4 16.4 16.4 16.4 13.6 11.2 10.6

Minimum age, Ma 12.8 9.9 7.6 11.2 11.1 8.0 7.6 7.6 7.6 7.6

HYP context 1.2 1.1 1.1 1.1 1.1 1.1 1.2 1.7 1.5 1.4

Baggersee Freudenegg 2 Germany 17.2 16.4 1 0.05 0.33 0.42 0.35 0.08 0.14 0.04 −0.06 −0.06 −0.01

Baggersee Freudenegg 3 Germany 17.2 16.4 1 0.10 0.24 0.40 0.23 0.16 0.26 −0.06 −0.07 0.02 0.07

Torralba 1 Spain 17.2 16.4 1 0.03 0.48 0.44 0.07 −0.05 0 0.25 0.01 0.03 −0.06

Armantes 1 Spain 17.2 16.4 1.2 0.10 0.58 0.41 0.22 0.09 0.15 0.44 −0.10 0.04 0.07

Munebrega 1 Spain 17.2 16.4 1.3 0.13 0.58 0.50 0.06 0.04 0.13 0.05 −0.06 −0.03 0.02

Enghausen* Germany 16.4 14.2 1 0.10 0.25 0.31 0.16 0.02 0.02 −0.06 0.01 0.08 0.10

Oggenhausen 1* Germany 16.4 14.2 1 0.08 0.53 0.58 0.15 0.05 0.18 −0.08 0.07 0.09 0.14

Ziemetshausen 1b* Germany 16.4 14.2 1 0.16 0.42 0.76 0.15 0.46 0.86 0.21 0.02 0.11 0.13

Hullistein Switzerland 16.4 14.2 1 0.09 0.34 0.33 0.20 0.10 0.15 0.01 −0.10 −0.01 0.06

Armantes 3 Spain 16.4 14.2 1 0.11 0.47 0.44 0.08 0.06 0.17 0.11 −0.03 0.06 0.11

La Retama Spain 16.4 14.2 1.3 0.13 0.63 0.32 −0.01 −0.13 −0.24 0.11 0.04 −0.01 −0.03

Murero Spain 14.2 12.8 1 0.04 0.09 0.12 0.44 0.19 0.13 0.51 −0.06 0 −0.08

Gisseltshausen 1a* Germany 14.2 12.8 1 0.01 0.42 0.68 0.36 0.08 0.32 0.30 0.12 0.02 −0.04

Petersbuch 6 Germany 12.8 11.2 1 0.01 0.10 0.39 0.32 0.01 0.21 0.23 0.09 0.06 0.05

Saint- Gaudens (Valentine) France 12.8 11.2 1 0.12 0.33 0.21 0.32 0.49 0.47 0.62 0.04 0.20 0.12

Hammerschmiede** Germany 12.1 11.5 1 0.11 0.07 −0.19 0.10 0.33 0.23 0.78 −0.07 0.27 0.20

Creu Conill 20 Spain 11.2 11.1 1.4 −0.04 −0.20 −0.13 0 0.11 0.16 0.78 0.09 0.38 0.17

El Lugarejo Spain 11.2 9.9 2 −0.09 0.20 −0.05 0.25 −0.04 −0.10 0.24 −0.07 0 0.07

Draxeni*** Moldova 11.2 9.9 1.7 −0.05 0.16 0.23 −0.04 −0.08 0.04 0.24 0.18 0.29 0.19

Sinap 91 Turkey 11.1 10.0 2 0 0.28 0.05 0.09 0.05 −0.03 0.24 0.22 0 −0.10

Montredon France 9.9 8.9 1.6 0 0.05 0.14 0.18 0.10 0.28 0.58 0.18 0.36 0.34

Sinap 1 Turkey 9.7 9.6 1.5 0.03 0.31 0.17 0.02 0.06 0.04 0.27 0.30 0.04 −0.10

Vivero de Pinos Spain 8.9 7.6 1.7 −0.01 0.02 0.26 0 0.12 0.41 0.35 0.02 0.25 0.21

Notes: *Euprox/Heteroprox; **Muntiacini; ***Lagomerycinae.
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indistinguishable morphologically, are relatively far apart in terms of 
their companionships.

We also see from the tree that the closest companionships are 
not formed within the same families, which might relate to the prin-
ciple of competitive exclusion (Hardin, 1960), which suggests that 
closely related taxa are less likely to coexist.

In the figure, the companionships of genera appear to relate to 
their mean hypsodonty context much more closely than to their age. 
The mean ordinated hypsodonty relates to the aridity of the envi-
ronment (Fortelius et al., 2002)— the higher the number, the more 
harsh the environment is. The mean ordinated hypsodonty calcula-
tion here excludes self; thus, the scores are relative to each genera 
and are not the same for each genera at the same site. Thus, the 
pattern that we see in the figure suggests that the companionships 
may not necessarily be about interacting with each other but rather 
about being in similar environments.

The colour coding arbitrarily indicates the seven largest clusters, 
which roughly can be thought of as another way to computationally 

identify chronofauna (Bingham & Mannila, 2014). Each chrono-
fauna, represented by a different colour, does not directly corre-
spond to any particular site but rather gives somewhat cohesive 
virtual faunal assemblages. We see that those virtual chrono-
faunas are much more compact in the Early and Middle Miocene 
than in the Late Miocene (green). The latter shows tight compan-
ionships of fauna with somewhat more varying hypsodonty con-
texts than in earlier times. That could suggest that Early Miocene 
faunas in Europe were more distinct and that genera of Late 
Miocene faunas, after grassland expansion (Fortelius et al., 2014; 
Stromberg, 2011), became more intermixed in their occurrences 
and more interchangeable.

3.4  |  Possible and improbable genera at sites

Table 1 lists sites where undetermined Cervidae indet. is present 
and gives the model score for each potential genus of Cervidae to 

TA B L E  1  Propensity to occur for cervids at sites where Cervidae indet. is listed. Grey shading indicates overlapping time ranges.  
The highest scores for each site are indicated in bold. Underlined are existing occurrences of cervids at those sites in addition to Cervidae  
indet. Stars indicate the sites where Cervidae indet. has additional information listed. HYP = ordinated hypsodonty

Maximum age, ma
Minimum age, 
ma Mean HYP Stephanocernas Procervulus Lagomeryx Heteroprox Stehlinoceros Dicrocerus Euprox Cervavitus Amphiprox Lucentia

Maximum age, Ma 17.2 17.2 17.2 16.4 16.4 16.4 16.4 13.6 11.2 10.6

Minimum age, Ma 12.8 9.9 7.6 11.2 11.1 8.0 7.6 7.6 7.6 7.6

HYP context 1.2 1.1 1.1 1.1 1.1 1.1 1.2 1.7 1.5 1.4

Baggersee Freudenegg 2 Germany 17.2 16.4 1 0.05 0.33 0.42 0.35 0.08 0.14 0.04 −0.06 −0.06 −0.01

Baggersee Freudenegg 3 Germany 17.2 16.4 1 0.10 0.24 0.40 0.23 0.16 0.26 −0.06 −0.07 0.02 0.07

Torralba 1 Spain 17.2 16.4 1 0.03 0.48 0.44 0.07 −0.05 0 0.25 0.01 0.03 −0.06

Armantes 1 Spain 17.2 16.4 1.2 0.10 0.58 0.41 0.22 0.09 0.15 0.44 −0.10 0.04 0.07

Munebrega 1 Spain 17.2 16.4 1.3 0.13 0.58 0.50 0.06 0.04 0.13 0.05 −0.06 −0.03 0.02

Enghausen* Germany 16.4 14.2 1 0.10 0.25 0.31 0.16 0.02 0.02 −0.06 0.01 0.08 0.10

Oggenhausen 1* Germany 16.4 14.2 1 0.08 0.53 0.58 0.15 0.05 0.18 −0.08 0.07 0.09 0.14

Ziemetshausen 1b* Germany 16.4 14.2 1 0.16 0.42 0.76 0.15 0.46 0.86 0.21 0.02 0.11 0.13

Hullistein Switzerland 16.4 14.2 1 0.09 0.34 0.33 0.20 0.10 0.15 0.01 −0.10 −0.01 0.06

Armantes 3 Spain 16.4 14.2 1 0.11 0.47 0.44 0.08 0.06 0.17 0.11 −0.03 0.06 0.11

La Retama Spain 16.4 14.2 1.3 0.13 0.63 0.32 −0.01 −0.13 −0.24 0.11 0.04 −0.01 −0.03

Murero Spain 14.2 12.8 1 0.04 0.09 0.12 0.44 0.19 0.13 0.51 −0.06 0 −0.08

Gisseltshausen 1a* Germany 14.2 12.8 1 0.01 0.42 0.68 0.36 0.08 0.32 0.30 0.12 0.02 −0.04

Petersbuch 6 Germany 12.8 11.2 1 0.01 0.10 0.39 0.32 0.01 0.21 0.23 0.09 0.06 0.05

Saint- Gaudens (Valentine) France 12.8 11.2 1 0.12 0.33 0.21 0.32 0.49 0.47 0.62 0.04 0.20 0.12

Hammerschmiede** Germany 12.1 11.5 1 0.11 0.07 −0.19 0.10 0.33 0.23 0.78 −0.07 0.27 0.20

Creu Conill 20 Spain 11.2 11.1 1.4 −0.04 −0.20 −0.13 0 0.11 0.16 0.78 0.09 0.38 0.17

El Lugarejo Spain 11.2 9.9 2 −0.09 0.20 −0.05 0.25 −0.04 −0.10 0.24 −0.07 0 0.07

Draxeni*** Moldova 11.2 9.9 1.7 −0.05 0.16 0.23 −0.04 −0.08 0.04 0.24 0.18 0.29 0.19

Sinap 91 Turkey 11.1 10.0 2 0 0.28 0.05 0.09 0.05 −0.03 0.24 0.22 0 −0.10

Montredon France 9.9 8.9 1.6 0 0.05 0.14 0.18 0.10 0.28 0.58 0.18 0.36 0.34

Sinap 1 Turkey 9.7 9.6 1.5 0.03 0.31 0.17 0.02 0.06 0.04 0.27 0.30 0.04 −0.10

Vivero de Pinos Spain 8.9 7.6 1.7 −0.01 0.02 0.26 0 0.12 0.41 0.35 0.02 0.25 0.21

Notes: *Euprox/Heteroprox; **Muntiacini; ***Lagomerycinae.
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occur at those sites. The higher the numerical value, the more likely 
that genus is to be present at that site. Since the scores come from 
a single model, they are comparable across genera and across sites. 
The highest score among cervid genera for each site is indicated in 
bold; those are the most likely candidates coming from the model 
to stand behind Cervidae indet. in each case. These predictions 
are by no means to be used for curating the species lists, but they 
can give insights into occurrence patterns of selected taxonomic 
groups.

3.5  |  Predicting relative abundances from 
presence– absence

Table 2 reports observed specimen counts, preference scores com-
ing from the recommender systems model and relative abundances 
corresponding to both. We can see that the match is not very close, 
but high- level patterns are notable. For example, Gomphotherium and 
Anchitherium are clearly much more abundant in the estimates com-
ing from the model than they are in observed specimen counts. In 
Pasalar, the predictive patterns are less clear. In some cases, such as 
Listriodon, the observed relative abundances from specimen counts 
almost match the predictions if we sum Listriodon and Bunolistriodon 
in the predictions. But there are extreme mismatches as well, such 
as, for instance, Micromeryx or Gomphotherium, which are predicted 
to be very common at that site but are not so common according to 
the specimen counts.

Overall, relative abundance predictions for Pasalar are quite flat, 
with many of them around 5%– 8%, which is a result of a long faunal 
list pulling down high runaway predictions. If the main target of this 
modelling was accurate reconstruction of relative abundances, one 
could have added nonlinear components to the model outputs to 
force more extreme predictions. We left future research to aim for 
a generic model which would be robust for constructing community 
trees.

4  |  DISCUSSION

We proposed a new direction for community distribution model-
ling, tailored applicable for analysing fossil communities. We dem-
onstrated the potential of the proposed analytical framework with 
a case study of large herbivores in Middle Miocene sites in Europe, 
yet many possibilities remain both for methodological development 
and its application.

First of all, we did not incorporate time information into the 
recommender systems model in any way. In principle, one could 
constrain the model to predict more aggressively at times when 
the taxa are known to have been alive and predict more conser-
vatively outside those times. Yet even now, when time informa-
tion was not used at all, predictions fell within their times well 
enough, as can be seen for instance from the community tree in 

Figure 2, where contemporary genera tend to be close together 
on the tree.

In addition to time constraints, other explicit information can 
be included in the modelling; for example, morphological traits of 
taxa, such as teeth, could be incorporated into community distri-
bution modelling. This way, companionship of taxa can be repre-
sented not only in terms of co- occurrence patterns featuring other 
taxa, but also contexts and distributions of traits across communi-
ties. In the community tree in Figure 4, we plotted taxa along with 
the mean hypsodonty within their companionships. Even though 
this information was not explicitly part of the recommender sys-
tems model, we could see that those taxa that occur in similar trait 
contexts appear close together in the community tree. Hybrid rec-
ommender system techniques (Burke, 2002) could be tailored for 
this purpose.

The synonymity challenge is another aspect that we have not 
addressed explicitly in this study. Analysis of companionships of the 
proposed kind has the potential to highlight potential synonyms. 
Even more importantly, it has the potential to disambiguate possible 
synonymity cases, as we demonstrated with the Euprox/Heteroprox 
case. While morphologically those two genera are sometimes indis-
tinguishable, the community tree showed that their companionships 
are quite distinct and that they tend to occur in different ecological 
contexts.

One could take the analysis of companionships even further. The 
proposed recommender systems approach allows the extraction of 
companionship weights for each individual taxa and those weights 
can be positive or negative. Although co- occurrence in the fossil re-
cord does not immediately imply competitive interactions, analysing 
those weights might provide a quantitative perspective on the mag-
nitude and directionality of competitive interactions within fossil 
faunal communities.

While co- occurrence does not necessarily indicate biotic interac-
tions (Blanchet et al., 2020), a community distribution model could 
potentially be used to infer and analyse competitive interactions. 
One can extract regression- like equations from the recommender 
model, where probability of occurrence of a species at a site is 
described as a function of other species. After controlling for the 
type of environment, one could argue that positive weights indicate 
competitive interactions, negative weights indicate competitive 
exclusion and zero weights indicate no interactions even if species 
co- occur. This is not part of the present study, it remains for future 
work.

Another possible extension could be towards using the propen-
sity scores for estimating and comparing the sizes of geographical 
ranges of taxa.

An important highlight of the proposed methodology is that 
corrections for sampling intensity (Chao & Jost, 2012; Connolly & 
Miller, 2001; Raup, 1975), often administered to fossil data, are not 
needed here. The original recommender systems approach is tai-
lored to work with incomplete profiles, this way there is room to 
recommend and accommodate other items than those that are there 
already. There is a signal in incompleteness. Our experiments with 
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present- day data reported in this study show that even with around 
50% of randomly missing data we can recover missing absences and 
distinguish them from true absences well. This argument relies on 
the assumption that species are missing independently from each 
other, it becomes more tricky if incompleteness is correlated. The 
same holds for rarefaction or methods alike.

5  |  CONCLUSIONS

We presented a new perspective on fossil community distribution 
modelling. The proposed approach leverages recommender systems 

of machine learning for modelling community distribution via their 
companionships of occurrence. Rather than treating chronofaunas 
as monolithic units, this approach models companionships of each 
taxa individually yet generalises over them in a single model. One 
model makes preference scores directly comparable across taxa and 
sites. This perspective allows the analysis of fossil communities and 
the relationships between their ecological contexts at high resolu-
tion as well as at large scales.

Our case study of mammalian fossil faunas of Miocene Europe 
showed a proof of concept how, even coarsely, relative abundances 
as well as ecological contexts can be reconstructed from faunal lists 
at sites.

TA B L E  2  Reported specimen counts in Somosaguas Norte in Spain (MN5) and Pasalar in Turkey (MN6), along with our estimates for 
relative abundances produced from species lists via a latent factor model

Genus Family
Number of 
specimens

Relative 
abundance

Predicted preference 
score

Predicted relative 
abundance

Somosaguas Norte, Spain (MN5)

Gomphotherium Gomphotheriidae 786 51% 0.88 31%

Anchitherium Equidae 484 31% 1.02 33%

Prosantorhinus Rhinocerotidae 92 6% 0.40 <1%

Retroporcus Suidae 79 — — — 

Tethytragus Bovidae 39 3% 0.65 10%

Micromeryx Moschidae 34 2% 0.75 16%

Heteroprox Cervidae 6 <1% 0.66 10%

Pasalar, Turkey (MN6)

Caprotragoides Bovidae 112 30% — — 

Tethytragus Bovidae — — 0.98 8%

Listriodon Suidae 63 17% 1.08 9%

Bunolistriodon Suidae — — 0.95 6%

Sivapithecus Hominidae 49 13% — — 

Griphopithecus Hominidae — — 0.55 2%

Hypsodontus Bovidae 41 11% 0.91 6%

Giraffokeryx Giraffidae 28 8% 0.83 5%

Anchitherium Equidae 21 6% 1.06 8%

Anisodon Chalicotheriidae — — 0.80 4%

Pliohyrax Pliohyracidae — — 0.54 1%

Begertherium Rhinocerotidae 13 3% 0.53 <1%

Gomphotherium Gomphotheriidae 7 2% 0.99 7%

Stephanocemas Cervidae 7 1% 0.33 <1%

Dorcatherium Tragulidae 6 2% 0.93 6%

Micromeryx Moschidae 6 2% 1.05 8%

Conohyus Suidae 6 2% 0.85 5%

Brachypotherium Rhinocerotidae 4 1% 0.89 6%

Taucanamo Palaeochoeridae 3 1% 0.81 4%

Aceratherium Rhinocerotidae 2 <1% — — 

Hoploaceratherium Rhinocerotidae — — 1.16 9%

Deinotherium Deinotheriidae 2 1% 0.84 5%

Palaeomeryx Palaeomerycidae 2 1% 0.82 5%

Hispanomeryx Moschidae 1 <1% 0.51 <1%
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One of the main applications of the proposed approach is con-
struction of a community tree, which can be viewed as a counterpart 
to a phylogenetic tree. Instead of depicting ancestry relationships, a 
community tree depicts ecological relationships between taxa.

While many possibilities and challenges in extending the recom-
mender system approach to fossil faunas still await, we hope our 
treatment will encourage new research into a faunal community per-
spective on fossil species distribution modelling.
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