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Abstract: Multilabel learning is an important topic in machine learning research. Evaluating models
in multilabel settings requires specific cross validation methods designed for multilabel data. In this
article, we show that the most widely used cross validation split quality measure does not behave
adequately with multilabel data that has strong class imbalance. We present improved measures and
an algorithm, optisplit, for optimizing cross validations splits. Extensive comparison of various types
of cross validation methods shows that optisplit produces more even cross validation splits than the
existing methods and it is among the fastest methods with good splitting performance.

Keywords: stratified cross validation; multilabel learning; multilabel cross validation; classification;
gene ontology

1. Introduction

Cross validation is a central procedure in machine learning, statistics and other fields. It is used
to evaluate model performance by testing models on data points excluded from training data. It is
further used, besides traditional model evaluation, also when various predictive models are combined
in classifier stacking [15] and when various parameters in predictive models are optimized. In standard
cross validation, a dataset D is split randomly into k non-overlapping subsets (folds) Di, i ∈ k. A model
is trained for each fold i on the data ∪ j∈k| j,iD j and evaluated on Di. So one subset, Di, is left out of the
training process and used as an evaluation data. The averaged result over all the folds represents the
final performance. Cross validation is typically used when the amount of data is limited. This situation
can occur also in a very large dataset when some of the studied classes are very rare. When very large
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amount of data is available, one can also use standard train-test splits, where the data is divided into
two non-overlapping sets, e.g. 80% for training and 20% for testing, in place of cross validation.

The typically used random split approach assumes that the positive and negative class distributions
are balanced. If the class distributions are imbalanced, the resulting splits may not allow efficient
learning. As an example, suppose that in binary classification settings one randomly generated
fold contains all the positive data points belonging to one of the classes (see Figure 1). Then the
corresponding training set consisting of the rest of the folds does not contain any positive data points
of that class and the model cannot learn anything about the class.

Stratified cross validation methods are variants of cross validation that ensure that the class
distributions of the folds are close to the class distributions of the whole data. With class imbalanced
data, these stratified methods especially ensure the distribution of smaller classes. In this work,
we focus on stratified cross validation applied to multilabel classification. Multilabel classification
presents additional challenges for stratified cross validation, as each data point can belong to multiple
classes simultaneously (see Figure 1). Here, each class represents a separate task for training and
evaluation. The cross validation split should be formed so that the correct class distributions are
maintained for all classes and all folds at the same time. This ensures that the classifier to be evaluated
can be trained and tested effectively with all the created data splits. Random splitting has been
historically a popular choice on multilabel data, but it has been shown to lead to poor results [9].

Figure 1. Examples of stratified multilabel cross validation with splits of different quality.
1) presents a target data with 24 data points and three classes. This could be a subset of a
sparse, high dimensional dataset. 2) Next, the data is split into four cross validation folds
in two ways, one representing a random split and the other representing a stratified split
optimized over all classes. The ideal distribution of the positive data points in each fold
would be 2/6 for the first class and 1/6 for the second and third class so that they would
follow the class distributions of the whole data. Random split can result, like in here, in very
unbalanced folds, while the stratified split follows closely the data distribution for all classes.
3) Here, the well-balanced stratified split is rearranged for increased clarity.
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As dataset sizes are growing across application domains, multilabel and extreme classification are
of growing interest and importance [2]. Consequently, assessing model quality on these settings is also
getting increasingly important. This makes the stratified cross validation for large multilabel datasets
with sparse labels a relevant research topic.

However, we show in Section 3 that there is a serious flaw in the main measure currently used
to evaluate how good a given split is. In response to the issue, we present new measures that have
better properties. We found current methods either too weak with respect to the new measures or
impractically slow for extremely big classification datasets. Therefore, we also developed a new
algorithm, optisplit, for generating multilabel cross validation datasets based on optimizing the global
distribution of all classes.

The methods presented here are developed in the context of gene ontology (GO) data [1] for
automated protein function prediction task [16]. GO represents a large set of classes that aim to
describe various functions that proteins can have. It is structured as a directed acyclic graph (DAG),
where members of small classes that link genes to very specific functions, are also included in larger
classes that link genes to broader functional categories. As an example, genes included in the cellular
amino acid biosynthesis class are also members of the carboxylic acid biosynthesis class and eventually
to the metabolic process class [1]. This hierarchy allows the analysis of gene or protein functions with
both detailed and broad functions.

The GO datasets used here are high dimensional and contain over half a million data points. The
high number of classes, often in the order of thousands to tens of thousands, presents a challenge for
analysis. Members of smaller, more precise classes are automatically included also in larger, broader
classes. This inclusion step is repeated with larger and larger classes until one of the three root nodes of
DAG is reached. Therefore, as a result, most classes contain a very small number of data points while
some classes have a very large number of data points. The high number of small classes, i.e. classes
that have few positive data points, makes the negative data abundant for most of the classes, resulting
often in too few positive data points to train the models effectively.

This article is organized as follows. In Section 2, we review the related work. In Section 3, we show
that the currently most widely used split quality measure for stratified multilabel cross validation is
inadequate. We present new better measures and demonstrate the behavior of these first with synthetic
data splits. In Section 4, we present an algorithm for optimizing cross validation splits with respect to
any selected split quality measures. In Section 5, we present a comparison of the algorithms on a wide
range of real-world datasets and conclude that the new algorithm is the best practical choice for getting
balanced splits as measured by the new measures. Finally, we conclude with a discussion and present
ideas for future work in Section 6.

2. Stratified multilabel cross validation

The most widely known algorithm for generating stratified multilabel cross validation splits is the
iterative stratification (IS) [9]. It works by dividing the data points evenly into the folds, one class at
a time. It always chooses the class with the fewest positive data points for the processing, and breaks
ties first by the largest number of desired data points and further randomly. Smaller classes are more
difficult to balance equally among the folds, so starting from them makes sure they get well distributed.
Bigger classes are easier to distribute, so distributing them later is justifiable. Iterative stratification has
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also been extended to consider second order relationships between labels. This method is known as
second order iterative stratification (SOIS) [11].

The recently introduced stratified sampling (SS) algorithm [7] is designed to produce balanced
train/test splits for extreme classification data with a high number of data points and classes. It has
been shown to be faster to use than iterative stratification variants, and it often produces splits with
better distributions. This method calculates the proportion of each class in training and test sets and
uses differences of these proportions to calculate a score that sums the class proportion differences
for each data point. The data points with the highest scores are redistributed from one to the other
partition. This method needs three parameters that have to be adjusted according to the data, and it
does not produce cross validation splits directly but training/test splits.

The partitioning method based on stratified random sampling (PMBSRS) [4] uses the similarity of
the label distributions between data points to group them and then divides them into the cross validation
folds [4]. A similarity score is defined as the product of the relative frequencies of the positive labels
present in each data point. Then the data points are ordered by the score into a list which is cut into as
many disjoint subsets S as is the desired number of cross validation folds. Each cross validation fold is
then generated by randomly selecting items without replacement from each set s ∈ S so that each fold
gets an equal proportion of the samples from each s. The end result is that each fold contains elements
with different scores. As a non-iterative algorithm resembling the basic random sample method, this
is computationally less expensive than the iterative methods. However, this does not measure the split
quality directly, but is more aimed to ensure that all folds contain an equal amount of different sized
classes.

3. Split quality measures

Split quality measures are used to define how good a given cross validation split is. They allow
comparison of different splits and can be used as optimization criterion in splitting algorithms. The
current cross validation split quality measures either evaluate the quality of the folds directly or apply
some model on the folds and compare the learning results. Here we focus on directly comparing the
quality of the folds in order to make the comparisons model independent. The most commonly used
measures in the literature are the labels distribution (LD) measure and the examples distribution (ED)
measure [9].

Let n be the number of data points, k be the number of cross validation folds, and q be the number
of classes. D ∈ {0, 1}n×q denotes the multilabel target set and S j, j ∈ 1 . . . k denotes the folds which are
disjoint subsets of D. The subsets of D and S j containing positive data points of label i ∈ 1 . . . q are
denoted as Di and S i

j

We define the positive and negative frequencies for fold j and label i as pi
j = |S i

j|/|S j| and 1 − pi
j,

respectively. Similarly, for the whole data, positive frequency as di = |Di|/|D| and negative frequency
as 1 − di.

Then, we define

LD =
1
q

q∑
i=1

1
k

k∑
j=1

∣∣∣∣∣∣∣ pi
j

1 − pi
j

−
di

1 − di

∣∣∣∣∣∣∣
 (3.1)
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and

ED =
1
k

k∑
j=1

∣∣∣∣∣|S j| −
|D|
k

∣∣∣∣∣ . (3.2)

Intuitively, LD measures how the distribution of the positive and negative data points of each label
in each subset compares to the distribution in the whole data, by comparing odds between the positive
and negative ratio. ED measures the deviation between the expected fold size and the actual fold size.
Since the exact equality of the fold sizes is not generally important in practice, the ED score is merely
useful in checking that the fold size differences are sufficiently small compared to the data size.

As noted in Section 1, it is especially important for training and evaluation that the distributions
of the smallest classes are well balanced in the cross validation folds. Small classes are hardest to
split well, since there are fewer ways to distribute the data points and even small differences in fold
distributions give big relative differences. A good split quality measure should be able to correctly
quantify the quality of the folds, even on small classes.

LD (Equation 3.1), is defined as the arithmetic mean of the differences between the positive
frequencies of a cross validation fold and of the whole data over all classes and folds, using a
transformation of the form f (x) = x/(1 − x) for both frequencies. Since the data size is fixed,
the frequencies pi

j and di are linear functions of the class sizes |S i
j| and |Di|, respectively. Since

x < x/(1 − x),∀x ∈ [0, 1) and f ′(x) = 1/(1 − x2) > 1, the transformed quantities grow faster than
the class size, resulting that the difference is greater for bigger classes than it should be. That is, the
same absolute difference of pi

j from di results in a larger contribution by bigger classes (see Figure 2).
The contribution is equal for the special case pi

j = di, when the difference is zero.
Hence, as an improved alternative, we propose the relative labels distribution (rLD) measure

rLD =
1
q

q∑
i=1

1
k

k∑
j=1

∣∣∣∣∣∣∣d
i − pi

j

di

∣∣∣∣∣∣∣
 . (3.3)

Intuitively, rLD measures the linear difference of the ratios of the positive frequencies between each
fold and the whole data, divided with the positive frequency of the whole data. Since di and pi

j depend
directly on the class size, it is necessary to weight with the positive frequency of the whole data to avoid
any emphasis related to class size. Now, the difference is calculated without the offending nonlinear
transformation, so the measure is class size independent (see Figure 2), while still having the same
main operating principle as LD of comparing the distributions (frequencies) of folds to those of the
whole data. Finally, we noticed that rLD can be seen as an adaptation of a more general measure, mean
absolute percentage error [5], as a split quality measure.

In addition, we present another measure that is insensitive to the class size, the delta-class
proportion (DCP)

DCP =
1
q

q∑
i=1

∣∣∣∣∣∣∣max j∈1...k(|S i
j|)

|S i|
−

1
k

∣∣∣∣∣∣∣ , (3.4)

where the first part of the function represents the observed result and 1/k is the positive frequency
of a flat distribution. Compared to rLD, DCP does not measure the relative distributions of other
folds than the largest. Rationale for DCP is that when the fold with the largest number of sparse class
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members is moved to evaluation data, it will generate the worst training data for a predictive model.
DCP is here a coarser measure that is used for comparison purposes and for faster optimization.
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Figure 2. A graphical comparison of the LD and rLD measures within one CV-fold. The
measures are evaluated against the increasing class size (Di) on the X axis. The fold size is
set to be 20% so that S i

j = 0.2∗Di would be the perfect split. The curves in A and B show the
outcomes from LD and rLD for various ratios of positive data points in the fold over different
class sizes. The curves in C and D show the resulting differences in LD or rLD when the
class proportion changes between two curves in the upper plots. Notice that these resulting
differences have a clear trend with LD in C and stable behavior with rLD in D. So rLD is
clearly balanced across the class sizes and LD is not.

4. The optisplit algorithm

In this section, we present a new general algorithm, optisplit, for optimizing cross validation splits
with respect to any split quality measure that can produce class specific scores. optisplit can also
be used to generate standard train-test splits by generating a cross validation split of size n with fold
size of the desired test set and then forming the training set from the folds 1 . . . n − 1 and the test
set from the fold n. Unlike some of the competing methods, optisplit does not need any data specific
parameters that have to be adjusted for different datasets. The details of optisplit are presented formally
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in Algorithm 1.
Algorithm 1: Generating stratified cross validation splits

Input : target data D ∈ {0, 1}n×m,
split quality measure M : (D, split)→ Rm,
number of cross validation folds k,
max number of epochs max epochs

Output: List of cross validation splits
Function stratified split(D, M, k, max epochs)

split0 ← make random split(D, k) // Initial random split

epoch← 0
repeat

max offset← 0
L0 ← M(D, split0) // Calculate score vector

for i ∈ [m] do // Optimise each class

A← index of nth max element(L0,max offset)
split1 ← balance(split0, A)
L1 ← M(D, split1)
if

∑
L0 ≤

∑
L1 then // Found improvement

max offset← max offset + 1
else

L0 ← L1

split0 ← split1

end
end

until
∑

L0 =
∑

L1 or epoch = max epochs
return split0

Intuitively, we start by randomly generating the initial k subsets, i.e. cross validation folds. Let M
be a measure that computes the quality of the split with respect to a single class, for example, rLD
or DCP. Using M, we calculate the initial score vector L0 for all classes. Let A be the index of the
class with the highest value of L0. We balance the folds with respect to class A by moving data points
from folds with excess data points to folds without enough data points so that the class distributions
are balanced for the class A (Function balance in Algorithm 1). After processing the class A, we
recalculate the score vector.

Let L1 be the recalculated score vector. If the sum of the recalculated scores is higher than the
sum of the original scores, undo the changes and move to the next worse class. Otherwise, keep the
modification and continue to the next worse class. Continue this process for all classes for many epochs
until either there is no improvement any more or a desired max iterations limit is reached. We only
allow balancing operations that lead to direct improvement of the sum of the scores. Since balancing
a class can change the distribution of other classes, it may be possible to balance later a class that is
skipped in the first epoch.

The time complexity of the Algorithm 1 consists of processing m classes, for each calculating
the loss with complexity O (nm), finding the class with the highest loss, O (m), and redistributing the
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elements O (n). Therefore, the total time complexity is O
(
nm2

)
. In practice, optisplit could be also

easily used on top of another possibly faster method to fine tune the results.
Note, that in the accompanying practical implementation, the classes that have more positive than

negative data points are balanced with respect to the negative distribution. This is not important for
GO data, but could be useful in some other applications.

5. Cross validation experiments

5.1. Split quality measures

We start by presenting an experimental evaluation of the behavior of LD, rLD and DCP on class
imbalanced synthetic data. We verify that LD depends on the class size while rLD and DCP do not. An
instance of the synthetic data consists of a binary target data matrix and a cross validation split. The
synthetic data is designed so that all the classes of the target matrix have a different amount of positive
data points, and all the cross validation folds have the same class distributions for each class. Since the
fold distributions are the same and the only variation is in the class sizes, a measure that depends on the
class size can be clearly identified with this data. In order to ensure that the results are consistent, we
repeat the experiments with multiple cross validation splits that are of varying quality: 1) perfect (all
class distributions are equal among folds), 2) with varying levels of error in the distributions between
folds.

5.1.1. Synthetic data

The data was constructed as follows: we generated a binary target matrix D ∈ {0, 1}n×q with n =

100000, q = 100, that is, 100000 data points and 100 classes, where, in order to make the data class
imbalanced, the positive class sizes of the data were set to vary from 2k to n/2, so that |S j| = 2k +
j(n/2−2k)

q , j ∈ 0 . . . q − 1. Details of the target data are presented in Table 2 under the name synthetic.
We constructed three different 10-fold cross validations splits for synthetic, namely

• Equal
• Difference
• One missing

In Equal all folds contained equal amount of positive data points, in Difference there was a 20%
increase in one fold, 20% decrease in one fold, and the rest were equal and in One missing one fold
was missing all positive data points while the other folds were equally sized. These three alternatives
represent different levels of error in data splitting, and measures should be able to separate them
from each other. Furthermore, all the classes of synthetic have the same fold distributions, while
the absolute class sizes are different. Therefore, a good split quality measure should give a similar
score for all classes, irrespective of their size. In practical settings it is especially important to correctly
divide the smaller classes since the bigger classes are naturally better distributed.

5.1.2. Result

We evaluated these three splits on the synthetic data using the measures LD, rLD and DCP. The
results for each measure are presented in the subplots of Figure 3. In each plot, class size is plotted
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against the class specific score given by the measure (smaller is better) for the different folds. The
results confirm that the widely used LD depends on the class size. LD gives smaller values to smaller
classes and higher values to bigger classes, even though their fold distributions are identical. The
behavior of rLD and DCP on the synthetic data show that both rLD and DCP are not affected by the
class size. Therefore, it is recommendable to use one of them instead of LD for measuring cross
validation split quality.

102 103 104

Class size

0
10 6
10 5
10 4
10 3
10 2
10 1
100

Sc
or

e

One missing

Measure
LD
rLD
DCP

102 103 104

Class size

0
10 6
10 5
10 4
10 3
10 2
10 1
100

Sc
or

e

Difference

102 103 104

Class size

0
10 6
10 5
10 4
10 3
10 2
10 1
100

Sc
or

e

Equal

Figure 3. Behavior of cross validation split quality measures on synthetic data with cross
validation splits of varying quality. The cross validation folds have the same distribution for
each class, so the scores should be equal. However, LD score depends on the class size if the
folds are not perfectly distributed, while rLD and DCP correctly give the same weight for all
classes. This is in agreement with the results shown in Figure 2.

5.2. Comparison of algorithms

In this Section, we will examine the performance of the existing algorithms, namely, SOIS, IS, SS
and PMBSRS (see Table 1) as well as our own optisplit with respect to the proposed new measures
rLD and DCP.

The algorithms compared here can be divided into three categories. IS and SOIS are iterative
stratification based methods, SS and optisplit are optimization based methods and PMBSRS is a
random split based method. Note that the SS implementation produces train test splits, not cross
validation splits. In order to compare it to the rest of the methods, we have split the data by recursively
splitting it to approximately 1/k sized test sets. Thus, the method is run 5 times.
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Table 1. Overview of the multilabel stratification algorithms used in the experiments. More
detailed method descriptions are in main text. Cross Validation is shortened here as CV.

Name Acronym Description Reference Implementation

Iterative stratification IS Split data, one class at the time, starting
from the smallest

[9] [10]

Second order iterative
stratification

SOIS IS extended to second order relationships [11] [10]

Stratified sampling SS Redistribute data points based on a score [7] [8]

Partition method based on
stratified random sampling

PMBSRS Sample CV folds from groups of similar
data points

[4] [12]

optisplit optisplit Minimize the class specific global loss New [12]

random random Fully random CV split - [12]

We will show that if one wants to get cross validation splits that are good with respect to rLD and
DCP, optisplit is the best option available since it can be used to directly optimize them. We optimized
optisplit with respect to LD, rLD and DCP to compare the effect of the cost function to the outcome.

In the following experiments, we set k = 5. All the results presented are averages over 10 runs with
different random initialization. The experiments were run using Python 3.6.8 on a machine with AMD
opteron-6736 1.4GHz. Implementations of optisplit and all the experiments presented in this article
are available at https://github.com/xtixtixt/optisplit.

5.3. Datasets

We used a wide range of diverse datasets: bibtex, delicious and mediamill are from the MULAN
dataset collection [14] that have been used to evaluate earlier similar methods. Datasets CC (cellular
component), MF (molecular function) and BP (biological process) are our own GO subset datasets
used in protein function prediction (see [13, 16] for more info). These are considerably bigger and
sparser than the MULAN datasets used here. The dataset Wiki10-31K [3] is a large and very sparse
extreme classification dataset. Here, classes without any positive or negative data points are excluded.
Detailed properties of the datasets are presented in Table 2.

5.4. Results

Scores of the split quality measures for all datasets and methods are presented in Table 3 with the
following exceptions: IS and SOIS results are not presented for the biggest datasets BP and Wiki10-
31K because their runtime was prohibitively high. Wiki10-31K results are not presented for SS because
the implementation used produced an error when run on that particular data. For comparison purposes,
we have also presented scores for random split (random).

The results show that optisplit performs better than previous methods with respect to rLD and DCP
scores when optimizing with either of those. The runtimes of optisplit are also competitive when
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Table 2. Properties of the datasets used in evaluations. CC, MF and BP are GO subsets. All
the datasets are highly class imbalanced. Min and Max represent the minimum and maximum
class sizes of the datasets. Columns 25%, 50% and 75% are the corresponding percentiles of
the class sizes. Density represents the proportion of positive data points.

Data Data size Labels Density Min 25% 50% 75% Max
bibtex 7395 159 0.0151 51 61 82 130 1042

delicious 16015 983 0.0193 21 58 105 258 6495

mediamill 43907 101 0.0433 31 93 312 1263 33869

CC 577424 1688 0.0077 5 66 225 891 577410

MF 637552 3452 0.0028 11 61 150 498 637533

BP 666349 11288 0.0028 4 41 123 493 666338

Wiki10-31K 20762 30938 0.0006 2 2 3 6 16756

synthetic 100000 100 0.2500 20 12512 25005 37497 50000

compared to other top performing methods. Generally, iterative stratification based methods perform
quite well, but are unusable slow on bigger datasets. Random split based methods are fast but produce
poor quality folds compared to more advanced methods. Optimization based methods (optisplit and
SS) usually give best results and their runtimes are in the middle of iterative stratification based and
random split based methods. Note that optisplit does not attempt to produce exactly equally sized
splits. This results in quite high ED scores compared to some other methods. This should not be a
problem in practical machine learning, especially since the relative sizes of the differences are still
very small.

We can see that DCP and rLD are very correlated, the ordering of the methods is similar with respect
to both measures and optimizing optisplit with respect to DCP produces nearly as good rLD results
as optimizing rLD directly. However, since rLD measures the folds more thoroughly i.e. it does not
just concentrate on the biggest fold it seems to be a better practical choice than DCP in most cases.
For completeness, we have included LD evaluations in Table 3. As is to be expected from the results
presented in Section 3, we can see that the method ordering is often considerably different with respect
to LD scores. In smaller and less imbalanced datasets LD gives results more in line with rLD and
DCP. For bigger and more imbalanced datasets, when LD weakness gets more pronounced, the results
differ more significantly. There, LD favors iterative stratification based methods and gives random split
based PMBSRS noticeably better score than to random, in contrast to rLD or DCP.

The LD scores of optisplit optimised with respect to LD are relatively good but usually not the best,
especially on the GO datasets. That may be explained by noticing that the corresponding ED scores
are also considerably high. It suggests that optisplit may concentrate on balancing mainly the largest
classes, because LD gives those extremely high scores, and optisplit always selects the class with the
maximum score to be balanced. In conclusion, optisplit seems to excel at optimising measures that
are more stable and do not have extremely strong preference to particular type of classes, like the LD
does.
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Table 3. Performances of the algorithms evaluated on diverse datasets. The scores shown are
means over 10 runs. Bold font highlights the best results for each dataset. Error marks cases
where the method failed to run. Note that ED monitors only the sizes of Cross Validation
splits, not their class distributions. Notice that we ran slower methods (SOIS and IS) only
with the smaller datasets (absence is marked with n/a).

Dataset Method ED LD DCP rLD
Runtime

Seconds Hours

bibtex
optisplitrLD 27 0.0004 0.0073 0.0234 5 0
optisplitDCP 38 0.0005 0.0068 0.0315 5 0
optisplitLD 24 0.0003 0.0082 0.0279 6 0

SOIS 16 0.0005 0.0143 0.0425 5 0
IS 17 0.0007 0.0206 0.0604 1 0
SS 57 0.0007 0.0173 0.0465 4 0
random 0 0.0022 0.0564 0.1693 1 0

PMBSRS 2 0.0022 0.0558 0.1660 1 0

mediamill
optisplitrLD 53 0.0005 0.0053 0.0187 10 0
optisplitDCP 7 0.0005 0.0047 0.0176 11 0
optisplitLD 76 0.0015 0.0227 0.0743 12 0

SOIS 1 0.0003 0.0205 0.0610 77 0
IS 1 0.0008 0.0280 0.0854 50 0
SS 36 0.0009 0.0068 0.0231 31 0
random 0 0.0019 0.0379 0.1142 1 0

PMBSRS 2 0.0019 0.0386 0.1150 1 0

delicious
optisplitrLD 35 0.0010 0.0223 0.0666 75 0
optisplitDCP 28 0.0010 0.0215 0.0772 76 0
optisplitLD 23 0.0008 0.0306 0.0924 80 0

SOIS 16 0.0012 0.0458 0.1357 381 0
IS 13 0.0013 0.0489 0.1461 11 0
SS 75 0.0007 0.0221 0.0625 40 0
random 0 0.0015 0.0507 0.1515 1 0

PMBSRS 2 0.0015 0.0512 0.1525 1 0

CC
optisplitrLD 193 8.1053 0.0065 0.0230 2762 0.77
optisplitDCP 78 8.1195 0.0062 0.0248 2872 0.80
optisplitLD 2783 7.5304 0.0317 0.0923 3006 0.84

SOIS 5 5.7623 0.0305 0.0894 204823 56.90
IS 1 5.6075 0.0448 0.1320 97120 26.98
SS 182 8.8831 0.0133 0.0416 1118 0.31
random 0 10.2802 0.0455 0.1342 1 0

PMBSRS 1 6.3606 0.0448 0.1332 17 0

MF
optisplitrLD 607 3.2147 0.0064 0.0229 4980 1.38
optisplitDCP 89 3.1782 0.0063 0.0252 5209 1.45
optisplitLD 3807 2.8137 0.0337 0.1025 5452 1.51

SOIS 84 3.0536 0.0490 0.1450 53646 14.90
IS 1 2.7503 0.0490 0.1451 20442 5.68
SS 656 4.7935 0.0129 0.0400 1018 0.28
random 0 6.2255 0.0493 0.1465 1 0

PMBSRS 1 4.8213 0.0498 0.1480 17 0

BP
optisplitrLD 612 2.1053 0.0161 0.0516 59436 16.51
optisplitDCP 173 2.0951 0.0156 0.0576 52412 14.56
optisplitLD 5845 1.8147 0.0521 0.1401 56636 15.73

SOIS n/a n/a n/a n/a n/a n/a
IS n/a n/a n/a n/a n/a n/a
SS 279 2.9140 0.0282 0.0857 2734 0.76
random 0 2.896 0.0568 0.1664 1 0

PMBSRS 0 2.4250 0.0567 0.1662 21 0

Wiki10-31K
optisplitrLD 1678 0.0002 0.2579 0.7563 3065 0.85
optisplitDCP 367 0.0002 0.2068 0.8033 3053 0.85
optisplitLD 712 0.0002 0.2995 0.9306 3932 1.09

SOIS n/a n/a n/a n/a n/a n/a
IS n/a n/a n/a n/a n/a n/a
SS error error error error error error
random 0 0.0002 0.3008 0.9316 1 0

PMBSRS 2 0.0002 0.3013 0.9323 1 0
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6. Discussion and future work

In this article, we have shown that the most widely used multilabel cross validation split quality
measure, LD, does not measure split quality correctly when used on class imbalanced data. In response,
we have presented new measures with better properties and have presented a new general method,
optisplit, for generating and optimizing multilabel stratified cross validation splits. We have compared
optisplit to existing methods and found that it produces better quality cross validation folds with respect
to the new measures than the previous methods and scales well for GO sized datasets. We note for
future work that optisplit could be made faster by calculating the loss only for the classes that have
been modified in the previous balancing operation. In case of sparse data, that should allow it to be
used even on considerably larger datasets.

During review process we became aware of a recently introduced genetic algorithm based multilabel
stratified split algorithm [6] which claims good LD performance, but no open source implementation
is available as of 18.3.2022. In future work it could be compared with optisplit, and in general, future
work should investigate optimization based methods for optimizing rLD. For example, optisplit now
uses a greedy hill-climbing approach for optimizing the target function. However, a monte carlo or
simulated annealing based version could achieve even better performance.
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