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Abstract
Population	sizes	of	many	birds	are	declining	alarmingly	and	methods	for	estimating	
fluctuations	in	species’	abundances	at	a	large	spatial	scale	are	needed.	The	possibility	
to	derive	indicators	from	the	tendency	of	specific	species	to	co-	occur	with	others	has	
been	overlooked.	Here,	we	tested	whether	the	abundance	of	resident	titmice	can	act	
as	a	general	ecological	 indicator	of	forest	bird	density	 in	European	forests.	Titmice	
species	are	easily	identifiable	and	have	a	wide	distribution,	which	makes	them	poten-
tially	useful	ecological	indicators.	Migratory	birds	often	use	information	on	the	density	
of	resident	birds,	such	as	titmice,	as	a	cue	for	habitat	selection.	Thus,	the	density	of	
residents	may	potentially	affect	community	dynamics.	We	examined	spatio-	temporal	
variation	in	titmouse	abundance	and	total	bird	abundance,	each	measured	as	biomass,	
by	using	long-	term	citizen	science	data	on	breeding	forest	birds	in	Finland	and	France.	
We	analyzed	the	variation	in	observed	forest	bird	density	(excluding	titmice)	in	rela-
tion	to	titmouse	abundance.	In	Finland,	forest	bird	density	linearly	increased	with	tit-
mouse	abundance.	In	France,	forest	bird	density	nonlinearly	increased	with	titmouse	
abundance,	 the	 association	weakening	 toward	 high	 titmouse	 abundance.	We	 then	
analyzed	whether	the	abundance	(measured	as	biomass)	of	random	species	sets	could	
predict	forest	bird	density	better	than	titmouse	abundance.	Random	species	sets	out-
performed	titmice	as	an	 indicator	of	 forest	bird	density	only	 in	4.4%	and	24.2%	of	
the	random	draws,	 in	Finland	and	France,	 respectively.	Overall,	 the	results	suggest	
that	titmice	could	act	as	an	indicator	of	bird	density	in	Northern	European	forest	bird	
communities,	encouraging	the	use	of	titmice	observations	by	even	less-	experienced	
observers	in	citizen	science	monitoring	of	general	forest	bird	density.

K E Y W O R D S
citizen	science,	long-	term	monitoring,	macroecology,	spatial	Gompertz	model,	surrogate,	VAST
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1  |  INTRODUC TION

Species	 abundances	 are	 dynamic	 and	 sensitive	 to	 environmental	
change	 (Hughes,	 2000;	 Lemoine	 et	 al.,	 2007)	 and	 abundances	 of	
many	animals	are	declining	globally	at	increasing	rates	as	a	response	
to	global	change	(Brondizio	et	al.,	2019).	Birds	are	among	the	best	
studied	taxa	in	this	respect,	and	alarming	evidence	is	accumulating	
about	recent	declines	in	population	sizes	for	many	species	(Bowler	
et	 al.,	 2019;	 Rosenberg	 et	 al.,	 2019).	 In	 the	 face	 of	 this	 biological	
crisis,	 we	 need	 methods	 for	 estimating	 population	 abundances	
at	 extensive	 spatial	 scales	more	 than	 ever.	 To	 get	 spatially	 exten-
sive	abundance	data,	citizen	science	approach	is	a	well-	established	
method	(Devictor	et	al.,	2010;	Jiguet	et	al.,	2012).	However,	for	the	
citizen	science	approach	to	work	reliably,	easy	methods,	that	non-
experts	 can	 consistently	 use	 are	 required	 (McKinley	 et	 al.,	 2017;	
Silvertown,	2009).	Hence,	using	the	abundance	of	easily	identifiable	
and	conspicuous	species	as	an	indicator	when	estimating	abundance	
of	 a	 target	 species	 group	may	 facilitate	 the	 use	 of	 citizen	 science	
approach	in	abundance	estimation	in	general.

Using	 indicator	 species	 has	 yielded	 promising	 results	 in	 com-
munity	 ecology	 (Caro	&	O'Doherty,	 1999;	 Fleishman	 et	 al.,	 2005;	
Menon	&	Shahabuddin,	2021;	Sattler	et	al.,	2013).	The	most	effec-
tive ecological indicators are usually species that are closely related 
to	the	target	species	(Fleishman	et	al.,	2005;	Sattler	et	al.,	2013).	For	
example,	Lindenmayer	et	al.	(2014)	propose	that	a	specific	marsupial	
species	 could	 be	 used	 as	 an	 indicator	 for	 the	 abundance	of	 other	
species	 of	 the	 same	 taxonomic	 group.	 However,	 simultaneously	
using	multiple	species	 is	proposed	to	be	a	more	effective	ecologi-
cal	indicator	for	species	diversity	than	merely	one	indicator	species	
(Fleishman	 et	 al.,	 2005;	Grenyer	 et	 al.,	 2006;	Morelli	 et	 al.,	 2014;	
Padoa-	Schioppa	et	al.,	2006;	Sattler	et	al.,	2013)	and	the	same	prob-
ably	holds	for	abundance	too.	This	 is	because	a	group	of	 indicator	
species	could	capture	a	wider	variation	of	ecological	traits	in	target	
species	than	a	single	indicator	species	(Gregory	et	al.,	2005;	Morelli,	
2015).

The	 use	 of	 indicator	 species	 to	 estimate	 target	 species	 occur-
rence	 or	 abundance	 can	 be	 based	 on	 similar	 responses	 to	 abiotic	
factors	(Caro	&	O'Doherty,	1999;	Sætersdal	et	al.,	2003)	or	biotic	as-
sociations	between	the	indicator	and	target	species	groups	(Møller	
et	al.,	2017;	Sergio	et	al.,	2006).	Even	though	negative	interspecific	
interactions,	 such	 as	 competition,	 can	 negatively	 affect	 species	
co-	occurrence	 and	 abundance	 (Forsman	 et	 al.,	 2008;	 Goldberg	 &	
Barton,	1992),	shared	habitat	preference	and	positive	 interspecific	
interactions	may	promote	co-	occurrence	of	species	and	create	ag-
gregations	of	individuals	(Basile	et	al.,	2021;	Forsman	et	al.,	2009).	
Positive	 interactions	 among	 species	 include,	 for	 example,	 facilita-
tion	 (Gross,	 2008),	 active	 attraction	 to	 heterospecifics	 (Forsman	
et	 al.,	 2009;	Mönkkönen	 et	 al.,	 1990;	 Thomson	 et	 al.,	 2003),	 and	
social	information	use	(i.e.,	the	use	of	inadvertent	cues	produced	by	
other	species	when	making	decisions	on	resource	use;	Gross,	2008;	
Seppänen	et	al.,	2007;	Vazquez	&	Simberloff,	2003),	all	of	which	can	
lead	to	positive	associations	between	species	abundances.	Through	
positive	interactions,	such	as	social	information	use	across	species,	

species’	resource	use	and	interactions	with	other	species	may	be	al-
tered,	thereby	changing	community	dynamics	(Forsman	et	al.,	2002,	
2009;	Mönkkönen	et	al.,	2017;	Seppänen	et	al.,	2007;	Wisz	et	al.,	
2013).

In	this	study,	we	examine	the	effectiveness	of	using	a	group	of	
species	to	estimate	the	density	of	target	species	at	extensive	geo-
graphical	 and	 temporal	 scales.	Our	 study	 system	 is	 the	 European	
forest	 bird	 community,	where	we	 study	whether	 the	 conspicuous	
and	easy-	to-	identify	 species	of	 titmice	 (family	Paridae)	 could	 indi-
cate	density	of	breeding	forest	birds.	In	Asia,	species	richness	of	tit-
mice	has	been	found	to	be	a	poor	 indicator	of	overall	bird	species	
richness	(Møller	et	al.,	2017).	However,	Møller	et	al.	(2017)	observed	
a	maximum	of	two	titmouse	species,	while	titmice	are	more	diverse	
in	 Europe	 (del	 Hoyo	 et	 al.,	 2007).	 Additionally,	 other	 bird	 species	
groups,	such	as	woodpeckers	 (family	Picidae),	are	suggested	to	be	
efficient	 ecological	 indicators	 for	 bird	 species	 diversity	 (Menon	&	
Shahabuddin,	2021;	Mikusiński	et	al.,	2001).	Even	with	no	covaria-
tion	between	titmouse	species	richness	and	overall	species	richness,	
abundances	can	still	covary.	Focusing	on	abundances	offers	a	finer	
grain	indicator	than	co-	occurrences	or	species	diversity.	Hence,	tit-
mice	may	 have	more	 potential	 for	 indicating	 bird	 abundance	 than	
species richness.

Titmice	 inhabit	broadleaf,	conifer	and	mixed	forests,	and	semi-	
forested	 habitats	 (Eck	 &	 Martens,	 2006;	 del	 Hoyo	 et	 al.,	 2007;	
Suhonen	et	al.,	1994),	and	have	a	wide	distribution	globally,	occurring	
on	 all	 continents	 except	 South	America,	 Australia,	 and	Antarctica	
(del	Hoyo	et	al.,	2007;	Gill	et	al.,	2005).	European	titmouse	species	
include	 both	 generalist	 (e.g.,	 great	 tit	 [Parus major])	 and	 specialist	
(e.g.,	coal	tit	[Periparus ater])	species	(del	Hoyo	et	al.,	2007),	suggest-
ing	that	their	ecology	overlaps	with	many	other	forest	bird	species	
and	that	titmice	could	serve	as	an	 indicator	group	for	bird	density	
in	 forest	 habitats	 in	 general.	 Additionally,	 titmice	 are	 conspicuous	
due	 to	 their	 highly	 active	 foraging,	 social,	 and	 vocal	 behavior	 (del	
Hoyo	et	al.,	2007),	making	them	easy	to	observe.	As	a	group,	titmice	
are	often	easily	recognized	by	the	general	public	due	to	their	highly	
similar	appearance	across	species	 (del	Hoyo	et	al.,	2007)	and	their	
common	visits	to	garden	bird	feeders.	Additionally,	identifying	indi-
viduals	to	species	level	is	mainly	easy	due	to	the	variation	of	plumage	
color	(Eck	&	Martens,	2006;	del	Hoyo	et	al.,	2007),	body	size	(Alatalo	
&	Moreno,	1987;	Eck	&	Martens,	2006;	del	Hoyo	et	al.,	2007),	and	
crestedness	among	species	 (Eck	&	Martens,	2006;	del	Hoyo	et	al.,	
2007).	Overall,	the	ecology	of	titmice	makes	them	potentially	a	more	
efficient	indicator	group	for	forest	bird	abundance	than,	for	exam-
ple,	woodpeckers	or	cuckoos,	which	are	less	abundant	and	diverse	
and	 consist	 of	 mainly	 specialist	 species	 (Menon	 &	 Shahabuddin,	
2021;	Mikusiński	et	al.,	2001;	Møller	et	al.,	2017).

As	titmouse	species	are	mainly	residents	(del	Hoyo	et	al.,	2007),	
they	experience	the	environmental	changes	at	the	breeding	grounds	
throughout	the	year,	including	nonbreeding	season.	Therefore,	they	
can	be	more	sensitive	to	changes	in	habitat	quality	during	a	certain	
period	of	their	life	cycle.	Resident	species	also	have	the	advantage	
of	acquiring	a	lot	of	information	on	the	environment	and	establish-
ing	 their	 breeding	 grounds	 prior	 to	 the	 arrival	 of	migratory	 birds.	
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Forsman	et	al.	(2009)	found	that	migratory	birds	use	the	density	of	
resident	titmice	with	similar	ecological	niches	(i.e.,	potential	compet-
itors)	as	a	cue	for	habitat	selection,	which	results	in	a	positive	asso-
ciation	between	titmice	and	migratory	birds.	Owing	to	this,	titmice	
may	be	good	 indicators	of	habitat	quality	 for	migratory	birds,	 and	
it	may	 pay	 off	 for	migratory	 species	 to	 use	 titmouse	 density	 as	 a	
cue	 for	habitat	 selection	 (Forsman	et	al.,	2009;	Mönkkönen	et	al.,	
1990),	despite	the	costs	of	interspecific	competition	(Forsman	et	al.,	
2008;	 Gustafsson,	 1987;	 Mönkkönen	 et	 al.,	 2004;	 Sasvári	 et	 al.,	
1987).	However,	there	may	be	a	threshold	density	of	titmice,	above	
which	 negative	 effects	 of	 interspecific	 competition	 between	 indi-
viduals	may	exceed	the	benefits	of	social	information	use	(Forsman	
et	al.,	2008;	Mönkkönen	et	al.,	2004;	Seppänen	et	al.,	2007).	Thus,	
the	avoidance	of	competition	may	lead	to	negative	associations	be-
tween	titmice	and	other	forest	birds	at	least	at	high	densities.

Here,	we	examine	the	association	between	titmouse	abundance	
(given	as	biomass)	and	the	density	of	other	birds	in	forest	habitats	
at	a	macroecological	scale,	while	controlling	for	environmental	fac-
tors	 (temperature	and	precipitation).	We	analyze	 long-	term	citizen	
science	 breeding	 bird	 survey	 data	 from	 Northern	 and	 Western	
Europe	 by	 using	 a	 dynamic	 species	 distribution	 model	 (Thorson,	
2019;	 Thorson	 &	 Barnett,	 2017).	We	 hypothesize	 that	 the	 abun-
dance	of	resident	titmice	acts	as	a	general	indicator	of	bird	density	
in	European	forests,	if	similar	habitat	preferences	or	social	informa-
tion	use,	as	described	by	Forsman	et	al.	(2009)	generally	takes	place	
in	forest	bird	communities.	To	assess	the	performance	of	titmice	as	
indicators	 of	 forest	 bird	 density,	 we	 compare	 the	 titmouse	 group	
against	randomly	drawn	species	groups	from	the	same	community	
(see	Andelman	&	Fagan,	2000;	Cabeza	et	al.,	2008;	Tognelli,	2005).	
A	suitable	ecological	indicator	should	perform	better	than	randomly	
drawn	groups	of	species	in	representing	the	density	of	forest	birds.

2  |  METHODS

2.1  |  Bird surveys

We	used	breeding	forest	bird	surveys	from	citizen	science	programs	
in	Finland	(The	Finnish	Museum	of	Natural	History,	LUOMUS)	and	
France	(the	French	Breeding	Bird	Survey,	FBBS).	These	citizen	sci-
ence	data	sets	(sensu	Jiguet	et	al.,	2012)	consist	of	point	counts	that	
were	 carried	 out	 similarly	 each	 year	 during	 the	 surveys	 and	were	
performed	 by	 experienced	 volunteer	 ornithologists	with	 excellent	
species	 identification	 skills.	 Despite	 some	minor	 differences	 (e.g.,	
different	 number	 of	 sampling	 points	 per	 sampling	 route/plot	 [see	
below],	two	annual	surveys	in	France	due	to	longer	breeding	season)	
in	survey	design	between	Finland	and	France,	the	general	methodo-
logical	similarity	makes	the	two	data	sets	comparable	across	space	
and	time.	Data	from	2001	to	2013	were	used	from	both	countries.	
At	each	point	count	 in	both	countries,	 all	 visually	and	acoustically	
observed	 birds	 were	 recorded	 during	 a	 five-	minute	 observation	
period	 independently	 of	 the	 distance	 from	 the	 observer.	Most	 of	
the	observations	 are	 based	on	 sounds	 and	binoculars	 are	 used	 to	

identify	distant	individuals.	Unlimited	observation	distance	(Blondel	
et	 al.,	 1981)	 ensured	 that	 no	 observations	 were	 excluded	 during	
sampling	due	to	unreliable	distance	estimation.

In	Finland,	 the	 survey	area	 consisted	of	 routes,	 established	by	
the	observers	themselves,	where	the	observer	performed	the	point	
counts	on	20	points	located	a	minimum	of	250	m	apart	(Koskimies	
&	Väisänen,	 1991;	 Laaksonen	&	Lehikoinen,	 2013).	 Each	observa-
tion	is	transformed	into	pairs	including	observations	of	(i)	singing	or	
displaying,	(ii)	other	calls,	(iii)	sightings	(male,	female,	pair,	brood,	or	
nest),	(iv)	flying	bird,	and	(v)	flying	flock.	Flocks	are	transformed	into	
pairs,	normally	by	dividing	by	two	(male	and	female)	plus	the	mean	
species-	specific	brood	size	in	case	of	brood	flocks.	The	census	unit	is	
a	pair	of	birds,	not	an	individual;	thus,	a	male	and	a	female	seen	sep-
arately	or	together,	or	a	parent	with	offspring,	 is	 transformed	 into	
one	pair	(Koskimies	&	Väisänen,	1991).	Thus,	the	observed	numbers	
of	individuals	were	multiplied	by	two	to	get	the	total	number	of	in-
dividuals.	 In	France,	2	km	×	2	km	plots	were	randomly	distributed	
across	 the	 landscape	 in	 the	 beginning	of	 the	 survey	 (Jiguet	 et	 al.,	
2012).	Within	each	plot,	 there	were	10	random	points	a	minimum	
of	300	m	apart	where	the	point	counts	were	performed	by	counting	
each	observed	individual	as	such,	and	not	as	a	breeding	pair	(Jiguet	
et	al.,	2012).	For	detailed	descriptions	of	the	sampling	designs,	see	
Koskimies	and	Väisänen	(1991)	and	Jiguet	et	al.	(2012),	for	Finland	
and	France,	respectively.

In	both	countries,	all	 sampling	 route,	plot,	and	point	 locations	
remained	 constant	 during	 the	 study	 period.	 However,	 not	 all	
routes	 and	 plots	 included	 in	 the	 data	were	 sampled	 for	 all	 years	
of	 the	 study	 period.	 In	 Finland,	 76	 routes,	 including	 939	 unique	
points	 (Appendix	 1:	 Figure	 A1),	 were	 sampled	 during	 breeding	
time	 in	spring	 (May–	June).	The	data	yielded	a	 total	of	63,156	ob-
served	forest	birds	(breeding	pairs)	and	75	species	(see	Supporting	
Information	1	for	a	list	of	species:	Table	S1.1),	including	six	titmouse	
species.	 The	French	data	were	 collected	over	 two	 sampling	peri-
ods	during	each	breeding	season	(April–	June)	to	warrant	observa-
tions	for	both	early	and	late	breeding	species	(Jiguet	et	al.,	2012).	
1169	plots	were	sampled,	including	4342	unique	points	(Appendix	
1:	Figure	A2),	yielding	to	a	total	of	349,886	observed	forest	birds	
and	63	species	(see	Supporting	Information	1	for	a	list	of	species:	
Table	S1.1),	 including	six	titmouse	species.	The	data	from	the	two	
sampling	periods	 in	France	were	summed	to	comprise	one	annual	
data	set	for	each	point.

Both	surveys	are	designed	for	monitoring	birds	breeding	in	ter-
restrial	 habitats.	We	 only	 considered	 data	 from	 forest	 habitats	 in	
this	study	(see	Supporting	Information	1	for	a	list	of	forest	classifica-
tions:	Table	S1.2).	We	used	our	expertise	for	restricting	the	bird	data	
to	only	include	species	breeding	and/or	foraging	in	forests.	Different	
sampling	designs	compared	to	those	used	in	the	Finnish	and	French	
breeding	 bird	 surveys	 are	 generally	 suggested	 for	 counting	 rap-
tors,	 grouse,	 waders,	 and	 waterfowl	 (Andersen,	 2007;	 Conway	 &	
Nadeau,	 2010;	 Cummins	 et	 al.,	 2015;	 Hansen	 et	 al.,	 2015;	 Lor	 &	
Malecki,	2002;	Pakkala	et	al.,	1983).	Thus,	raptors,	grouse,	waders,	
and	waterfowl	were	excluded	from	the	analyses.	The	data	of	each	
point	count	in	each	sampled	year	were	subdivided	into	two	groups:	
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(1)	titmouse	observations	(referred	to	as	titmouse	group	hereafter)	
and	(2)	all	other	(nontitmice)	forest	bird	species	(referred	to	as	forest	
birds	hereafter).

2.2  |  Environmental data

Both	titmouse	and	forest	bird	density	may	be	positively	correlated	
with	environmental	productivity,	for	example,	because	of	resource	
limitations	 (Forsman	 &	 Mönkkönen,	 2003;	 Hawkins	 et	 al.,	 2003;	
Mönkkönen	et	al.,	2006;	Pautasso	et	al.,	2011).	This	potentially	con-
founding	effect	must	be	considered	in	statistical	analyses,	which	is	
why	we	summarized	variation	 in	mean	monthly	precipitation	 (mm)	
and	 temperature	 (°C)	 to	a	principal	 component	 (PC),	 derived	 from	
a	principal	component	analysis	(PCA),	that	serves	as	a	proxy	for	en-
vironmental	productivity.	We	used	climate	data	from	the	CHELSA–	
database	 (Karger	et	al.,	2017)	with	one-	kilometer	 resolution.	Data	
were	downloaded	and	handled	with	ArcGIS	Desktop	10.6.	software	
(ESRI,	2019).	The	derived	environmental	PC	was	then	used	to	pre-
dict	forest	bird	density	at	each	site	(i.e.,	route	or	plot),	such	that	we	
account	 for	 this	 relationship	while	 testing	 for	 positive	 correlation	
between	titmouse	abundance	and	forest	bird	density.

Mean	 monthly	 precipitation	 and	 mean	 monthly	 temperature	
were	 calculated	 for	 the	 geographical	 centroid	 of	 each	 route	 and	
plot,	 in	Finland	and	France,	respectively.	As	the	sampling	designs	
differ	between	the	two	countries,	we	specified	a	unique	radius	for	
each	country	for	extracting	the	climate	data	to	ensure	that	the	data	
represent	the	entire	potential	area	(i.e.,	all	unique	points	along	the	
route/plot)	 from	 which	 the	 bird	 data	 were	 collected.	 In	 Finland,	
we	used	a	 five-	kilometer	 radius	around	the	centroid	of	 the	 route	
(the	extreme	points	 in	 the	Finnish	 routes	may	be	>10	km	apart).	
In	 France,	 a	 one-	kilometer	 radius	 around	 the	 centroid	 of	 each	
2	km	×	2	km	plot	was	used	 to	obtain	 the	climate	data.	For	some	
routes	and	plots,	precipitation	(mm)	or	temperature	(°C)	values	var-
ied a lot due to steep altitudinal gradients within the considered 
area.	 To	make	 sure	 that	 the	 climate	 data	 accurately	 represented	
the	conditions	at	the	actual	sampling	points,	we	excluded	all	cases	
where	 the	 monthly	 ranges	 of	 precipitation	 exceeded	 50	 mm	 or	
temperature	variation	exceeded	11°C	among	the	grid	cells	included	
within	the	used	radius.	We	calculated	the	sum	of	the	mean	monthly	
precipitation	 (mm)	 and	 the	mean	 of	 the	mean	monthly	 tempera-
ture	(°C)	for	each	sampling	route	or	plot	for	each	year	and	used	the	
year-	specific	values	 in	 the	analysis.	We	ran	a	PCA	for	 the	annual	
precipitation	and	 temperature	data	 to	derive	an	 index	 (PC	score)	
to	 represent	 the	 environmental	 conditions	 at	 each	 site	 and	 year.	
Environmental	 productivity	 increases	 with	 higher	 precipitation	
and	temperature	 (Boisvenue	&	Running,	2006;	Field	et	al.,	1998).	
Therefore,	we	used	the	principal	component	(i.e.,	PC1	or	PC2)	that	
was	positively	correlated	with	both	precipitation	and	temperature	
as	the	proxy	for	productivity	(see	Supporting	Information	1	for	de-
tails:	Figure	S1.1)	in	each	country.

Differences	in	forest	structures	potentially	affect	abundances	of	
bird	species	 (Fraixedas	et	al.,	2015;	Lehikoinen	et	al.,	2017).	Thus,	

to	avoid	bias	from	the	heterogeneity	of	different	habitat	types,	we	
first	subset	the	habitat	types	into	main	habitat	classes	according	to	
their	 structural	 differences.	 Second,	we	estimated	habitat-	specific	
Shannon–	Wiener	 diversity	 indices	 (H′;	 Shannon	&	Weaver,	 1949).	
Third,	 we	 combined	 habitats	 having	 similar	 Shannon	 entropies	
into	the	main	habitat	classes.	Consequently,	we	defined	four	habi-
tat	classes	in	Finland	and	five	in	France	(Supporting	Information	2)	
and	then	repeated	the	analysis	explained	below	separately	for	each	
of	 the	 habitat	 class-	specific	 subsets	 of	 the	 data	 (see	 Supporting	
Information	2	for	results).

2.3  |  Spatial Gompertz model for analyzing forest 
bird density

Recently,	 species	 distribution	 models	 (SDMs)	 have	 been	 used	 to	
identify	indicators	for	biodiversity	(Morelli	et	al.,	2014;	Valerio	et	al.,	
2016;	Vallecillo	 et	 al.,	 2016).	 The	 strength	of	 using	SDMs	 in	mak-
ing	conservation	decisions	lies	 in	the	possibility	to	combine	spatial	
environmental	 and	 biotic	 data	 (Guisan	 et	 al.,	 2013).	We	 applied	 a	
dynamic	SDM,	a	spatio-	temporal	model	that	captures	localized	den-
sity	dependence	in	the	interannual	dynamics	for	a	response	variable,	
while	 also	 incorporating	 covariates	 to	 explain	 residual	 variation	 in	
density.	Specifically,	we	tailored	the	dynamic	SDM	so	that	temporal	
abundance	 changes	were	 described	 by	 a	Gompertz	model,	where	
per-	capita	productivity	is	a	linear	function	of	log-	transformed	total	
bird	density.	The	Gompertz	model	is	appropriate	for	modeling	tem-
poral	abundance	changes	as	it	can	be	used	in	describing	population	
dynamics	of	natural	populations	(Saitoh	et	al.,	1997)	and	it	is	widely	
used	in	time-	series	analysis	(Dennis	&	Taper,	1994).	Specifically,	we	
used	a	 “spatial	Gompertz”	model	 that	 includes	 spatial	 correlations	
among	 localized	 densities	 for	 nearby	 sites	 (Thorson,	 Skaug,	 et	 al.,	
2015).	Models	incorporating	dynamic	spatial	structure	and	process	
errors,	 such	 as	 the	 spatial	Gompertz	model,	 enhance	 the	 identifi-
cation	 of	 species	 codistributions	 (Kareiva,	 1990;	 Nadeem	 et	 al.,	
2016;	Thorson,	Skaug,	et	al.,	2015).	Thus,	the	use	of	dynamic	SDMs	
enables	to	estimate	to	which	degree	a	predictor	variable	(titmouse	
abundance)	explains	variation	 in	 the	 response	variable	 (forest	bird	
density)	while	accounting	for	spatio-	temporal	variation	and	environ-
mental	factors,	which	facilitates	estimation	of	the	effectiveness	of	
an ecological indicator.

We	used	observed	titmouse	abundance,	given	as	biomass,	as	a	
predictor	variable	for	forest	bird	density	 (excluding	titmice)	 in	bird	
communities	 in	 Finland	 and	 France.	 A	 simple	 spatial	 Gompertz	
model	was	built	by	using	the	Vector-	Autoregressive	Spatio-	Temporal	
model	(VAST),	release	number	2.0.1	(available	as	an	R	package	VAST; 
Thorson	 &	 Barnett,	 2017,	 Thorson,	 2019).	 The	 spatial	 Gompertz	
model	can	be	defined	in	VAST	with	particular	settings	(i.e.,	univari-
ate	model	with	constant	intercepts	across	years	and	autoregressive	
process	 for	 spatio-	temporal	 variation;	 see	 Thorson,	 Skaug,	 et	 al.,	
2015)	 that	were	used	here.	The	observation	data	were	 converted	
to	biomass	 (g)	by	multiplying	the	species-	specific	numbers	of	 indi-
viduals	observed	by	species-	specific	body	mass	estimates	from	del	
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Hoyo	et	al.	(2014).	Abundance	of	forest	birds,	given	as	biomass,	was	
set	as	a	response	variable	in	the	univariate	spatio-	temporal	model.	
VAST	uses	forest	bird	abundance,	together	with	the	sampling	area,	
to	model	forest	bird	population	density	(biomass	per	unit	area),	d,	at	
location s and year t,	d(s,	t)	(see	Table	1	for	definition	of	all	symbols).	
We	set	the	statistical	sampling	area	to	be	(circular)	0.031	km2 here 
because	we	assume	that	the	vast	majority	of	observations	have	been	
made	within	 this	 distance	 from	 the	observer.	Although	 the	 radius	
for	the	sampling	area	is	set	subjectively,	it	does	not	affect	the	con-
clusions.	The	radius	only	affects	the	scale	of	the	density	estimates	
(i.e.,	biomass	per	unit	area),	and	not	the	estimated	relative	densities	
among	sampling	locations,	only	relative	differences	among	sampling	
locations	contributing	to	inferences.

Titmouse	 abundance	was	 used	 as	 a	 covariate	 in	 the	 analysis.	 In	
order	to	consider	a	possible	nonlinear	effect	of	titmice	on	forest	bird	
density,	we	also	included	the	square	of	titmouse	abundance	as	a	co-
variate.	 Hence,	 observed	 titmouse	 abundance,	 its	 square,	 and	 the	
environmental	PC	(i.e.,	PC1	or	PC2;	see	Section	2.2)	were	used	as	dy-
namic	covariates	that	vary	among	sites	and	years	 in	the	analysis.	All	

covariates	were	standardized	prior	to	analysis	(i.e.,	subtracted	by	mean	
and	divided	by	standard	deviation).	The	intercept	for	expected	density	
of	 forest	birds	 (β)	was	estimated	as	a	fixed	effect	 independently	for	
each	year.	Spatio-	temporal	variation	in	expected	forest	bird	density	(ε)	
was	estimated	as	a	random	effect	following	a	Matérn	correlation	func-
tion	across	space	and	a	first-	order	autoregressive	process	(1-	year	lag)	
across	time	(see	Thorson	&	Barnett,	2017	for	details).

VAST	 divides	 the	 spatial	 domain	 into	 a	 user	 specified	 number	
(x)	of	spatial	knots	s	(that	have	a	specific	location)	and	then	predicts	
density	of	forest	birds	d(s,	t)	for	each	location	s and year t. The pre-
dicted	 density	 estimate	 and	 covariate	 values	 for	 the	 observation	
point	of	sample	i	are	assumed	to	be	equal	to	the	predicted	density	
and covariate values at the nearest location si	(Thorson,	2019).	Thus,	
covariates	 are	 considered	 at	 the	 same	 spatial	 scale	 as	 the	density	
(Thorson,	 2019).	 For	 Finland,	we	 defined	 the	 number	 of	 knots	 as	
equal	 to	 the	 number	 of	 sampled	 points	 (x =	 939).	 For	 France,	we	
used x =	1000	in	the	analysis	because	tests	indicated	that	the	results	
of	 the	 analysis	were	 independent	 of	 the	 number	 of	 spatial	 knots,	
provided that x	≥	1000	(Supporting	Information	1:	Table	S1.3).	Using	

TA B L E  1 Symbols	used	for	indices,	data,	fixed	effects,	random	effects,	and	derived	quantities

Symbol Description Dimensions

Index

i Sample –	

s Spatial	location	(“knot”) –	

t Time	interval	(year) –	

Data

b Data	for	observed	forest	bird	abundance	(i.e.,	biomass;	g) ni

a Area	sampled 1

tit Covariate	data	for	observed	titmouse	abundance	(i.e.,	biomass;	g) ni × nt

PC Covariate	data	for	environmental	principal	component	(PC1	or	PC2) ni × nt

control Covariate	data	for	observed	control	group	species	abundance	(i.e.,	biomass;	g) ni × nt

x Number	of	locations	(“knots”)	in	the	spatial	mesh	used	in	spatial	interpolation n

Fixed	effects

β Intercept	for	expected	forest	bird	density ni

�
2

m
Variance	in	expected	forest	bird	abundance ni

γ1 Estimated	effect	of	titmouse	abundance	covariate 1

γ2 Estimated	effect	of	[titmouse	abundance]2 covariate 1

γ3 Estimated	effect	of	environmental	principal	component	(PC1	or	PC2)	covariate 1

γ4 Estimated	effect	of	a	control	group	(from	a	random	draw)	abundance	covariate 1

ρε Temporal	autoregressive	correlation	in	spatio-	temporal	variation	of	forest	bird	density 1

Random	effects

ω Spatial	variation	in	expected	forest	bird	density ns

ε Spatio-	temporal	variation	in	expected	forest	bird	density ns × nt

�
2

�

Variance	parameter	for	spatial	variation	of	expected	forest	bird	density 1

�
2

�

Variance	parameter	for	spatio-	temporal	variation	of	expected	forest	bird	density 1

Derived	quantities

d Expected	forest	bird	density	(g	per	km2) ns × nt

R Matrix	of	spatial	correlations	in	expected	forest	bird	density ns × ns
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x	equal	to	the	number	of	sampled	points	(n =	4342)	was	not	reason-
able	 for	France,	because	computation	 time	considerably	 increases	
with increasing x.

We	used	 a	 generalized	 linear	mixed	model	 for	modeling	 local-
ized	 densities.	 Lognormal	 and	 gamma	distributions	 for	 abundance	
were	tested	for	data	from	both	countries.	Gamma	distribution	mod-
els	 fitted	better	to	the	data	than	models	using	 lognormal	distribu-
tion	(ΔAIC	Finland	=	115.66,	ΔAIC	France	=	1756.7,	in	favor	of	the	
gamma	 distribution	model)	 and	were	 therefore	 used	 in	 all	 subse-
quent	analyses.	Hence,	the	estimation	model	for	the	expected	abun-
dance	(i.e.,	biomass)	of	forest	birds	was:	

where bi	is	the	observed	forest	bird	abundance	in	sample	i.	gamma(B|d,	
σ2)	describes	the	gamma	probability	density	function	for	value	B,	with	
the	mean	of	d	and	variance	of	�2

m
,	d(si, ti)	being	the	expected	density	

(g/km2)	of	forest	birds	at	 location	s and year t,	and	a is the constant 
sampling	area.

Density	of	forest	birds	d(si, ti)	was	modeled	with	a	log-	linked	lin-
ear predictor as:

where β(ti)	is	the	intercept	for	expected	density	of	forest	birds	at	year	
t,	ω(si)	 is	the	spatial	variation	for	expected	forest	bird	density	across	
locations s	(s =	1,	…,	x),	ε(si, ti)	is	the	spatio-	temporal	variation	for	ex-
pected	forest	bird	density	across	locations	s	(s =	1,	…,	x)	and	years	t	(t 
=	2001,	…,	2013),	and	PC(si,	ti)	is	the	score	of	the	environmental	PC	in	
location s in year t. The annual intercept β(ti)	is	specified	with	each	year	
as	a	fixed	effect.	γ1,	γ2,	and	γ3	describe	the	estimated	effects	of	the	
three	covariates,	titmouse	abundance	(γ1),	its	square	(γ2)	and	environ-
mental	PC	(PC1	or	PC2;	γ3),	respectively,	on	expected	density	of	forest	
birds.	tit(si,	ti),	tit

2(si,	ti),	and	PC(si,	ti)	are	observed	titmouse	abundance,	
square	of	observed	titmouse	abundance,	and	environmental	PC	score,	
respectively,	that	explain	variation	in	forest	bird	density	at	a	spatial	lo-
cation si and in year t.

Spatial	 and	 spatio-	temporal	 variation	 in	 expected	 forest	 bird	
density d(si,	ti)	were	modeled	by	Gaussian	random	fields	(GRF).	The	
value	of	 the	random	field	at	a	given	observation	point	of	sample	 i 
was	assumed	to	be	equal	to	the	value	at	the	nearest	location	si.	We	
defined	the	Gaussian	process	for	the	spatial	variation	as:

where ω(s)	is	the	spatial	variation	(GRF)	in	expected	forest	bird	density	
at location s.	MVN	describes	a	multivariate	normal	probability	density	
function	with	the	mean	of	zero	and	an	estimated	variance	parameter	
�
2
�
	 for	spatial	variation	ω(s).	R	 is	a	spatial	correlation	matrix	between	

expected	 forest	 bird	 density	d	 among	 locations	 s	 and	 assumed	 sta-
tionary,	representing	the	impact	of	estimated	spatial	variation	ω(s)	on	
forest	bird	density.	We	assumed	that	spatial	autocorrelation	is	higher	
for	 nearby	 locations	 than	 for	 distant	 locations.	 Therefore,	 spatial	

autocorrelation	was	specified	using	the	stochastic	partial	differentia-
tion	equations	(SPDE;	Lindgren	et	al.,	2011)	approximation	to	a	Matérn	
function	(Lindgren	et	al.,	2011),	producing	a	decaying	spatial	autocor-
relation	with	increasing	distance	between	locations.

Similarly,	we	used	GRF	to	specify	the	spatio-	temporal	variation:

where ε(s,	 t)	 is	 the	spatio-	temporal	variation	 in	expected	 forest	bird	
density at location s and in year t. R represents the stationary spatial 
correlation	matrix	between	expected	forest	bird	density	d	among	lo-
cations s	and	was	defined	by	the	Matérn	function.	ρε	is	the	temporal	
autocorrelation	of	spatio-	temporal	covariation	in	expected	forest	bird	
density. �2

�
	is	an	estimated	variance	parameter	of	ε(s, t).

For	 the	 forest	 bird	 density,	 we	 estimate	 the	 annual	 intercepts	
β(t),	the	variance	in	expected	forest	bird	abundance	�2

m
,	the	effect	of	

the three density covariates γ1,	γ2,	γ3,	and	the	two	estimated	param-
eters	 of	 the	 Matérn	 function	 governing	 geometric	 anisotropy	 and	
decorrelation	 distance	 as	 fixed	 effects.	 The	 smoothness	 parame-
ter	for	the	Matèrn	function	was	fixed	to	one	(v =	1).	Spatial	ω(s)	and	
spatio-	temporal	ε(s, t)	variation	and	their	variance	parameters	�2

�
 and 

�
2
�
	were	 treated	as	 random	effects.	We	used	SPDEs	 to	approximate	

the	Gaussian	random	fields	as	implemented	in	the	software	package	
R-	INLA	(Lindgren,	2012;	see	Thorson,	Skaug,	et	al.,	2015	for	details).	
Parameters	were	estimated	by	maximizing	the	marginal	 likelihood	of	
fixed	effects,	given	the	observed	data	(Thorson	&	Barnett,	2017)	by	
using	Template	Model	Builder	(TMB;	Kristensen	et	al.,	2016)	in	R	ver-
sion	3.6.0	(R	Core	Team,	2019).	The	marginal	likelihood	and	its	gradi-
ent	for	fixed	effects	were	calculated	using	the	Laplace	approximation	
(Skaug	&	Fournier,	2006).	The	maximum	likelihood	estimate	(MLE)	of	
fixed	effects	was	estimated	using	a	nonlinear	optimizer	within	R	statis-
tical	environment	(R	Core	Team,	2019).	We	then	estimated	the	values	
for	 random	effects	 that	maximize	 the	 joint	 log-	likelihood,	 given	 the	
MLE	of	fixed	effects,	using	empirical	Bayes	method	in	TMB.	TMB	also	
estimates	standard	errors	for	all	fixed	and	random	effects	using	a	gen-
eralization	of	the	delta-	method	(Kass	&	Steffey,	1989).	More	detailed	
description	of	 the	 computation	 is	 available	 in	Thorson,	 Skaug,	 et	 al.	
(2015)	and	the	R	code	for	the	analysis	 is	provided	in	the	Supporting	
Information	(R	code	1).	We	inferred	all	the	parameters	whose	95%	con-
fidence	intervals	did	not	encompass	zero	to	be	statistically	significant.

We	tested	whether	there	was	a	need	to	include	the	quadratic	term	
of	 titmouse	 abundance	 among	 the	 covariates	 by	 comparing	models	
with	and	without	the	quadratic	titmouse	effect	with	Akaike	informa-
tion	criterion	(AIC)	and	by	checking	the	statistical	significance	of	the	
quadratic	term.	We	chose	the	quadratic	model	for	 inferences	 if	 that	
model	had	a	lower	AIC	value	than	the	model	lacking	the	quadratic	ef-
fect	 and	 the	 estimated	 quadratic	 effect	was	 statistically	 significant.	
Otherwise,	we	 based	 our	 inferences	 on	 the	model	 including	 only	 a	
linear	effect	of	titmouse	abundance	on	forest	bird	density.	The	final	
model	fit	was	assessed	by	visually	inspecting	residual	plots,	produced	
by	VAST	and	R	package	“DHARMa”	(Hartig,	2020),	and	assessing	the	

(1)Pr(bi = B) = gamma
{
B| a × d(si , ti), �

2
m

}

(2)log[d(si , ti)] = �(ti) + �(si) + �(si , ti) + �1tit(si , ti) + �2tit
2(si , ti) + �3PC(si , ti)

(3)�(s) ∼ MVN(0, �2
�
R)

(4)𝜀(s, t) ∼

⎧
⎪⎨⎪⎩

MVN(0,R) if t= t1

MVN(𝜌
𝜀
𝜀(s, t−1), 𝜎2

𝜀
R) if t> t1
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match	between	predicted	and	observed	densities	of	forest	birds.	The	
diagnostic	plots	indicated	that	the	models	fitted	the	data	well	for	both	
countries	(Supporting	Information	1:	Figure	S1.2–	S1.5).	We	derived	the	
95%	confidence	intervals	for	the	log-	predicted	density	of	forest	birds	
from	intercept	(β)	and	titmouse	covariate	parameter	(γ1,	γ2)	values	that	
were	sampled	from	a	multivariate	normal	distribution	including	their	
variances	and	covariances.	We	investigated	the	influence	of	extreme	
data	points	to	the	results	by	repeating	the	analyses	with	data	where	
the	observations	with	the	lowest	2.5%	and	the	highest	2.5%	of	forest	
bird	abundance	were	removed.

2.4  |  Spatial Gompertz model for random 
species groups

We	assessed	the	effectiveness	of	the	titmouse	group	as	an	ecologi-
cal	indicator	for	forest	bird	density	by	evaluating	the	performance	of	
titmice	compared	with	randomly	drawn	species	sets.	Six	species	were	
randomly	sampled	from	the	observed	forest	bird	data.	The	group	of	
sampled	species	represented	a	control	indicator	group	(referred	to	as	
control	group	hereafter)	for	the	six	titmouse	species	observed	in	the	
two	countries.	The	forest	birds	for	each	control	group	comprised	of	all	
the	other	bird	species	in	the	community	excluding	the	control	group	
species.	The	analysis	is	computationally	intensive,	which	is	why	we	re-
stricted	the	random	sampling	to	300	control	groups	for	each	country.

To	facilitate	comparisons	among	the	performances	of	titmice	and	
control	groups,	we	only	included	the	linear	effect	of	a	control	group	
on	forest	bird	density	(excluding	the	species	in	the	respective	con-
trol	group).	Therefore,	we	first	applied	the	spatial	Gompertz	model	
to	estimate	the	effect	of	titmouse	abundance	on	forest	bird	density	
without	 the	quadratic	 term	of	 titmice	 for	both	countries.	The	 “tit-
mouse	model”	 for	 density	 of	 forest	 birds	d(si, ti)	with	 a	 log-	linked	
linear	predictor	was	identical	to	Equation	2,	but	eliminating	the	qua-
dratic	effect	of	titmice,	γ2 = 0.

Prior	 to	 the	 analysis	 of	 each	of	 the	data	 sets	with	 a	 randomly	
drawn	 control	 group,	we	 removed	 samples	where	 no	 forest	 birds	
were	 observed	 (<0.01%	 of	 all	 observations	 in	 both	 countries),	 to	
have	a	100%	bird	encounter	probability.	Standardized	control	group	
abundance	 (given	as	biomass)	 and	 standardized	environmental	PC	
(i.e.,	PC1	or	PC2;	see	Section	2.2)	were	used	as	varying	among	sites	
and	 years.	 The	 “control	 species	model”	 for	 density	 of	 forest	 birds	

d(si,	ti)	was	again	identical	to	Equation	2,	but	replacing	variable	tit(si,	
ti)	with	control(si,	ti)	and	eliminating	the	quadratic	effect	of	titmice,	
γ2 =	0.	Spatial	and	spatio-	temporal	variation	in	expected	forest	bird	
density d(si,	ti)	for	each,	the	titmouse	group	and	the	control	groups,	
were	modeled	similarly	as	described	above	(Equations	3	and	4).

The	use	of	some	control	groups	did	not	result	in	model	conver-
gence,	so	we	excluded	the	control	groups	with	nonconverged	models	
from	further	consideration.	To	infer	statistical	significance	for	each	
converged	control	group	model,	we	compared	the	95%	confidence	
interval	of	the	γ4	estimate	of	the	control	group	to	zero.	We	only	com-
pared	the	control	group	models	with	a	statistically	significant	γ4 pa-
rameter	estimate	to	the	point	estimate	of	γ1	(titmouse	estimate).	The	
γ4	estimates	were	considered	to	be	significantly	different	from	the	γ1 
estimate	when	the	95%	confidence	intervals	of	the	γ4	estimate	did	
not	encompass	the	γ1	estimate.	The	R	codes	are	provided	in	supple-
mentary	material	(see	R	code	2	and	3).

3  |  RESULTS

3.1  |  Spatial Gompertz model for titmouse 
abundance and forest bird density

In	 Finland,	 the	 spatial	 Gompertz	 models	 including	 the	 linear	 and	
quadratic	 titmouse	 abundance	 effects	 were	 nearly	 equally	 good	
(ΔAIC	=	2.0).	However,	as	the	quadratic	term	of	titmouse	abundance	
was	not	statistically	significant	(γ2 =	−0.0005,	[95%	confidence	in-
terval:	−0.013,	0.012];	see	Appendix	1	for	results	of	the	quadratic	
model:	Table	A1)	in	the	quadratic	model,	we	base	our	inferences	on	
the	simpler	(i.e.,	linear)	model	(Table	2;	Figure	1).	There	was	a	positive	
association	 between	 titmouse	 abundance	 and	 forest	 bird	 density	
(Table	2;	Figure	1).	The	effect	of	environmental	PC	was	not	different	
from	zero	at	the	95%	confidence	level	(Table	2).	Additionally,	stand-
ard	deviations	for	both	spatial	(σω)	and	spatio-	temporal	(σε)	variation	
were	high	and	clearly	different	from	zero	(Table	2).	Spatial	variation	
was	stronger	than	spatio-	temporal	variation	over	the	study	period	
(see	also	Appendix	1:	Figure	A3).	We	identified	four	structurally	dif-
ferent	habitat	class-	specific	subsets	of	data	for	Finland	(deciduous,	
spruce	and	pine	forest,	and	deciduous	bush;	Supporting	Information	
2:	Table	S2.1	and	Figure	S2.1).	For	these	separate	analyses,	decidu-
ous	 forest	 and	 spruce	 forest	 had	 a	 positive	 relationship	 between	

Parameter Estimate
Lower 
95% CI

Upper 
95% CI

Titmouse abundance (γ1) 0.025 0.005 0.045

Environmental	PC	(γ3) 0.005 −0.073 0.083

Standard	deviation	of	spatial	variation	(σω) 1.810 1.489 2.131

Standard	deviation	of	spatio-	temporal	
variation	(σε)

0.447 0.336 0.557

Note: Parameter	estimates	are	in	log-	scale	and	parameters	that	are	different	from	zero	at	95%	
confidence	level	are	highlighted	in	bold.	Variance	components	are	not	highlighted	because	they	are	
inevitably	non-	negative.

TA B L E  2 Parameter	estimates	and	
their	95%	confidence	intervals	for	the	
model	including	only	a	linear	relationship	
between	titmouse	abundance	(measured	
in	biomass)	and	forest	bird	density	in	
Finland	2001–	2013;	parameter	estimates	
and	their	95%	confidence	limits	(Lower/
Upper	95%	CI)	for	the	effects	of	titmouse	
abundance	(γ1;	see	Table	1),	environmental	
PC	(γ3),	standard	deviation	of	spatial	
variation	(σω)	and	spatio-	temporal	
variation	(σε)
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8 of 15  |     KAJANUS et Al.

titmouse	 abundance	 and	 forest	 bird	 density,	 but	 the	 relationship	
was	 statistically	 significant	 only	 in	 deciduous	 forest	 (Supporting	
Information	2:	Tables	S2.3	and	S2.4,	and	Figure	S2.3).	The	models	
for	deciduous	bush	and	pine	forest	habitats	did	not	converge,	most	
likely	due	to	the	relatively	small	sizes	of	these	data	sets.	The	removal	
of	 extreme	 observations	 did	 not	 change	 the	 results	 (Supporting	
Information	1:	Table	S1.4	and	Figure	S1.6).

In	France,	the	spatial	Gompertz	model	including	titmouse	abun-
dance,	 squared	 titmouse	 abundance,	 and	 environmental	 PC	 best	
fitted	to	the	data	as	indicated	by	the	AIC	comparison	(ΔAIC	= 12.2; 
see	Appendix	1	for	results	of	the	linear	model:	Table	A2).	The	pre-
dicted	 forest	 bird	 density	 increased	 with	 titmouse	 abundance,	
the	positive	association	becoming	weaker	toward	higher	titmouse	
abundance	 (Table	3;	Figure	2).	 Standard	deviation	 for	 spatial	 (σω)	
variation	was	higher	than	for	spatio-	temporal	 (σε)	variation	in	for-
est	bird	density	 (Table	3;	 see	also	Appendix	1:	Figure	A4).	There	
was	no	association	between	forest	bird	density	and	environmen-
tal	PC	 (Table	3).	French	data	were	classified	 into	five	structurally	
different	 habitat	 types	 (coniferous,	 mixed,	 deciduous	 and	 young	
forest,	 and	 coppice;	 Supporting	 Information	 2:	 Table	 S2.2	 and	
Figure	S2.2).	All	habitat-	specific	models	that	converged	indicated	a	
positive	relationship	between	titmouse	abundance	and	forest	bird	
density	 (Supporting	 Information	 2:	 Tables	 S2.5–	S2.8	 and	 Figures	
S2.4–	S2.7).	 The	 linear	 relationship	 was	 statistically	 significant	
in	 coniferous	 and	mixed	 forest,	 and	 the	 quadratic	 relationship	 in	
deciduous	and	young	forest.	The	relatively	small	sizes	of	the	data	

sets	resulted	in	wide	confidence	intervals	in	each	habitat	type,	ex-
cluding	deciduous	forest.	The	model	for	coppice	did	not	converge,	
likely	for	the	same	reason.	The	results	remained	unchanged	even	
when	the	observations	with	the	lowest	2.5%	and	the	highest	2.5%	
of	forest	bird	abundance	were	removed	(Supporting	Information	1:	
Table	S1.5	and	Figure	S1.7).

3.2  |  Spatial Gompertz models for random 
species groups

In	Finland,	297	out	of	the	300	data	sets	with	randomly	drawn	control	
groups	resulted	in	model	convergence.	158	parameter	estimates	of	
the	association	between	abundance	of	the	control	group	and	density	
of	forest	birds	were	different	from	zero	at	the	95%	confidence	level	
(see	 Supporting	 Information	 1	 for	 a	 list	 of	 species	 and	 parameter	
estimates:	Table	S1.6).	These	associations	between	control	groups	
and	forest	birds	were	overall	positive	(mean	γ4 =	0.017,	median	γ4 = 
0.026).	Only	seven	 (4.4%)	out	of	 these	158	significant	models	had	
in	turn	a	significantly	stronger	positive	association	with	forest	birds	
than	titmice	and	32	(20.3%)	control	groups	had	a	significantly	weaker	
association	(i.e.,	the	95%	confidence	intervals	did	not	encompass	the	
titmouse	estimate;	Figure	3a;	Supporting	Information	1:	Table	S1.6).	
The	associations	between	the	control	groups	and	forest	birds	ranged	
between	a	minimum	of	γ4 =	−0.078	and	a	maximum	of	γ4 =	0.062.	In	
Finland,	the	control	group	that	had	the	strongest	positive	association	

F I G U R E  1 Frequency	distribution	
of	standardized	titmouse	abundance	
(given	as	biomass;	g)	in	Finland	(a).	The	
relationship	between	log-	predicted	
density	of	forest	birds	(g/km2)	and	
standardized	titmouse	abundance	(given	
as	biomass;	g)	in	Finland	in	2001	(i.e.,	
first	study	year;	β =	10.315,	γ1 = 0.025; 
see	Table	1	for	definition	of	all	symbols)	
(b).	Circles	are	predicted	forest	bird	
densities	for	the	sampling	points	and	
the	fitted	line	with	95%	confidence	
intervals	derives	from	the	spatial	
Gompertz	model	(see	Section	2.3	for	
details)	visualizing	the	linear	relationship	
between	predicted	forest	bird	density	and	
titmouse	abundance.	There	was	minor	
variance	among	years	in	the	intercept	
(10.184	< β <	10.418),	so	the	elevation	of	
the	line	varies	among	years,	but	the	slope	
remains	the	same.	Frequency	distribution	
of	log-	predicted	density	of	forest	birds	(g/
km2)	in	Finland	(c)
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    |  9 of 15KAJANUS et Al.

with	the	total	density	of	forest	birds	consisted	of	Muscicapa striata,	
Turdus pilaris,	Picoides tridactylus,	Cuculus canorus,	Phylloscopus col-
lybita,	and	Oriolus oriolus.

In	France,	the	analysis	of	the	spatial	Gompertz	model	 includ-
ing	only	linear	titmouse	effect	on	forest	bird	density	resulted	in	a	
significantly	positive	titmouse	covariate	effect	(γ1 =	0.174,	[0.153,	
0.195];	 Appendix	 1:	 Table	 A2).	 All	 300	 analyzed	models	 for	 the	
control	 groups	 converged.	 293	 out	 of	 the	 models	 resulted	 in	 a	
statistically	significant	parameter	estimate	for	the	association	be-
tween	 the	control	group	and	 forest	birds,	 and	all	 considered	as-
sociations	were	positive	(mean	γ4 =	0.147,	median	γ4 = 0.142; see 
Supporting	Information	1	for	a	list	of	species	and	parameter	esti-
mates:	Table	S1.7).	24.2%	(71)	out	of	these	293	significant	control	
groups	had	a	significantly	stronger	and	56.0%	(164)	a	significantly	

weaker	 association	 with	 forest	 birds	 than	 titmice	 (i.e.,	 the	 95%	
confidence	 intervals	did	not	overlap	with	 the	titmouse	estimate;	
Figure	 3b;	 Supporting	 Information:	 Table	 S1.7).	 The	 estimates	
among	 the	 control	 groups	 ranged	 between	 a	 minimum	 of	 γ4 = 
0.025	 and	 a	maximum	 of	 γ4 = 0.343. Turdus philomelos,	 Fringilla 
coelebs,	 Turdus merula,	 Dendrocopos major,	 Cuculus canorus,	 and	
Phoenicurus ochruros	were	the	species	of	the	best	performing	con-
trol	group	in	France.

4  |  DISCUSSION

Bird	 density	 showed	 a	 positive	 association	 with	 titmouse	 abun-
dance	(given	in	biomass)	in	European	forest	bird	communities	when	

F I G U R E  2 Frequency	distribution	
of	standardized	titmouse	abundance	
(given	as	biomass;	g)	in	France	(a).	The	
relationship	between	log-	predicted	
density	of	forest	birds	(g/km2)	and	
standardized	titmouse	abundance	(given	
as	biomass;	g)	in	France	in	2001	(i.e.,	
first	study	year;	β =	10.251,	γ1 =	0.198,	
γ2 =	−0.030;	see	Table	1	for	definition	
of	all	symbols)	(b).	Circles	are	predicted	
forest	bird	densities	for	the	sampling	
points	and	the	fitted	line	with	95%	
confidence	intervals	derives	from	the	
spatial	Gompertz	model	(see	Section	
2.3	for	details)	visualizing	the	quadratic	
relationship	between	predicted	forest	
bird	density	and	titmouse	abundance.	
There	was	minor	variance	among	years	
in	the	intercept	(10.145	< β <	10.259),	
so	the	elevation	of	the	line	varies	among	
years,	but	the	curve	remains	the	same.	
Frequency	distribution	of	log-	predicted	
density	of	forest	birds	(g/km2)	in	France	(c)

Parameter Estimate
Lower 
95% CI

Upper 
95% CI

Titmouse abundance (γ1) 0.198 0.173 0.222

[Titmouse abundance]2 (γ2) −0.030 −0.045 −0.014

Environmental	PC	(γ3) −0.019 −0.047 0.008

Standard	deviation	of	spatial	variation	(σω) 0.641 0.579 0.703

Standard	deviation	of	spatio-	temporal	
variation	(σε)

0.295 0.269 0.320

Note: Parameter	estimates	are	in	log-	scale	and	parameters	that	are	different	from	zero	at	95%	
confidence	level	are	highlighted	in	bold.	Variance	components	are	not	highlighted	because	they	are	
inevitably	non-	negative.

TA B L E  3 Parameter	estimates	and	
their	95%	confidence	intervals	for	the	
model	including	a	quadratic	relationship	
between	titmouse	abundance	(measured	
in	biomass)	and	forest	bird	density	in	
France	2001–	2013;	parameter	estimates	
and	their	95%	confidence	limits	(Lower/
Upper	95%	CI)	for	the	effects	of	titmouse	
abundance	(γ1;	see	Table	1),	quadratic	
term	of	titmouse	abundance	(γ2),	
environmental	PC	(γ3),	standard	deviation	
of	spatial	variation	(σω),	and	spatio-	
temporal	variation	(σε)
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10 of 15  |     KAJANUS et Al.

controlling	for	gradients	in	temperature	and	precipitation	and	spatio-	
temporal	 autocorrelations.	 This	 positive	 relationship	was	 linear	 in	
Finland,	but	nonlinear	 in	France,	where	 the	positive	association	at	
low	titmouse	abundance	leveled	off	at	higher	titmouse	abundance.	
In	Finland,	titmice	appear	to	be	generally	better	indicators	of	forest	
bird	density	than	groups	of	species	drawn	randomly	from	the	same	
community.	 In	France,	many	randomly	drawn	species	groups	were	
equally	 good	or	 even	better	 indicators	of	 forest	 bird	density	 than	
titmice.	Overall,	titmice	seem	to	be	a	potential	ecological	indicator	of	
forest	bird	density	at	the	macroecological	scale	in	Northern	Europe,	
while	the	performance	of	the	titmouse	indicator	group	is	not	as	clear	
in	Western	Europe.

There	was	 a	 linear	 and	 positive	 association	 between	 titmouse	
abundance	 and	 forest	 bird	 density	 in	 Finland.	 This	 implies	 that	
shared	habitat	preferences	as	well	as	positive	interspecific	interac-
tions,	where	 forest	birds	choose	a	breeding	habitat	near	 titmouse	
species	 (i.e.,	 heterospecific	 attraction),	 may	 underlie	 the	 result.	
Heterospecific	attraction	has	been	suggested	to	result	in	passerine	
aggregations	in	Northern	Europe	(Forsman	et	al.,	2009;	Mönkkönen	
et	al.,	1990;	Thomson	et	al.,	2003)	and	may	be	a	consequence	of	ac-
quiring	and	using	interspecific	social	information	on	habitat	quality	
(e.g.,	 food	availability	or	predator	density)	from	species	that	breed	
earlier	 in	the	year	 (Forsman	et	al.,	2002,	2009).	The	proportion	of	

migratory	 species	 is	 higher	 in	 Northern	 Europe	 than	 in	 Western	
Europe	(Newton,	2008),	and	thus,	social	information	provided	by	tit-
mice	can	be	more	important	for	migratory	and	later	breeding	birds	
in	Finland	than	in	France.	While	our	results	cannot	prove	heterospe-
cific	attraction,	the	results	are	consistent	with	the	prediction	of	the	
heterospecific	 attraction	 hypothesis	 (Forsman	 et	 al.,	 2002,	 2009;	
Mönkkönen	et	al.,	1990,	1996,	2004).	Furthermore,	heterospecific	
attraction	has	mainly	been	studied	among	specific	species,	whereas	
here	we	studied	the	entire	forest	songbird	community.	However,	as	
a	result	of	a	lower	number	of	observations	and	a	poorer	spatial	cov-
erage	of	the	data	in	Finland	than	in	France,	for	example,	a	possible	
nonlinear	 association	 between	 titmice	 and	 forest	 birds	 in	 Finland	
may	have	remained	unobserved.

The	 nonlinear,	 approximately	 asymptotic,	 relationship	 between	
titmouse	abundance	and	forest	bird	density	in	France	suggests	that	
positive	associations	become	weaker	with	increasing	titmouse	abun-
dance.	This	pattern	likely	arises	from	stronger	interspecific	competi-
tion	at	high	levels	of	titmouse	abundance.	Alternatively,	the	strength	
of	 the	 association	 could	be	 explained	by	 change	 in	habitat	 quality.	
Titmice	include	both	generalist	and	specialist	species,	and	the	gener-
alists	(e.g.,	great	tit	[Parus major])	may	persist	with	higher	abundances	
in	 habitats	 of	 lower	 quality	 (i.e.,	 less	 resources),	while	 other	 forest	
bird	species	may	decline	in	the	same	conditions.	Thus,	the	strength	

F I G U R E  3 VAST	estimates	from	
the	models	that	converged	and	had	a	
significant	parameter	estimate	(a:	n = 158; 
b:	n =	293)	for	the	associations	between	
abundance	(given	as	biomass)	of	each	
randomly	drawn	control	group	and	forest	
bird	density	(γ4)	with	error	bars	showing	
the	95%	confidence	intervals	in	Finland	
(a)	and	in	France	(b).	Red	filled	circles	
represent	those	estimates	that	were	
statistically	different	from	the	titmouse	
estimate	(γ1; a: n =	39;	b:	n =	235)	and	the	
black	triangles	depict	those	estimates	that	
were	not	significantly	different	from	the	
titmouse	estimate	(a:	n =	119;	b:	n =	58)	at	
95%	confidence	level	(see	Section	2.4	for	
details).	The	estimate	for	the	association	
between	titmouse	abundance	(given	as	
biomass)	and	forest	bird	density	is	shown	
with	the	blue	dashed	line	(a:	γ1 = 0.025; 
b:	γ1 =	0.174),	and	the	gray	shaded	area	
shows	the	95%	confidence	intervals	for	
the	titmouse	estimates
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    |  11 of 15KAJANUS et Al.

of	 the	 association	between	 titmice	 and	other	 forest	 birds	may	de-
crease	after	a	certain	threshold	in	the	quality	of	the	habitat.	However,	
habitat	quality	variation	is	an	unlikely	explanation	for	our	result	be-
cause	it	is	not	likely	that	the	highest	observed	abundances	of	titmice,	
where	the	association	between	titmice	and	other	forest	birds	levels	
off,	were	observed	at	low-	quality	habitats.	Instead,	it	seems	plausible	
that	the	highest	titmouse	abundances	occur	in	high-	quality	habitats.	
The	asymptotic	relationship	between	titmouse	abundance	and	forest	
bird	density	reported	here	also	parallels	the	low-	density	end	of	the	
unimodal	relationship	between	Parus and Fringilla	species	in	Central	
Europe	 (Mönkkönen	et	 al.,	 2004).	 Indeed,	 high	densities	of	 titmice	
could	negatively	affect	the	fitness	of	other	passerines	(Forsman	et	al.,	
2008;	Gustafsson,	1987;	Sasvári	et	al.,	1987),	 leading	 to	avoidance	
of	habitats	with	high	titmouse	densities	because	of	 increased	com-
petition.	 Thus,	 interspecific	 competition	 is	 the	most	 likely	 process	
leading	 to	 the	observed	asymptotic	 relationship	between	 titmouse	
abundance	and	other	forest	bird	density.	Also,	when	using	multiple	
species	instead	of	a	single	one	as	an	ecological	indicator,	the	density	
of	the	indicator	species	within	the	community	increases	in	relation	to	
the	target	species.	Therefore,	density-	dependent	factors	should	be	
considered	when	multiple	species	are	used	as	an	indicator.

Species	 densities	 are	 directly	 and	 indirectly	 affected	 by	 envi-
ronmental	 factors.	The	overall	 lower	 titmouse	densities	 in	harsher	
environments	 in	Northern	Europe	 (Forsman	&	Mönkkönen,	 2003)	
reduce	competition	even	at	high	local	titmouse	densities.	This	may	
favor	social	 information	use	 (Forsman	et	al.,	2009),	where	migrant	
species	 seek	 a	 breeding	 habitat	 with	 high	 resident	 titmouse	 den-
sities.	 Higher	 productivity	 of	 the	 environment	 facilitates	 overall	
higher	 titmouse	 densities	 in	Western	 and	 Central	 Europe	 than	 in	
Northern	Europe	(Forsman	&	Mönkkönen,	2003).	Consequently,	the	
negative	 effects	 of	 competition	 between	 titmice	 and	 forest	 birds	
may	outweigh	the	positive	effects	of	social	information	use	at	high	
densities	 (Mönkkönen	et	al.,	2004),	 leading	to	weaker	associations	
between	 titmice	 and	 forest	 birds	 in	Western	 and	Central	 Europe.	
However,	spatial	variation	in	temperature	and	precipitation	(proxies	
of	productivity)	did	not	explain	our	results.	Productivity	varies	a	lot	
within	Europe,	 increasing	toward	the	south	(Boisvenue	&	Running,	
2006;	Field	et	al.,	1998),	and	densities	of	resident	species	are	known	
to	 increase	with	higher	 temperature	and	precipitation	 (Forsman	&	
Mönkkönen,	 2003).	 Thus,	 we	 expected	 environmental	 principal	
component	 (PC)	 summarizing	 temperature	and	precipitation	varia-
tion	to	be	positively	correlated	with	species	densities.	Nevertheless,	
environmental	PC	may	only	describe	the	potential	environmental	fa-
vorability	at	each	location	and	the	lack	of	this	environmental	effect	
could	indicate	missing	variables	that	would	describe	the	actual	local	
environmental	conditions.	Our	supplementary	analysis	(Supporting	
Information	2)	for	subsets	of	the	data	accounted	for	potentially	im-
portant	 environmental	 factors	 affecting	 forest	 bird	 density,	 such	
as	specific	forest	types	(e.g.,	spruce,	pine	and	broad-	leaved)	or	dif-
ferent	tree	heights	(Fraixedas	et	al.,	2015;	Lehikoinen	et	al.,	2017).	
Although	the	indicator	value	of	titmice	was	the	highest	in	deciduous	
forests,	which	reflects	the	main	habitat	preference	of	many	titmouse	
species	 (del	Hoyo	et	 al.,	 2007),	 titmice	had	 a	 positive	 relationship	

with	 forest	bird	density	 in	 all	 forest	 types	 and	 in	 the	pooled	data	
including	all	 forest	types.	This	suggests	that	titmice	could	be	used	
as	an	indicator	of	forest	bird	density	independently	of	forest	type.

The	use	of	 indicator	species	to	study	population	trends	or	bio-
diversity	 is	 a	 common	 practice	 but	 has	 received	 some	 criticism	
(Andelman	&	Fagan,	2000;	Cabeza	et	al.,	2008;	Favreau	et	al.,	2006).	
This	emphasizes	 that	 selecting	a	suitable	species	or	 species	group	
as	 a	 potential	 indicator	 requires	 careful	 consideration.	 In	 Finland,	
we	 found	 stronger	 evidence	on	 the	efficiency	of	 titmice	 as	 an	 in-
dicator	group,	when	comparing	the	performance	of	titmice	against	
randomly	drawn	species	groups.	There	was	an	extremely	 low	pro-
portion	of	randomly	drawn	species	groups	(7	out	of	158,	i.e.,	4.4%)	
performing	significantly	better	than	titmice.	Hence,	we	found	strong	
evidence	for	titmouse	abundance	to	be	a	suitable	indicator	for	total	
forest	 bird	density	 in	Northern	Europe.	 In	 France,	 a	 large	propor-
tion	(71	out	of	293,	i.e.,	24.2%)	of	control	groups	outperformed	the	
titmouse	group	as	an	indicator,	suggesting	that	the	relationship	be-
tween	titmouse	abundance	and	total	bird	density	is	more	complex	in	
Western	Europe.

Even	 though	many	of	 the	 randomly	drawn	species	groups	per-
formed	 better	 as	 an	 indicator	 than	 titmice,	 in	 France,	 the	 species	
sets	 included	 in	 those	 random	species	groups	cannot	be	observed	
as	 easily	 as	 titmice.	 Similarly,	 other	 commonly	 used	 indicator	 bird	
species	groups,	such	as	woodpeckers	(Menon	&	Shahabuddin,	2021;	
Mikusiński	et	al.,	2001)	or	cuckoos	(Møller	et	al.,	2017),	are	relatively	
less	abundant	and	diverse,	and	more	habitat	specialized	than	many	
titmouse	 species,	 potentially	 making	 them	 less	 suitable	 indicators	
for	forest	bird	abundances.	Titmice	have	many	features	of	a	suitable	
ecological	 indicator	 group:	 cost-	efficient	 observations,	well-	known	
biology,	 conspicuous	 behavior,	 almost	 global	 distribution	 (Caro	 &	
O'Doherty,	 1999;	 del	Hoyo	 et	 al.,	 2007;	 Gill	 et	 al.,	 2005;	 Landres	
et	al.,	1988),	and	ecological	traits	broadly	overlapping	with	those	of	
a	wide	range	of	the	target	species.	Thus,	using	titmice	as	an	indica-
tor	group	seems	practical,	 this	practicality	potentially	outweighing	
the	better	performance	of	some	random	and	other	common	species	
groups.	Also,	many	 resident	 titmouse	populations	have	declined	 in	
Finland,	and	 two	earlier	common	species	are	now	threatened	 (wil-
low	 tit	 [Poecile montanus]	 and	 crested	 tit	 [Lophophanes cristatus]; 
Hyvärinen	et	al.,	2019).	In	the	light	of	our	results,	the	decline	in	tit-
mouse	populations	could	be	an	early	warning	signal	of	a	more	wide-
spread	decline	of	forest	bird	populations	in	near	future.	Together	the	
practicality	and	the	wide	distribution	of	titmice	makes	them	poten-
tially	useful	indicators	in	some	biogeographical	realms,	yet	caution	is	
needed	when	extrapolating	our	results	outside	of	Northern	Europe.

5  |  CONCLUSIONS

In	 most	 of	 the	 current	 citizen	 science	 bird	 monitoring	 programs,	
observers	must	visually	and	acoustically	identify	all	birds,	demand-
ing	a	high	 level	of	species	 identification	skills.	 If	overall	 forest	bird	
densities	could	be	estimated	using	titmouse	abundance	as	an	indica-
tor,	as	suggested	by	our	results,	it	would	open	the	possibility	to	use	
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also	less-	experienced	observers	(i.e.,	observers	with	limited	species	
identification	skills)	in	citizen	science	to	support	current	bird	density	
estimation	methods.	This	could	increase	the	spatial	and	temporal	ex-
tents	of	the	current	bird	monitoring	schemes,	especially	in	Northern	
Europe.	These	cost-	effective	data	sets	may	increase	the	efficiency	
of	planning	conservation	areas	and	actions,	which	is	one	of	the	most	
urgent	global	 issues	in	applied	ecology.	The	globally	wide	distribu-
tion	and	conspicuous	behavior	of	the	titmouse	group	may	open	new	
possibilities	for	planning	forest	bird	conservation	at	a	macroecologi-
cal	scale.	More	locally,	focusing	on	titmice	could	be	a	cost-	effective	
approach	to	monitor	the	consequence	of	local	disturbance	or	con-
servation	plans.	For	instance,	the	level	and	velocity	in	the	restora-
tion	of	 a	 given	 forested	 ecosystem	 (e.g.,	 following	 fire	 or	 logging)	
could	be	 reflected	by	 the	dynamics	of	 titmouse	populations	more	
easily	than	using	an	exhaustive	survey	of	the	entire	bird	community.
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